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Abstract

There are four non-isomorphic configurations of triples that can form a triangle
in a 3-uniform hypergraph. Forbidding different combinations of these four configu-
rations, fifteen extremal problems can be defined, several of which already appeared
in the literature in some different context. Here we systematically study all of these
problems solving the new cases exactly or asymptotically. In many cases we also
characterize the extremal constructions.
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1 Introduction

1.1 Notations

A hypergraph F is a pair (V (F), E(F)) where the set of edges, E(F), is a family of
subsets of the set of vertices V (F) (see Berge [1], Lovász [20]). To simplify notations
we frequently identify F with E(F) (and omit parentheses, etc.) if it does not cause
ambiguity. If all edges of F have the same size, say r, then we speak of an r-graph, or
r-uniform hypergraph. With this terminology 2-graphs are simple graphs without loops
and 3-uniform hypergraphs are also called triple systems. We usually identify V = V (F)
with the set of first n positive integers, [n] := {1, 2, 3, . . . , n}. Then

(
V
r

)
stands for the

complete r-graph with vertex set V , it is {F : |F | = r, F ⊆ V }.
We write ∂F for {F \ {x} : F ∈ F , x ∈ F}, it is called the shadow of F . If F is a

triple system then its shadow is a simple graph. The degree of S ⊆ V (F) is the number
of edges containing S, in notation

degF(S) := |{F : F ∈ F , S ⊆ F}|.

Given a triple system F we write F [x] for the link of x in F , i.e., the graph on V (F)\{x}
whose edges are those pairs that form with x a triple in F . If F is an edge of a 3-uniform
hypergraph F such that x, y ∈ F , x ̸= y, and there is no other F ′ ∈ F containing both
x and y, then we say that the pair xy is an own pair of F . With our previous notation,
degF(xy) = 1.

1.2 Cycles in hypergraphs

In hypergraph theory a cycle of length ℓ is usually defined as a sequence of distinct vertices
x1, x2, . . . , xℓ together with a sequence of distinct edges E1, . . . , Eℓ such that Ei contains
xi and xi+1 for 1 ≤ i < ℓ and Eℓ contains xℓ and x1. We refer to a cycle of ℓ edges as an
ℓ-cycle. For ordinary graphs, the above definition coincides with the definition of a cycle
Cℓ in graphs. We call a 3-cycle a triangle.

One of the oldest problems in extremal graph theory is to investigate the maximum
number of edges of graphs without given short cycles, e. g., the Turán-Mantel theorem
says that a triangle-free graph on n vertices has at most ⌊1

4
n2⌋ edges and the only extremal

graph is the complete bipartite graph with parts of sizes ⌊n
2
⌋ and ⌈n

2
⌉, respectively. For

further graph results see the book of Bollobás [4].

Hypergraph problems are more complicated, but there are some results, e. g., that
of Lazebnik and Verstraëte [19] saying that if F is 3-uniform, has n vertices, girth five
(i.e., no cycles of length less than five) and a maximum number of edges, then |E(F)| =
1
6
n3/2 + o(n3/2).

In this paper we deal with 3-uniform hypergraphs containing no triangles of certain
types.
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1.3 Triangles in triple systems

One can easily realize that there are altogether four non-isomorphic configurations of
three triples that create a triangle. We will call these configurations A,B,C, and D
(see Figure 1 below). The main goal of this paper is to study the maximum number of
triples one can have on n vertices while excluding certain combinations of the four triangle
creating configurations.

Configuration A is the one needing six vertices, that is, it is isomorphic to the hyper-
graph with V = {1, . . . , 6}, E = {124, 135, 236}.

Configuration B is on five vertices, where two of the three triples involved intersect
in two vertices and each of them meets the third triple in a different vertex. Thus B is
isomorphic to the hypergraph with V = {1, . . . , 5}, E = {125, 134, 234}.

Configuration C is the one on four vertices, that is, it is isomorphic to the hypergraph
with V = {1, . . . , 4}, E = {124, 134, 234}.

Configuration D is on five vertices again, with one triple sharing with each of the
other two a different pair of vertices. It is isomorphic to the hypergraph with V =
{1, . . . , 5}, E = {123, 134, 235}.
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Figure 1: The four configurations of three triples forming a triangle
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Our starting point is a result (first proved by Győri [16]) giving the maximum num-
ber of edges in a triangle-free 3-uniform hypergraph, i.e., in case all of A,B,C and D
are forbidden subconfigurations. In Section 2 we reprove it and also describe the ex-
tremal families. Then we consider the fourteen other cases when some proper subset of
{A,B,C,D} is forbidden. Five of these subsets define problems of long history, most of
them are solved, but not all. Then we go on to investigate the other nine. For all but one
of those nine combinations, we obtain an exact solution of the extremal problem (though
sometimes only for large enough n), often along with a characterization of the extremal
constructions. In the one exceptional case we give an asymptotic solution.

To state our results let us introduce the notation ex(n,X1 . . . Xk) for {X1, . . . , Xk} ⊆
{A,B,C,D}. It denotes the maximum number of triples in a 3-uniform hypergraph on
n vertices which does not contain any of the configurations X1, . . . , Xk. Table 1 below
summarizes the results, including earlier ones and those in the present paper.
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AB(
n−1
2

)
for n ≥ 5

and char. ext.
Theorem 2

A AC ABC(
n−1
2

)
for n ≥ n0 ⌊1

4
(n− 1)2⌋ for even n ⌊1

4
(n− 1)2⌋

and char. ext. 1
4
(n− 1)2 + 1 for odd n ≥ 5 and char. ext.

Frankl&Füredi [12] and char. ext. Theorem 11
Theorem 13

B AD ABD
⌊n
3
⌋⌊n+1

3
⌋⌊n+2

3
⌋ for n ≥ n0 ⌊1

4
(n− 1)2⌋+ 2 for even n ≥ 4 ⌊1

8
n2⌋ for n ≥ 8

Frankl&Füredi [10] 1
4
(n− 1)2 for odd n and char. ext.

char. ext. and char. ext. Theorem 19 ABCD
Keevash&Mubayi [18] Theorem 10 ⌊1

8
n2⌋

Győri [16]
C BC ACD char. ext.

≥ 2
7

(
n
3

)(
1− o(1)

)
⌊n
3
⌋⌊n+1

3
⌋⌊n+2

3
⌋ ⌊1

4
(n− 1)2⌋ Theorem 1

Frankl&Füredi [11] and char. ext. and char. ext.
≤ .287

(
n
3

)
for n ≥ n0 Bollobás [3] Corollary 9

Falgas-Ravry&Vaughan [9]

D BD BCD
n(n−1)

3
, n ≡ 1, 4 n(n−1)

3
, n ≡ 1, 4 1

4
n2
(
1− o(1)

)
n(n−1)

3
− 4, n ≡ 7, 10 n(n−1)

3
− 4, n ≡ 7, 10 Theorem 22

n(n−2)
3

, n ≡ 0, 2, 3, 6, 8, 9 n(n−2)
3

, n ≡ 0, 2, 3, 8
n(n−2)

3
− 1, n ≡ 5, 11 n(n−2)

3
− 1, n ≡ 5, 6, 9, 11

n ≥ n0 (residues mod 12) n ≥ n0 (residues mod 12)
Theorem 3 Theorem 3

CD
⌊1
4
(n− 1)2⌋

and char. ext.
Theorem 8

Table 1: A summary of results. For each combination of excluded configurations, we
indicate the value of the extremum (the largest size of a triple system on n vertices
obeying those exclusions) to the extent that it is known. We also point out the existence
of a characterization of the extremal constructions when available. For earlier results we
cite the papers, for new ones we refer to the relevant theorems in the present paper.
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2 The starting case: no triangle at all

How large can a triple system F on n vertices be, if it contains no triangle at all? Here
is a construction originally suggested by András Gyárfás as a conjectured optimum. Let
n ≥ 3 be given, and let k be a positive integer such that 2k < n. Partition the set V
of n vertices into k pairs A1, . . . , Ak and a set B of size n − 2k. Let Fn,k consist of all
k(n − 2k) triples of the form Ai ∪ {b} where 1 ≤ i ≤ k and b ∈ B. Then Fn,k contains
no triangles. To maximize the size k(n− 2k) for a given n, we choose k to be as close as
possible to n

4
(this choice is unique unless n ≡ 2 (mod 4), in which case the two choices

k = n±2
4

are equally good). With this optimal choice of k we have |Fn,k| = ⌊1
8
n2⌋.

The optimality of this construction among all triangle-free triple systems was proved
by Győri [16]. Here we reproduce the proof and extend the analysis to obtain also a
characterization of the extremal constructions.

Theorem 1.

ex(n,ABCD) = ⌊1
8
n2⌋

and equality is attained by a triple system F if and only if it is of the form Fn,k with k
chosen optimally as indicated above.

Proof. Let F be a triple system not containing any of A,B,C,D. First observe that not
containing C and D implies (in fact, is equivalent to) that every triple contains at least
two pairs which are its own. For those triples containing three own pairs choose two that
we single out as special. Consider the graph G on V (F) formed by the own pairs and the
special own pairs of the triples containing two or three own pairs, respectively. We claim
that G is triangle-free. Indeed, if a triangle were formed by own pairs of three different
triples, then we would have a triangle in F in the hypergraph sense, that is, one of our
forbidden configurations would appear. Thus at least two edges of a triangle in G should
be own pairs of the same triple F . However, in that case the third edge of the triangle
is also contained in F , thus it cannot be the own pair of another triple F ′. But it also
cannot be an edge of G as a third own pair of F since every triple in F is represented by
exactly two pairs in G. Therefore a triangle in G cannot occur. This implies by Turán’s
theorem that |E(G)| ≤ 1

4
n2. Since |E(G)| = 2|F|, we got |F| ≤ ⌊1

8
n2⌋.

It remains to show that if |F| = ⌊1
8
n2⌋ then F must be of the form Fn,k. Note that

|E(G)| = 2⌊1
8
n2⌋, and this number equals ⌊1

4
n2⌋ unless n ≡ 2 (mod 4), in which case

it equals ⌊1
4
n2⌋ − 1. By known characterizations (see [7]) of the extremal and next-to-

extremal cases for Turán’s theorem, G must be bipartite with parts A and B satisfying
one of the following:

(a) n ̸≡ 2 (mod 4), |A| and |B| differ by at most 1 and G is complete bipartite.

(b) n ≡ 2 (mod 4), |A| = |B| and G is complete bipartite minus one edge.

(c) n ≡ 2 (mod 4), |A| and |B| differ by 2 and G is complete bipartite.
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Each triple in F contributes two own pairs to G, hence contains two vertices in A and
one in B or vice versa. We claim that all triples in F must be of the same kind, i.e., the
same part contains two vertices from each triple. Assume, for the sake of contradiction,
that there are triples FA, FB ∈ F such that FA ∩ A = {x, x′} and FB ∩ B = {y, y′}.
Out of the four pairs in {x, x′} × {y, y′}, at most one is a non-edge of G. Hence w.l.o.g.
x′y, yx, xy′ form a path in G. Say these edges of G represent the triples F1, F2, F3 in F ,
respectively. Clearly, F1, F2 and F3 cannot all be the same triple, so w.l.o.g. F1 ̸= F2,
and neither F1 nor F2 contains {x, x′}. But then FA, F1, F2 are three distinct triples in F
which form a forbidden triangle.

Thus, we assume w.l.o.g. that every triple in F contains two vertices in A and one
in B. For each vertex b ∈ B, its link in F consists of disjoint pairs in A (otherwise, we
would have an edge of G that belongs to two triples in F). This gives the upper bound

|F| ≤ ⌊|A|
2
⌋ · |B|.

If |A| is odd, this bound is strictly smaller than ⌊1
8
n2⌋. Thus |A| must be even, ruling out

case (b) above. Moreover, the bound must hold as an equality, so the link of each b ∈ B is

a partition of A into k pairs A1, . . . , Ak, where k = |A|
2
. Furthermore, this partition must

be the same for all b ∈ B, otherwise there would be a forbidden triangle. This shows that
F is of the form Fn,k, and the conditions on the difference between |A| and |B| in cases
(a), (c) above imply the optimal choice of k.

3 Earlier results

The four cases where we exclude just one type of triangle creating configurations A,B,C,
or D, were already investigated in some different context. In particular, ex(n,A) =

(
n−1
2

)
for large enough n is proven in [12] (as Theorem 3.3). This result also determines that all
extremal constructions are full stars, 3-uniform hypergraphs containing all edges through
a fixed vertex.

ex(n,A) =

(
n− 1

2

)
for n ≥ n0.

Observing that this construction also does not contain configuration B, we have that the
same holds for AB-free hypergraphs, too. Here (in Section 4) we prove that n0 = 5 for
ex(n,AB).

An early attempt to generalize Turán’s theorem to hypergraphs (for triple systems)
was proposed by Erdős and Katona, who conjectured that the largest triple system on
n vertices such that no three distinct triples A,B,C satisfy A△ B ⊂ C is the complete
3-partite hypergraph with part sizes as equal as possible. Here △ is the symmetric
difference, A△ B = (A \ B) ∪ (B \ A). One can see that (for A ̸= B) A△ B ⊂ C can
only occur when A and B have two common vertices and the three triples form either a
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configuration B or C. The conjecture was verified by Bollobás [3] thus showing

ex(n,BC) = ⌊n
3
⌋⌊n+ 1

3
⌋⌊n+ 2

3
⌋.

Frankl and Füredi (in [10] as Theorem 4) sharpened Bollobás’s theorem proving that for
n ≥ 3000 it is sufficient to exclude only B. Subsequently, a new proof was given by
Keevash and Mubayi [18] who also significantly lowered the constraint for n:

ex(n,B) = ⌊n
3
⌋⌊n+ 1

3
⌋⌊n+ 2

3
⌋ for n ≥ 33,

with equality only for the balanced complete 3-partite hypergraph. They also proved that
the extremal family is rather stable, namely for any ε > 0 there exists δ > 0 such that if
H is a B-free triple system on n vertices with at least (1− δ) 1

27
n3 edges, then there exists

a partition of the vertex set of H as V (H) = V1∪V2∪V3 so that all but at most εn3 edges
of H have one vertex in each Vi.

The value of ex(n,C) is not known, it is a famous problem proposed by Erdős and
Sós [8] that is thought to be difficult. Frankl and Füredi [11] gave a recursive construction
based on the design S2(6, 3, 2), yielding the best known lower bound ex(n,C) ≥ 2

7

(
n
3

)(
1−

o(1)
)
. An upper bound with 1

3
instead of 2

7
was proved by de Caen [5] and Sidorenko [21].

A sequence of small improvements of the coefficient 1
3
followed. The current record,

obtained by Falgas-Ravry and Vaughan [9] using semi-definite programming, is slightly
less than 0.287 (close to but still larger than 2

7
). Thus

2

7

(
n

3

)(
1− o(1)

)
≤ ex(n,C) ≤ 0.287

(
n

3

)(
1 + o(1)

)
.

Configuration D is the most restrictive in terms of the largest size of a triple system
excluding it: the upper bound ex(n,D) ≤ n(n−1)

3
follows from Theorem 3.8 of Frankl and

Füredi [12]. Determining the exact value of ex(n,D) takes more work, which we carry
out below in Section 5.

4 Excluding A and B

Concerning ex(n,AB) we prove a stronger statement.
Define configuration A+ as a six vertex triple system of four edges with V =

{1, . . . , 6}, E = {123, 124, 135, 236}. This is the same as A with the middle triangle 123
as an additional triple. Similarly, configuration B+ on five vertices is the same as B with
one more central triple 123, i.e., V = {1, . . . , 5}, E = {123, 125, 134, 234}. We obviously
have ex(n,AB) ≤ ex(n,A+B+). Since the full star contains neither configuration A nor
configuration B, the following theorem implies the similar statement for ex(n,AB) in
place of ex(n,A+B+).
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Theorem 2.

ex(n,A+B+) =

(
n− 1

2

)
for n ≥ 5

and the only extremal family is the full star.

Proof. Let F ⊆
(
[n]
3

)
be an optimal A+B+-free family. Define F1 ⊆ F as the family

of triples with an own pair, F1 := {xyz ∈ F : min{degF(xy), degF(yz), degF(zx)} = 1},
and let F2 := F \ F1. Our main observation is that for every F = xyz ∈ F2 we have
degF(xy) = degF(yz) = degF(zx) = 2. Indeed, by definition, all these three pairs have
degrees at least 2, so one can find triples xya, yzb, zxc ∈ F such that {x, y, z}∩{a, b, c} =
∅. These three triples together with xyz form a configuration A+ or B+ unless a = b = c.
We obtain that a is unique so degF(xy) = 2, and similarly for b and c.

Define a nonnegative function w(e, F ) :
(
[n]
2

)
×

(
[n]
3

)
→ R as follows. It is always 0

except when e ⊂ F , F ∈ F , when it is 1
degF (e)

. Note that here 1
degF (e)

≥ 1
n−2

. For every

pair e ∈ ∂F we have

w(e) :=
∑
F∈F

w(e, F ) =
∑

F :e⊂F∈F

1

degF(e)
= 1.

For every F ∈ F1, F = xyz we have

w(F ) :=
∑

e⊂F,|e|=2

w(e, F ) =
1

degF(xy)
+

1

degF(yz)
+

1

degF(zx)
≥ 1 +

2

n− 2
=

n

n− 2
.

For each F ∈ F2 we have w(F ) = 3
2
. Assuming that n ≥ 6, this is at least n

n−2
, hence(

n

2

)
≥ |∂F| =

∑
e∈∂F

w(e) =
∑
e

∑
F∈F

w(e, F ) =
∑
F∈F

w(F ) ≥ n

n− 2
|F|.

This yields
(
n−1
2

)
≥ |F|. For n ≥ 7 we infer that equality can hold only if F = F1, and

each F ∈ F has a unique own 2-subset. The set-pair theorem of Bollobás [2] gives that
F is a full star.

In case of F2 = ∅ the above proof works for all n ≥ 5. If n = 6 and F2 ̸= ∅ then it
contains a

(
[4]
3

)
. The additional triples must contain {5, 6}, hence there are at most four

more of them (x56 with 1 ≤ x ≤ 4). We get |F| ≤
(
4
3

)
+ 4 <

(
5
2

)
. Finally, in the case

n = 5 and F2 ̸= ∅ the family F consists of the four triples of
(
[4]
3

)
, hence |F| <

(
4
2

)
.

5 Excluding D (or B and D)

As mentioned, the upper bound ex(n,D) ≤ n(n−1)
3

follows from [12]. Here we conduct
a careful analysis showing that this bound is either tight or nearly tight, depending on
the residue of n modulo 12. The same analysis also determines ex(n,BD). The following
theorem summarizes our findings.
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Theorem 3. There exists n0 such that for all n ≥ n0 we have:

ex(n,D) = ex(n,BD) =



n(n− 1)

3
if n ≡ 1, 4 (mod 12)

n(n− 1)

3
− 4 if n ≡ 7, 10 (mod 12)

n(n− 2)

3
if n ≡ 0, 2, 3, 8 (mod 12)

n(n− 2)

3
− 1 if n ≡ 5, 11 (mod 12)

ex(n,D) =
n(n− 2)

3
and ex(n,BD) =

n(n− 2)

3
− 1 if n ≡ 6, 9 (mod 12).

Without the requirement n ≥ n0, the indicated quantities are always valid as upper bounds,
and as exact values for n ≡ 0, 1, 3, 4 (mod 12).

5.1 Preparations for the proof

In preparation for the proof, we develop or recall some tools that will be used in it. Let
F be a triple system on a vertex set V , |V | = n. We call two triples in F contiguous if
they share two vertices. The contiguity relation defines a graph on F , which allows us to
partition F uniquely into its connected components with respect to contiguity:

F =
r⋃

i=1

Fi

Let us denote by ∂Fi the shadow of Fi, i.e., the set of those pairs contained in some triple
in Fi. Viewing the ∂Fi as graphs, they are edge-disjoint.

Two special types of Fi serve as building blocks of D-free triple systems. One, that
we call a cluster, consists of 3 or 4 triples on 4 vertices; its shadow is a K4 graph. The
other, that we call a k-crown, consists of some number k ≥ 1 of triples, all sharing a
fixed pair of vertices x and y; its shadow is a book graph Bk on k + 2 vertices, consisting
of k triangles sharing an edge. In the case k = 1 we get a single triple (triangle). The
following easy-to-check fact is recorded here for later reference.

Observation 4. A triple system F is D-free if and only if each of its connected compo-
nents Fi is either a cluster or a k-crown for some k ≥ 1.

Thus, constructing a D-free triple system F on V amounts to packing edge-disjoint
copies of K4 and some Bk’s in the complete graph Kn. As we are interested in the largest
possible F , we may assume that each copy of K4 contributes 4 triples to F . The ratio

|Fi|
|E(∂Fi)| is

2
3
in each cluster and less than 1

2
in each crown. Hence we would like to pack

in Kn as many copies of K4 as we can, and use the leftover edges, if any, to add copies
of some Bk’s if possible. The maximum number of copies of a fixed graph H that can be
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packed in Kn was determined for large enough n by Caro and Yuster [6]. Their main tool,
which will also be ours, was the following decomposition theorem of Gustavsson, which
extends Wilson’s theorem (see Theorem 23 below) from complete graphs to sufficiently
dense ones.

Theorem 5 (Gustavsson [15], Glock et al. [14]). For every fixed graph H there exist
n0 = n0(H) and ε = ε(H) > 0 such that the following holds for all n ≥ n0 and every
graph G on n vertices with all vertex degrees greater than (1− ε)n:
There exists a decomposition of the edge set E(G) into copies of H if and only if the
number of edges of H divides that of G, and the greatest common divisor of the vertex
degrees in H divides that of the vertex degrees in G.

We will apply this theorem to H = K4. In this case, the divisibility conditions become:
6||E(G)| and 3| degG(v) for all v ∈ V . These conditions are satisfied by G = Kn if and
only if n ≡ 1, 4 (mod 12). For all (not just large enough) n ≡ 1, 4 (mod 12), a full packing
of copies of K4 in Kn is known to exist (Hanani [17]). When such a full packing does not
exist, we will use a decomposition into K4’s of a large subgraph G of Kn, specified by
describing its complement G. In terms of G the divisibility conditions become:

|E(G)| ≡
(
n

2

)
(mod 6) and degG(v) ≡ n− 1 (mod 3) for all v ∈ V.

The graphs G that we will specify have constant maximum degree, which ensures that all
vertex degrees in G will be greater than (1−ε)n for large enough n. TheK4-decomposition
of G provided by Theorem 5, plus some edge-disjoint Bk’s in G when available, will
naturally define a large D-free triple system F . In most cases this F will also be B-free;
when this is not the case we will modify G to get a slightly smaller triple system which
is BD-free.

Another useful way to analyze triple systems F is by describing their links. Recall
that the link F [x] of a vertex x is the graph on V \ {x} whose edges are those pairs of
vertices that form with x a triple in F . Here is another simple characterization of D-free
triple systems.

Observation 6. A triple system F is D-free if and only if each of its links F [x] is a
vertex-disjoint union of triangles and stars (including the cases of an isolated vertex or
edge). For such F , denoting by st(F [x]) the number of stars in F [x], we have

|F| = 1

3

∑
x∈V

(
n− 1− st(F [x])

)
.

Note that this immediately implies the following upper bound:

ex(n,D) ≤


n(n− 1)

3
if n ≡ 1 (mod 3)

n(n− 2)

3
if n ̸≡ 1 (mod 3)
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In our detailed analysis, depending on the residue of n modulo 12, we will construct D
(and even BD)-free triple systems that match this upper bound exactly or up to a small
constant difference, and prove their optimality.

5.2 Proof of Theorem 3

Case 1 n ≡ 1, 4 (mod 12)

We saw that n(n−1)
3

is an upper bound on the size of aD-free triple system. A matching
construction is obtained by placing 4 triples in each copy of K4 in a full packing in Kn,
which exists by [17]. This gives a triple sytem F of size |F| = 4 · 1

6

(
n
2

)
= n(n−1)

3
, which is

B-free as well.

Case 2 n ≡ 0, 3 (mod 12)

We saw that n(n−2)
3

is an upper bound on the size of a D-free triple system in this

case. For a matching construction, we use a packing of n(n−3)
12

copies of K4 and
n
3
triangles

in Kn. Such a packing can be obtained by starting with a full packing of copies of K4 in
Kn+1, which exists by [17], and deleting one vertex. Placing 4 triples in each copy of K4

and one in each triangle gives a BD-free triple system F of size |F| = n(n−3)
3

+ n
3
= n(n−2)

3
.

Case 3 n ≡ 2, 8 (mod 12)

Again, n(n−2)
3

is an upper bound. For a matching construction for large enough n, we

use Theorem 5 as follows. We takeG to be a perfect matching inKn, noting that it satisfies
the required conditions: |E(G)| = n

2
≡

(
n
2

)
(mod 6) and degG(v) = 1 ≡ n − 1 (mod 3).

Placing 4 triples in each copy of K4 in a K4-decomposition of G we get a BD-free triple
system F of size |F| = 2

3

((
n
2

)
− n

2

)
= n(n−2)

3
.

Case 4 n ≡ 5, 11 (mod 12)
We start with the construction for large enough n, using Theorem 5. We take G to

consist of a matching of n−5
2

edges and a star on the remaining 5 vertices. The required

conditions are satisfied: |E(G)| = n−5
2

+ 4 ≡
(
n
2

)
(mod 6) and degG(v) ∈ {1, 4} ≡ n −

1 (mod 3) for all v ∈ V . Placing 4 triples in each copy of K4 in a decomposition of G, we

get a BD-free triple system F of size |F| = 2
3

((
n
2

)
− n+3

2

)
= n(n−2)

3
− 1.

To see that this is optimal, assume that there is a D-free triple system F of size
|F| = n(n−2)

3
. By Observation 6, we must have st(F [x]) = 1 for every vertex x. Consider

the mapping defined on V by x 7→ y, where y ̸= x is the center of the star in the link F [x].
This is well defined, because there is a unique star and it has a unique center (the star
cannot be a single edge because it has 1 (mod 3) vertices). Note also that x 7→ y implies
y 7→ x, so this mapping partitions V into pairs, which is impossible because n is odd.

Case 5a n ≡ 6, 9 (mod 12), excluding D

We saw that n(n−2)
3

is an upper bound in this case. For a matching construction

for large enough n, we use Theorem 5 as follows. We take G to consist of n−6
3

vertex-



Triangle-free triple systems 13

disjoint triangles and a B4 on the remaining vertices. The required conditions are satisfied:
|E(G)| = (n − 6) + 9 ≡

(
n
2

)
(mod 6) and degG(v) ∈ {2, 5} ≡ n − 1 (mod 3) for all v ∈ V .

Placing 4 triples in each copy of K4 in a decomposition of G, one in each triangle in G, and
4 in the book B4, we get a D-free triple system F of size |F| = 2

3

((
n
2

)
−n−3

)
+ n−6

3
+4 =

n(n−2)
3

.

Case 5b n ≡ 6, 9 (mod 12), excluding BD

Note that the construction in Case 5a is not B-free, because two triples xyz, xyw from
the crown on B4 form a B configuration with a triple containing {z, w}. We modify the
construction, letting G consist of n−9

3
vertex-disjoint triangles and 4 more triangles on the

remaining vertices, all sharing one vertex. The modification does not change the number
of edges in G, and the only new degree is 8, hence the required conditions are satisfied.
Placing 4 triples in each copy of K4 in a decomposition of G and one in each triangle in
G, we get a BD-free triple system F of size |F| = 2

3

((
n
2

)
− n− 3

)
+ n−9

3
+ 4 = n(n−2)

3
− 1.

To see that this is optimal, assume that there is a BD-free triple system F of size
|F| = n(n−2)

3
. Then in each link F [x] there must be exactly one star. We claim that none

of the Fi (the connected components of F with respect to contiguity, as defined at the
beginning of Subsection 5.1) can be a k-crown with k ≥ 2. Suppose that Fi is such a
k-crown, consisting of the triples xyzi, i = 1, . . . , k. Then the link F [z1] contains xy as
an isolated edge, and also z2, . . . , zk as isolated vertices (the latter is due to B-freeness).
This contradicts the uniqueness of the star in each link. By Observation 4, it follows that
each Fi is either a cluster or a 1-crown (i.e., a triple contiguous to no other triple). This
implies that each link is a vertex-disjoint union of n−3

3
triangles and an isolated edge. But

this is impossible: if every vertex appears in n−3
3

clusters, then the number of clusters is
1
4
n · n−3

3
, which is not an integer.

Case 6 n ≡ 7, 10 (mod 12)

We start with the construction for large enough n, using Theorem 5. We take G to be
the triangular prism graph (two vertex-disjoint triangles with a perfect matching of their
vertices) plus n− 6 isolated vertices. The required conditions are satisfied: |E(G)| = 9 ≡(
n
2

)
(mod 6) and degG(v) ∈ {0, 3} ≡ n− 1 (mod 3) for all v ∈ V . Placing 4 triples in each

copy of K4 in a decomposition of G and one in each of the two triangles in G, we get a
BD-free triple system F of size |F| = 2

3

((
n
2

)
− 9

)
+ 2 = n(n−1)

3
− 4.

To see that this is optimal, assume that there is a D-free triple system F of size
|F| = n(n−1)

3
−3. Consider the decomposition of F into its connected components Fi with

respect to contiguity. Let the graph G be the edge-disjoint union of the K4’s that are the
shadows of the cluster Fi’s. Let G be the complement of G. The divisibility conditions
are:

|E(G)| ≡ 3 (mod 6) and degG(v) ≡ 0 (mod 3) for all v ∈ V.

The shadows of the crown Fi’s are edge-disjoint subgraphs of G, and the number of triples
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that each of them carries is less than half its number of edges. Thus we have

n(n− 1)

3
− 3 = |F| ≤ 2

3
|E(G)|+ 1

2
|E(G)| = 2

3

(
n

2

)
− 1

6
|E(G)|

from which we deduce that |E(G)| ≤ 18. Together with the fact that |E(G)| ≡ 3 (mod 6),
this leaves only three possibilities for |E(G)|, that we can rule out one-by-one:

� |E(G)| = 3
By degG(v) ≡ 0 (mod 3), all non-zero degrees must be at least 3, which is impossible
with 3 edges.

� |E(G)| = 9
All non-zero degrees must be exactly 3, because there are not enough edges to allow
a degree of 6 or more. Ignoring isolated vertices, G is a 3-regular graph on 6 vertices.
A quick case check shows that such a graph contains at most two triangles. Hence
the total number of triples in F is at most the number in our construction, namely
n(n−1)

3
− 4.

� |E(G)| = 15

Let t be the number of triples in F coming from G. From n(n−1)
3

− 3 = |F| ≤
2
3

((
n
2

)
− 15

)
+ t we get that t ≥ 7. The only way to obtain 7 triples from crowns

whose edge-disjoint shadows have at most 15 edges in total is to use one 7-crown.
But then G is a book graph B7 (plus isolated vertices), having vertex degrees 2 and
8 which are not 0 (mod 3).

This completes the proof of Theorem 3.

6 Excluding C and D (and A, optionally)

Observation 7. The triple system F avoids C and D if and only if each triple F ∈ F
contains at least two own pairs.

Indeed, if 123 ∈ F with degF(12), degF(13) ≥ 2, then the three triples 123, 12x, 13y
either form a C (in case of x = y), or a D (in case of x ̸= y). On the other hand, both C
and D have a member with at most one own pair.

This observation gives ex(n,CD) ≤ 1
2

(
n
2

)
= 1

4
n2
(
1 − o(1)

)
and a construction of

matching order of magnitude is not hard to find. In this case, however, we will give the
exact value of ex(n,CD) together with a characterization of all the extremal constructions.
As it turns out it will be just one little step further to give a similar characterization of
all extremal ACD-free constructions.
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6.1 A construction based on a tournament

First we describe a construction we will call the tournament construction. Consider a
maximum size matching in the graph Kn. Fix a tournament T on a vertex set consisting
of the edges of this matching. (Thus our tournament is on ⌊n

2
⌋ vertices.) Let FT be the

3-uniform hypergraph the edges of which are the triples consisting of a matching edge plus
a vertex of another matching edge into which the previous matching edge (as a vertex of
T ) sends an edge in T . In case n is odd, the third vertex of an edge in FT can also be the
unique unmatched vertex of our original Kn. The number of triples in FT is 2

(n
2
2

)
if n is

even and 2
(n−1

2
2

)
+ n−1

2
if n is odd. (Both of the latter can be written as ⌊1

4
(n− 1)2⌋.) It

is easy to check that each triple in FT (for any possible T ) contains two own pairs, thus
C and D do not appear in FT . This gives ex(n,CD) ≥ ⌊1

4
(n− 1)2⌋.

Theorem 8.

ex(n,CD) = ⌊1
4
(n− 1)2⌋

and equality is attained by a triple system F if and only if it is of the form FT for some
tournament T .

Before the proof we obtain the following immediate consequence.

Corollary 9.

ex(n,ACD) = ⌊1
4
(n− 1)2⌋

and equality is attained by a triple system F if and only if it is of the form FT for the
transitive tournament T .

Proof of Corollary 9. If T is not transitive then it contains a cyclically oriented triangle
which gives rise to a configuration A in FT . On the other hand, if T is transitive then A
cannot occur in FT . This observation and the trivial inequality ex(n,ACD) ≤ ex(n,CD)
imply the statement by Theorem 8.

6.2 Proof of Theorem 8

Let F be a triple system not containing C and D and having the maximum number of
triples. Then |F| ≥ |FT | = ⌊1

4
(n− 1)2⌋. We have already observed that each F ∈ F has

at least two own pairs. We form a graph G on V (F) by taking as edges exactly two own
pairs from each F ∈ F . Let G be the complement of G. Note that every F ∈ F has two
of its pairs in G and the third in G.

We claim that the edges of G form a matching of size ⌊n
2
⌋. First, observe that |E(G)| =

2|F| ≥ 2⌊1
4
(n − 1)2⌋ = ⌊1

2
(n − 1)2⌋. Hence |E(G)| ≤

(
n
2

)
− ⌊1

2
(n − 1)2⌋ = ⌊n

2
⌋. Now we

distinguish two cases. If every vertex x ∈ V (F) is incident to an edge of G, then G must
be a perfect matching (and n is even). In the other case, consider a vertex x all of whose
pairs are edges of G. These n− 1 pairs are own pairs of triples containing x, so n is odd
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and these triples are of the form xy1z1, . . . , xy(n−1)/2z(n−1)/2 where y1z1, . . . , y(n−1)/2z(n−1)/2

form a perfect matching in V (F) \ {x} and each of them is an edge of G (as the third
pair of its triple). In this case, too, we get that G is a matching of size ⌊n

2
⌋. In particular,

the inequalities above must hold as equalities, proving the first part of the theorem.
To establish the tournament structure, we take the edges of G as the maximum size

matching (the vertices of the tournament). We already know that each triple in F contains
an edge of G. Given any two distinct edges of G, the four crossing pairs between them
must be edges of G, hence own pairs of triples. This prevents the existence of triples going
both ways between two edges of G, and implies the tournament structure for F .

7 Excluding A and D

For the combination AD, by our previous analysis for ACD, we can write

ex(n,AD) ≥ ex(n,ACD) = ⌊1
4
(n− 1)2⌋.

We recall that ex(n,ACD) is attained uniquely by the construction FT based on a tran-
sitive tournament T .

It turns out that the answer for AD is similar, but a bit more subtle. For any even
n ≥ 4 we can add two triples to FT as indicated next, and still avoid A and D. Say the
pairs 12 and 34 are the elements of the tournament T with the lowest and second lowest
outdegree, respectively. On these four vertices, FT contains the two triples 134, 234, and
we can add the other two triples 123, 124 without forming an A or D. We denote this
augmented construction by F+

T . For odd n we cannot do better than 1
4
(n−1)2, but we can

modify FT as indicated next, and get another extremal construction (assuming n ≥ 5).
Say 0, 12, 34 are the singleton and the two lowest outdegree elements of T , respectively.
On these five vertices, FT contains the four triples 012, 034, 134, 234. We can replace 012
and 034 by 123 and 124 without forming anA orD. We denote this modified construction
by F±

T .

Theorem 10.

ex(n,AD) =

{
⌊1
4
(n− 1)2⌋+ 2 if n ≥ 4 is even

1
4
(n− 1)2 if n is odd

and equality is attained by a triple system F if and only if it is of the form F+
T (for even

n ≥ 4) or one of the two forms FT or F±
T (for odd n ≥ 5) for a transitive tournament T .

Proof. We argue by induction on n. The base cases n = 3, 4 are trivial, so we assume
n ≥ 5. Let F be an AD-free triple system on the vertex set V , with |V | = n and

|F| ≥ f(n) :=

{
⌊1
4
(n− 1)2⌋+ 2 if n is even

1
4
(n− 1)2 if n is odd
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We have to show that |F| = f(n) and F is of one of the specified forms.
Assume first that F is C-free as well. Then by Corollary 9 we have |F| ≤ ⌊1

4
(n−1)2⌋,

so this is possible only when n is odd, in which case we get |F| = f(n) and F is of the
form FT (again by Corollary 9).

From now on, we assume that F does contain a C configuration, say on vertices
1, 2, 3, 4. Note that any triple in F that is not contained in {1, 2, 3, 4} intersects it in at
most one vertex – otherwise we get a D configuration. When n = 5 this immediately
implies that F consists only of the 4 triples in {1, 2, 3, 4}, which form an F±

T . When
n = 6 this implies that F consists of those 4 triples and another 4 triples of the form i56,
i = 1, 2, 3, 4, yielding an F+

T . Henceforth we assume n ≥ 7, which will allow us to apply the
induction hypothesis to the family of those triples in F contained in V ′ := V \ {1, 2, 3, 4}.

For i = 1, 2, 3, 4, let Gi be the graph whose edges are those pairs in V ′ that form with
the vertex i a triple in F . By the absence of D, the graph Gi has no path of three edges,
implying that each connected component of Gi is either a star (including the cases of an
isolated vertex or edge) or a triangle. By the absence of A, an edge of Gi and an edge of
Gj, j ̸= i, cannot share exactly one vertex. Let G be the multigraph on V ′ formed by the
Gi, i = 1, 2, 3, 4. By the two observations just made, each connected component of G is
either a pair of vertices with 2, 3 or 4 parallel edges between them (say there are m such
pairs P1, . . . , Pm), or a star or triangle whose edges belong to a single Gi.

As the number of edges is at most 4 in each Pj, and at most the number of vertices
in every other component of G, we can write

|E(G)| ≤ 4m+
(
n− 4− 2m

)
= n+ 2m− 4.

On the other hand, using the induction hypothesis and the equality f(n) − f(n − 4) =
2n− 6, we get

f(n) ≤ |F| ≤ 4 + |E(G)|+ f(n− 4) = |E(G)|+ f(n)− 2n+ 10,

implying that |E(G)| ≥ 2n−10. Comparing these two bounds on |E(G)|, we immediately
get 2m ≥ n− 6, so ∪m

j=1Pj covers all but at most two vertices of V ′. Actually, it cannot
leave out two vertices, because then our upper bound on |E(G)| is not tight (those two
vertices carry at most one edge). It follows that P1, . . . , Pm is a maximum matching in
V ′, i.e., m = ⌊n−4

2
⌋. Our bounds on |E(G)| become

2n− 10 ≤ |E(G)| ≤ 4⌊n− 4

2
⌋.

For odd n the bounds coincide, implying that each Pj has 4 parallel edges. For even n
there is a slack of 2, so there may be one exceptional Pj with 2 parallel edges, or at most
two exceptional Pj with 3 parallel edges each. Note that in any case, for any two distinct
Pj, Pk, there is a graph Gi having an edge in both Pj and Pk.

We claim that any triple F ∈ F , F ⊆ V ′ must contain one of the pairs Pj, j = 1, . . . ,m.
If not, then F is of the form xyz where x ∈ Pj, y ∈ Pk, k ̸= j, and z is either in a third
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Pℓ or (when n is odd) is the unpaired vertex of V ′. Let x′ and y′ be the other vertices of
Pj and Pk, respectively, and let i ∈ {1, 2, 3, 4} be such that E(Gi) contains both xx′ and
yy′. Then xyz, ixx′, iyy′ give an A configuration, which is forbidden.

We claim further that for any two distinct pairs Pj and Pk, there cannot coexist in
F a triple made of Pj and a vertex of Pk and a triple made of Pk and a vertex of Pj.
Indeed, two such triples and a triple of the form Pj ∪ {i}, i ∈ {1, 2, 3, 4}, would yield a D
configuration.

To summarize, the possible triples F ∈ F , F ⊆ V ′ are either contained in some Pj∪Pk,
j ̸= k (and there are at most two such triples for each j ̸= k), or consist of some Pj and
the unpaired vertex of V ′ (when n is odd). This gives the following upper bound on |F|:

|F| ≤

{
4 + 4n−4

2
+ 2

(n−4
2
2

)
if n is even

4 + 4n−5
2

+ 2
(n−5

2
2

)
+ n−5

2
if n is odd

A calculation shows that for either parity, this bound equals f(n). We conclude that
|F| = f(n) and all the triples counted in the upper bound are in fact in F . This F is
easily seen to be of the form F+

T in the even case and F±
T in the odd case, for a tournament

T in which Pj beats Pk if the two triples in Pj ∪Pk contain Pj, and every Pj beats 12 and
34. The tournament must be transitive in order to avoid an A configuration.

8 Excluding A,B and C

8.1 A construction based on the Turán graph

Let F∗
n be the following triple system on a set V of n vertices. Fix a vertex x ∈ V ,

and consider a complete bipartite graph on V \ {x} with parts of size ⌊n−1
2
⌋ and ⌈n−1

2
⌉,

respectively. Let the triple F be in F∗
n if and only if F consists of x and an edge of the

complete bipartite graph. It is easy to check that none of A, B and C is contained in F∗
n,

and its size is ⌊1
4
(n− 1)2⌋.

Theorem 11.

ex(n,ABC) = ⌊1
4
(n− 1)2⌋

and equality is attained by a triple system F if and only if it is isomorphic to F∗
n.

8.2 The structure of nearly extremal triangle-free graphs

We will need the following lemma about triangle-free graphs on n vertices having at least
⌊1
4
(n − 1)2⌋ edges. Given a graph G = (V,E), two vertices x, y ∈ V are called remote if

the distance between them in G is greater than 2.

Lemma 12. Let G = (V,E) be a triangle-free graph with |V | = n and |E| ≥ ⌊1
4
(n− 1)2⌋.

Then either
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1. G is bipartite, and if |E| > ⌊1
4
(n − 1)2⌋ then no two vertices of the same part are

remote, or

2. G is non-bipartite, and there are at most two pairs of remote vertices (none if
|E| > ⌊1

4
(n− 1)2⌋).

Proof. Our proof extends a classical one by Andrásfai, Erdős and Gallai (see [7]), who
showed that a triangle-free graph with at least ⌊1

4
(n− 1)2⌋+ 2 edges must be bipartite.

Suppose first that G is bipartite with parts A and B of cardinality a and b, respectively,
where a + b = n, a ≤ b. If some two vertices of the same part are remote, then at least
a pairs in A × B are non-edges in G. This implies that |E| ≤ a(b − 1) ≤ ⌊1

4
(n − 1)2⌋,

proving the assertion in the first part of the lemma.
Next, suppose that G is non-bipartite, and let Cℓ be a shortest odd cycle in G, of

length ℓ ≥ 5. To avoid a shorter odd cycle, Cℓ must be induced, and every vertex in
V \ V (Cℓ) can have at most two neighbors in V (Cℓ). Using these facts, and Turán’s
theorem for the graph induced on V \ V (Cℓ), we get the upper bound

|E| ≤ ℓ+ 2(n− ℓ) + ⌊1
4
(n− ℓ)2⌋.

This bound is a decreasing function of ℓ, and for ℓ = 7 it is strictly less than ⌊1
4
(n− 1)2⌋.

Hence we must have ℓ = 5, for which the bound becomes |E| ≤ ⌊1
4
(n− 1)2⌋+ 1.

If |E| = ⌊1
4
(n− 1)2⌋+ 1 then G has the following structure: a 5-cycle C5, a complete

bipartite graph K⌊n−5
2

⌋,⌈n−5
2

⌉ on V \V (C5), and every vertex of the latter is joined by edges

to two non-adjacent vertices of the former. This graph is easily seen to have diameter 2,
i.e., no pair of remote vertices. If |E| = ⌊1

4
(n − 1)2⌋ then one of the two terms 2(n − 5)

and ⌊1
4
(n−5)2⌋ in the upper bound on |E| was off by 1. If it was the former, then there is

a unique vertex x in V \ V (C5) that has a single neighbor y in V (C5). Denoting the two
vertices of C5 at distance 2 from y by z and w, we see that there are at most two pairs
of remote vertices, {x, z} and {x,w}. If it was the latter, then the triangle-free graph
induced on V \ V (C5) has ⌊1

4
(n − 5)2⌋ − 1 edges, one less than the Turán bound. This

induced graph can only be of one of the following forms: the Turán graph minus an edge,
or (when n− 5 is even) a Kn−5

2
−1,n−5

2
+1, or (when n− 5 = 5) another copy of C5. In each

of these cases, one can check that there are at most two pairs of remote vertices.

8.3 Proof of Theorem 11

Let F be an ABC-free triple system on n vertices. Then each triple in F has at least
one own pair. Choosing exactly one own pair from each triple, we get a graph G = (V,E)
with |E| = |F|. The absence of ABC in F implies that G is triangle-free, and for each
triple in F , one of its pairs is an edge of G and the other two pairs are remote in G.

We assume that |E| = |F| ≥ ⌊1
4
(n − 1)2⌋, and apply Lemma 12 to the graph G. As

each triple in F contributes two pairs of remote vertices, case 2 of the lemma cannot occur.
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Thus we are in case 1, andG is bipartite with bipartition V = A∪B. Each triple in F must
contain an edge of G, hence two vertices in one part and one in the other. By the above,
the two vertices in the same part are remote. If |E| > ⌊1

4
(n− 1)2⌋ we get a contradiction

to the statement of case 1 of the lemma. This proves that ex(n,ABC) = ⌊1
4
(n− 1)2⌋.

It remains to show that if |F| = ⌊1
4
(n − 1)2⌋ then F is of the form F∗

n. For this, it
suffices to show that all triples in F share some fixed vertex x. Indeed, by the absence
of C, the link of such x in F has to be a triangle-free graph on V \ {x} with ⌊1

4
(n− 1)2⌋

edges, hence it must be the Turán graph.
Let G be the bipartite complement of G, i.e., E(G) is the set of pairs in A×B which are

not edges of G. As |A|+ |B| = n, we have |E(G)| = |A| · |B|−⌊1
4
(n−1)2⌋ ≤ min{|A|, |B|}.

On the other hand, if there is a triple in F with two vertices in A then they are remote
in G, hence every vertex in B is incident to an edge of G. Similarly, if there is a triple in
F with two vertices in B then every vertex in A is incident to an edge of G.

Assume first that there are triples of both kinds. We conclude that |A| = |B| and G
is a perfect matching between A and B. Now, if |A| = |B| ≥ 3 then no two vertices of the
same part are remote and we get a contradiction. The only possibility is |A| = |B| = 2,
in which case n = 4, |F| = 2 and the two triples in F must share two vertices.

Thus, we may assume that all triples in F are of the same kind, having w.l.o.g. two
vertices in A and one in B. Let x ∈ A and y ∈ B form an edge of G. Since every vertex
in B is incident to an edge of G, and there are at most |B| such edges, xy is the only edge
of G incident to y. Hence, no two vertices in A \ {x} are remote. Therefore, every triple
in F must contain x, completing the proof.

9 Excluding A and C

9.1 AC-free constructions

We have already encountered two different equally large constructions of AC-free triple
systems: FT , the one based on the transitive tournament (which also avoids D), and F∗

n,
the one based on the Turán graph (which also avoids B), both of size ⌊1

4
(n − 1)2⌋. It

turns out that these are optimal AC-free constructions for even n, but we can do better
by 1 for odd n ≥ 5.

Given an AC-free family F on the n-element vertex set V one can define another
AC-free family F+2 on the vertex set V ∪ {1, 2} as follows. F+2 := F ∪ {12v : v ∈ V }.
We call this new family a 2-extension of F . One can define an AC-free family F+4 on
the vertex set V ∪ {1, 2, 3, 4} as

F+4 := F ∪ {12v : v ∈ V } ∪ {34v : v ∈ V } ∪ {123, 234}.

Note that if V ̸= ∅ then (F+2)+2 is not the same as F+4, although they only differ by
replacing 124 by 234. For even n ≥ 2 let F(n) denote the class of n-vertex triple systems
one can obtain by an arbitrary sequence of 2-extensions and 4-extensions starting with
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a system of the form F∗
n−2k for some 0 ≤ k ≤ n−2

2
(the case k = 0 gives F∗

n without
extensions, the case k = n−2

2
applies a sequence of extensions starting from the empty

triple system on 2 vertices and gives FT when it uses only 2-extensions). All families
F ∈ F(n), n even, have the same size |F| = ⌊1

4
(n− 1)2⌋.

For n = 5 we arrange the vertices 1, 2, 3, 4, 5 cyclically, and let F5
5 consist of the five

triples of consecutive vertices 123, 234, 345, 451, 512. We call such a triple system a five-
ring, and note that it contains no A or C. Its size is 5 = 1

4
(5− 1)2+1. For odd n ≥ 5 the

members of the class F(n) are those n-vertex triple systems obtained from a five-ring by
an arbitrary sequence of 2- and 4-extensions. By induction we have |F| = 1

4
(n− 1)2 + 1

for all odd n ≥ 5 when F ∈ F(n).

Theorem 13. Define

f(n) :=

{
⌊1
4
(n− 1)2⌋ if n is even or n = 1, 3

1
4
(n− 1)2 + 1 if n is odd, n ̸= 1, 3

Then ex(n,AC) = f(n). Moreover, for n ≥ 4 the only extremal AC-free families are the
members of F(n).

It is easy to calculate that for n even F(n) has exactly 2fn/2 − 1 members (up to
isomorphism), where f1, f2, . . . is the Fibonacci sequence defined as f1 = f2 = 1 and
fk = fk−1 + fk−2 for k > 2. For odd n ≥ 5 the size of F(n) can also be obtained from a
Fibonacci number, |F(n)| = f(n−3)/2. The multitude of extremal constructions may explain
why the proof of Theorem 13 turned out to be more complicated than other proofs in this
paper. Before turning to the proof itself, we further investigate the structure of possible
maximal families and we also need a graph theoretic lemma (presented in Subsection 9.5).

9.2 Reducing AC-free families

Suppose that the AC-free triple system F on n vertices has a pair u, v ∈ V such that
degF(uv) = n − 2 and let H be the family of triples of F contained in V \ {u, v}. Then
F = H+2. This observation leads to the following useful lemma.

Lemma 14. Let F be an AC-free triple system on the n-vertex set V . Suppose that there
are disjoint pairs e1, . . . , ek ⊂ V (1 ≤ k < n

2
), K := ∪ei, having the following properties:

(K1) There is no triple F ∈ F such that |F ∩K| = 1.

(K2) If F ∈ F meets both ei and ej then F ⊂ ei ∪ ej (for all 1 ≤ i ̸= j ≤ k).

Let H denote the family of triples of F contained in V \K. Then

|F| − ⌊1
4
(n− 1)2⌋ ≤ |H| − ⌊1

4
(n− 2k − 1)2⌋, (1)

and here equality holds if and only if there is a sequence of 2- and 4-extensions of H
resulting in F .
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If F possesses such a set of pairs, then we call it reducible.

Proof of Lemma 14. The family F \ H contains two kinds of triples, those meeting
V \K and containing an ei and those contained in some ei ∪ ej. Since every four vertices
can carry at most two triples we get

|F| − |H| ≤ k(n− 2k) + 2

(
k

2

)
= ⌊1

4
(n− 1)2⌋ − ⌊1

4
(n− 2k − 1)2⌋.

We are done with inequality (1).
In the case of equality we have ei ∪{v} ∈ F for all 1 ≤ i ≤ k and v ∈ V \K, and each

ei ∪ ej contains exactly two triples from F . Define an oriented graph TK with vertex set
{e1, . . . , ek} as follows. Add an arrow from ei to ej if there is a triple F containing ei and
meeting ej. Note that TK has at least one edge between ei and ej, and it also might have
two edges in opposite directions. However, TK does not contain oriented triangles because
F is A-free. This implies that the pairs {ei, ej} with double arrows are pairwise disjoint,
so they form a matching, say L. We obtain that TK consists of a transitive tournament
(say, there is an arrow from ei to ej for 1 ≤ j < i ≤ k) together with a few reversed
arrows ei → ei+1 for {ei, ei+1} ∈ L. Every ei outside L corresponds to a 2-extension, and
the pairs from L define 4-extensions.

9.3 The structure of AC-free families: partitioning the triples
and the pairs

Let F be an AC-free triple system on [n]. Recall that a five-ring is a triple system
consisting of 5 triples on 5 vertices that is isomorphic to F5

5 (defined in Subsection 9.1).
Five-rings that are contained in the triple system F will play a special role in our analysis.
Suppose that P ⊆ F is a five-ring. Then V (P) contains no more triples from F \P . Also,
the case of |F ∩ V (P)| = 2 for some F ∈ F would create an A configuration. We
conclude that triples in F \P can meet V (P) in at most one vertex. So the 10 pairs of P
are contained only in the triples from P . Let R ⊆ F be the family of triples contained in
five-rings and let GR be the graph on [n] whose edges are the pairs contained in members
of R. If needed we split GR into two graphs, GR1 and GR2 to indicate if an edge is covered
once or twice. We have |R| = |E(GR1)| = |E(GR2)| and |E(GR)| = 2|R|.

Every triple F ∈ F contains at least one own pair. We partition F \ R into F1 ∪ F2

where F1 consists of the triples with exactly one own pair, and F2 of those with at least
two own pairs. Let G1 be the graph on [n] whose edges are the own pairs of the triples in
F1. Picking exactly two own pairs of every triple in F2, let G2 be the graph on [n] formed
by them. Thus |E(G1)| = |F1| and |E(G2)| = 2|F2|. As all edges in G1 and G2 are own
pairs of some F ∈ F we have E(G1) ∩ E(G2) = ∅.

Define the graph G3 as

E(G3) = {xy : x, y are joined by a path of length 2 in G1}.

We will require the following fact about the edges of G3.
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Lemma 15. If xy ∈ E(G3) then no triple in F contains both x and y.

Proof. Let v be a vertex such that xv, vy ∈ E(G1), and let F1 and F2 be the triples
in F1 having xv and vy, respectively, as their unique own pair. Assume for the sake of
contradiction that the triple F3 in F contains x and y. Clearly, xvy cannot be a triple
in F because it contains both xv and vy. Therefore F1, F2, F3 are all distinct and each
of them contains a different pair from {x, v, y} and a vertex outside it. Say F1 = xvw,
F2 = vyz, F3 = xyu. To avoid forming an A or a C, two of the vertices w, z, u must be
the same and the third must be different.

We consider first the case when w = z. Since xw is not an own pair of F1, there
is another triple in F containing it, say F4 = xws. If s /∈ {y, u} then F2, F3, F4 form
a forbidden A. If s = y then F1, F2, F4 form a forbidden C. Thus s = u is the only
possibility. Repeating the same arguments for yw which is not an own pair of F2, we find
the triple F5 = ywu in F . But now F3, F4, F5 form a C, giving a contradiction.

Thus, we are left with the case when w ̸= z and u is equal to one of them, w.l.o.g.
u = w. Since vw is not an own pair of F1, there is another triple in F containing it,
say F4 = vws. If s /∈ {y, z} then F2, F3, F4 form a forbidden A. If s = y then F1, F3, F4

form a forbidden C. Thus s = z is the only possibility. Since yz is not an own pair of
F2, there is another triple in F containing it, say F5 = yzt. If t /∈ {x,w} then F3, F4, F5

form a forbidden A. If t = w then F2, F4, F5 form a forbidden C. Thus t = x is the only
possibility. Summarizing, we have the following five triples in F :

F1 = vwx, F3 = wxy, F5 = xyz, F2 = yzv, F4 = zvw.

They form a five-ring, contradicting the fact that F1 and F2 are in F1, hence not part of
a five-ring.

Our Lemma 15 implies that E(G3) is disjoint from E(GR) ∪ E(G1) ∪ E(G2), so the
following four edge sets are pairwise disjoint:

E(GR), E(G1), E(G2), E(G3).

By adding a fifth one

E(G4) := {xy : x ̸= y, xy is in none of the above},

we obtain a partition of E(Kn) into five graphs. Figure 2 shows, for every possible triple
in F , to which of the above graphs its pairs belong. Again, if needed, we split G4 into
three graphs, G40, G41 and G42 to indicate if an edge is not covered, covered once or at
least twice by members of F , respectively.

The discussion above yields the following observations, to be used later:

degF(xy) > 2 ⇒ xy ∈ E(G42) (2)

degF(xy) = 2 ⇒ xy ∈ E(GR2) ∪ E(G42) (3)

degF(xy) = 0 ⇔ xy ∈ E(G3) ∪ E(G40) (4)
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Figure 2: Assignment of the pairs of each triple in F to graphs

9.4 Proof of Theorem 13: three cases without induction

Let F be an AC-free triple system on [n] and suppose that |F| = ex(n,AC). Construc-
tions showing |F| ≥ f(n) were given above. It is trivial to check their optimality for
n ≤ 4, so from now on we may suppose that n ≥ 5. We will prove that |F| ≤ f(n) and
F ∈ F(n). We break the argument into six cases.

9.4.1 Case 1: There is an isolated vertex in G4

Here we assume that x is an isolated vertex in G4. In this case all edges xy belong to
either G2 or GR. Indeed, xy /∈ E(G4). Also xy ∈ E(G1) implies that there is an xzy ∈ F1,
so there is a path x-z-y in G4. But this is impossible since there is no xz ∈ E(G4), so
xy /∈ E(G1). If there is no xy edge in E(G1) then there is no xy ∈ E(G3) either.

Consider the graph F [x], the link of x in F . If the pair xy is contained in d triples
(i.e., degF(xy) = d) then the degree of the vertex y in the graph F [x] is exactly d. Since
xy ̸∈ E(G4) all the degrees in F [x] are at most 2 by observation (2). Moreover, if a
component C of F [x] has a vertex of degree 2 then by observation (3), V (C)∪ {x} is the
vertex set of a five-ring, and C is a path of length 3. Thus, any component C of F [x]
that is not an isolated vertex is of one of two forms:

I A single edge e.
We let k ≥ 0 be the number of such components, and denote them by e1, ..., ek. We
denote by K the set of vertices of these components, |K| = 2k.

II A path P of length 3.
We let ℓ ≥ 0 be the number of such components, and denote them by P1, ..., Pℓ. We
denote by L the set of vertices of these components, |L| = 4ℓ.

Note that xy ∈ E(G2) for any y ∈ K, and xy ∈ E(GR) for any y ∈ L. We claim that
there are no isolated vertices in F [x]. Indeed, suppose that z is an isolated vertex. Then
degF(xz) = 0 and hence by observation (4), xz ∈ E(G3) ∪ E(G40). This contradicts the
observation above that all edges incident to x belong to either G2 or GR.

Thus, F [x] gives the following decomposition of [n] \ {x}:

[n] \ {x} = K ∪ L, where |K| = 2k, |L| = 4ℓ.
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Note that n must be odd in this case since n = |K|+ |L|+1. Next, we bound the number
of triples contained in K ∪ L:

- Each Pi contains two triples (those triples in the five-ring that do not include x).
Other than those, no triple in K ∪ L contains two vertices of the same Pi.

- To avoid an A configuration, no triple in K ∪ L meets three components of F [x],
and no triple meets Pi and Pj when i ̸= j.

- Thus, any triple in K ∪ L that is not contained in a Pi, consists of both vertices of
some ei, and one vertex of another component.

- To avoid a C configuration, for every i ̸= j there are at most 2 triples contained in
ei ∪ ej.

In total, we have

|F| ≤ k + 5ℓ+ 2

(
k

2

)
+ k · 4ℓ = (k + 2ℓ)2 + 5ℓ− 4ℓ2 ≤

(
n− 1

2

)2

+ 1 = f(n), (5)

which completes the proof of the upper bound in Case 1.
If equality holds in (5) then ℓ = 1, k = n−5

2
. If k = 0 then n = 5 and F is a five-ring,

i.e., F ∈ F(5). Suppose now that k ≥ 1. According to the above observations K and F
satisfy the two constraints of Lemma 14, so F is reducible. Inequality (1) and |F| = f(n)
yield

|F| − ⌊1
4
(n− 1)2⌋ = |H| − ⌊1

4
(n− 2k − 1)2⌋ = |H| − 4 = 1

where H is a five-ring. Then Lemma 14 gives that F is obtained from H by a sequence
of 2- and 4-extensions, i.e., F ∈ F(n).

9.4.2 Case 2: There is a pendant G4 edge which is in G40

Let x be a degree one vertex of G4, and let y be its unique neighbor in G4. In this case
we suppose that degF(xy) = 0, the pair xy does not occur in any triple of F . Again, as
in Case 1, there is no G1 edge incident to x, so there is no such G3 edge either.

Consider the structure of the link F [x], similar to what we did in Case 1. The vertex y
is isolated in F [x] and [n]\{x} = K∪L∪{y}. In particular n is even here, n = 2k+4ℓ+2.
The only possible triples in F that contain y and do not give rise to an A configuration
are of the form ei ∪ {y}. There are at most k of those. Thus, like in (5), we get

|F| ≤ k + 5ℓ+ 2

(
k

2

)
+ k · 4ℓ+ k = ⌊

(
n− 1

2

)2

⌋+ 3ℓ− 4ℓ2 ≤ f(n).

If equality holds here then ℓ = 0, k = n−2
2
, and Lemma 14 can be applied to obtain

F ∈ F(n).
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9.4.3 Case 3: There is a pendant G4 edge which is in G41

Let x be a degree one vertex of G4, and let y be its unique neighbor in G4. In this case
we suppose that degF(xy) = 1, the pair xy occurs in a triple xyz ∈ F with degF(xz) =
degF(yz) = 1. In the process creating the graph G2 we selected xz and yz and put xy to
G41. Redefine these graphs on these three pairs, put yz into G41 and the other pairs to
G2. Then x becomes isolated in the new G4. That case has been solved as Case 1.

9.5 Pairs of vertices joined by a path of length 2

Given a graph G, we define a new graph T = T (G) on the same vertex set as follows: two
vertices x ̸= y form an edge in T if they are joined by a path of length 2 in G, i.e., there
exists a vertex z such that both xz and zy are edges of G.

Lemma 16. Let G be a graph on n vertices, and let T = T (G) be the graph defined above.
Then

|E(T )| ≥ |E(G)| − ⌊n
2
⌋. (6)

This inequality holds with equality if and only if one of the following is the case:

(L1) n is even, and G is the disjoint union of balanced complete bipartite graphs K(Ai, Bi)
with |Ai| = |Bi| = di, i = 1, ..., r where di ≥ 1, r ≥ 1,

∑r
i=1 di =

n
2
.

(L2) n is odd, and G is as above except that one of the components is of the form K(Ai, Bi)
with |Ai| = di and |Bi| = di + 1 or is an isolated vertex.

Moreover, if n is even and |E(T )| = |E(G)| − n
2
+ 1, then either

(L3) one component of G is a Kd,d with one edge left out, d ≥ 2 (denote this as K−
d,d),

and the other components are balanced complete bipartite graphs, or

(L4) there are positive integers d1, d2, . . . , dr, r ≥ 2 such that
∑r

i=1 di =
n
2
+ 1 and the

components of G are complete bipartite graphs Kd1,d1−1, Kd2,d2−1, and Kdi,di for
i > 2.

The inequality (6) was proved in dual form by Füredi [13]. Below we also prove the
characterization of equality and at the same time re-prove the inequality.

Note that in each of the cases (L1)–(L4) the graph T (G) is a disjoint union of complete
graphs. Also, in cases (L1) and (L3) the graph G has no isolated vertex.

Proof of Lemma 16. The graphs described in (L1) and (L2) satisfy inequality (6) with
equality. We show that all other graphs satisfy (6) with strict inequality.

For a graph H and a vertex v, we denote by NH(v) the set of neighbors of v in H. We
observe that for every vertex x,

NT (x) =
⋃

y∈NG(x)

(NG(y) \ {x}) .
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In particular, if x has a neighbor y with degG(x) < degG(y) then degT (x) ≥ degG(x).
This implies that there always exists a vertex x with degT (x) ≥ degG(x), unless every
connected component Ci of G is di-regular for some di ≥ 1, and moreover, in Ci the di
neighbors of x all have the same di − 1 neighbors in addition to x, which means that
Ci

∼= Kdi,di . In other words, if G is not of the form indicated in (L1), then there exists a
vertex x with degT (x) ≥ degG(x).

We now proceed by induction on n. The base case n = 1 is trivial. For the induction
step, we assume that G and T = T (G) are graphs on n ≥ 2 vertices, and the lemma is
true for n− 1.

Assuming that G is not of the form indicated in (L1), let x be a vertex with degT (x) ≥
degG(x). Applying the induction hypothesis to G \ {x} we get

|E(T (G \ {x}))| ≥ |E(G \ {x})| − ⌊n− 1

2
⌋. (7)

Therefore

|E(T )| ≥ |E(T (G \ {x}))|+ degT (x)

≥ |E(G \ {x})| − ⌊n− 1

2
⌋+ degG(x) = |E(G)| − ⌊n− 1

2
⌋.

(8)

When n is odd, equality in (6) is possible, but it requires that all the above inequalities
hold with equality. In particular, we must have equality in (7), hence by induction G\{x}
has to be of the form (L1). Consider NG(x). If it meets two or more components of
G \ {x}, or two sides of the same component, then T (G) has at least one edge with
vertices in G \ {x} that is not in E(T (G \ {x})). This makes the first inequality in (8)
strict. We conclude that there is a component K(Ai, Bi) of G \ {x} with |Ai| = |Bi| = di
such that NG(x) is contained in one of its parts, say in Ai. If ∅ ⊊ NG(x) ⊊ Ai then
degT (x) = di > degG(x), making the second inequality in (8) strict. This leaves only two
possibilities: either NG(x) = Ai, in which case we can add x to Bi and get a Kdi,di+1, or
NG(x) = ∅ making x an isolated vertex in G. In either case, G fits the description in part
(L2) of the lemma.

If n is even then ⌊n−1
2
⌋ < ⌊n

2
⌋, hence (8) implies that inequality (6) holds strictly. This

completes the proof of (6) together with (L1) and (L2).

Consider now the case |E(T )| = |E(G)| − n
2
+ 1. Again equality must hold in (7)

and (8) so degT (x) = degG(x), G \ {x} has to be of the form (L2). If NG(x) = ∅ then G
is of the form (L4). If NG(x) ̸= ∅ then it meets only one component C. This component
could not be an isolated vertex, because that would give degG(x) = 1, degT (x) = 0. So
C = K(Ai, Bi) and NG(x) is a subset of one side of C while NT (x) is the entire other
side. Given that degT (x) = degG(x), there are two possibilities. If |Ai| = |Bi| then NG(x)
is a full side of C, say Bi, so we get K(Ai ∪{x}, Bi), yielding case (L4). If |Ai| = |Bi| − 1
then NG(x) = Bi \{y} for some y ∈ Bi, so we get K(Ai∪{x}, Bi) minus xy, yielding case
(L3).
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9.5.1 Remark

We do not use but can prove an even stronger version of Lemma 16.

Claim 17. Let G be a graph, and let T = T (G) be the graph defined above. Suppose that
{e1, . . . , eℓ} is a maximal matching of G, i.e., A := V (G) \ (∪ei) is an independent set of
vertices. Then

|E(T )| ≥ |E(G)| − ℓ. (9)

This inequality holds with equality if and only if each component of G is either a balanced
complete bipartite graph, or a K−

d,d (with d ≥ 2) contributing d− 1 edges to the maximal
matching, or a Kd,d+1 (d ≥ 1), or an isolated vertex.

Sketch of proof of Claim 17. For two distinct edges ei, ej in the maximal matching, let
E(G[ei, ej]) denote the set of edges of G with one end in ei and the other in ej, and let
E(T [ei, ej]) denote the analogous set for T . Similarly, for an edge ei and a vertex a ∈ A,
let E(G[ei, a]) and E(T [ei, a]) denote the corresponding sets of edges with one end in ei
and the other equal to a.

By inspection, we have |E(T [ei, ej])| ≥ |E(G[ei, ej])| and |E(T [ei, a])| ≥ |E(G[ei, a])|
for any two edges ei, ej and vertex a ∈ A. As this accounts for all edges of G apart from
e1, . . . , eℓ, it implies (9). In case of equality we must have equalities above and moreover,
no ei and no two vertices in A can form an edge in T . We obtain that E(G[ei, ej]) should
be either empty or two disjoint edges, and similarly E(G[ei, a]) is either empty or a single
edge. The rest of the proof is just to check how these edges can fit together so as to
maintain the above conditions for equality.

9.6 The core inequality of the proof, and more reductions in
case of a pendant G4 edge

We will prove by induction on n that |F| ≤ f(n) and F ∈ F(n).
Look at the partition [n] = C1 ∪ · · · ∪ Cr where the Ci are the connected components

of G4. By Case 1 we may suppose that pi := |Ci| ≥ 2 for every i. Note that every edge of
G1 is contained in some Ci and the same is true for every edge of G3. If C is one of the
Ci, we write GC

4 , G
C
1 , G

C
3 for the corresponding graph restricted to C. We have

2|F| = 2|R|+ 2|F1|+ 2|F2|
= |E(GR)|+ 2|E(G1)|+ |E(G2)|

= |E(GR)|+ |E(G1)|+ |E(G2)|+ |E(G3)|+ |E(G4)| −
n

2

+ (n− |E(G4)|) +
(
|E(G1)| − |E(G3)| −

n

2

)
=

(
n

2

)
− n

2
+
∑
i

((
pi − |E(GCi

4 )|
)
+
(
|E(GCi

1 )| − |E(GCi
3 )| − pi

2

))
.

(10)
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In the last line for every component Ci we have pi − |E(GCi
4 )| ≤ 1 and Lemma 16 applied

to GCi
3 = T (GCi

1 ) states |E(GCi
1 )| − |E(GCi

3 )| − ⌊pi
2
⌋ ≤ 0. So (10) yields a pretty good

upper bound for |F| and to improve it further we will investigate the components where
GCi

4 is a tree, and also the cases when |E(GCi
1 )| − |E(GCi

3 )| − pi
2
≥ −1.

Call a component C of size p near optimal if

|E(GC
3 )| ≤ |E(GC

1 )| −
p− 2

2
. (11)

For not near optimal components the quantity

σ(Ci) :=
(
pi − |E(GCi

4 )|
)
+
(
|E(GCi

1 )| − |E(GCi
3 )| − pi

2

)
is at most −1

2
. Since |F| ≥ f(n) we must have at least one near optimal component. In

such a component, Lemma 16 and (11) imply that GC
3 consists of vertex disjoint complete

graphs (including isolated vertices, of course).

9.6.1 Case 4: There is a pendant G4 edge in a near optimal component

In this subsection we suppose that C is a near optimal component and x ∈ C is a
degree one vertex of G4. Let y be its unique neighbor in G4. Since we have already
discussed the case degF(xy) = 0 (Case 2) and degF(xy) = 1 (Case 3) we may suppose
that degF(xy) =: q ≥ 2.

Consider the structure of the link F [x], similar to what we did in Case 1. There are
two further forms of components in F [x] in addition to forms I and II which appear in K
and L, respectively.

III A star Sq centered at y and having q leaves, q ≥ 2.
There is exactly one such component in F [x]. The leaves of Sq can be partitioned
into two (possibly empty) parts:

U := {u : xyu ∈ F1, xu ∈ E(G1), yu ∈ E(G4)},
V := {v : xyv ∈ F2, xv, yv ∈ E(G2)}.

We write |U | = s, |V | = t, s+ t = q.

IV An isolated vertex z.
We let m ≥ 0 be the number of isolated vertices, and denote by M the set of isolated
vertices. We remark that isolated vertices in F [x] are now permissible because x
has neighbors in G1 (provided that s > 0), which allows the isolated vertices to be
neighbors of x in G3.

We summarize: F [x] looks as in Figure 3, and [n] \ {x} = K ∪L∪M ∪ {y} ∪U ∪ V with
K = e1 ∪ · · · ∪ ek and L = P1 ∪ · · · ∪ Pℓ.
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Figure 3: The structure of F [x] in Case 4

Our next arguments exploit and combine structural information about F [x] and about
GC

1 , G
C
3 , G

C
4 based on Lemma 16. Since the G1 and G3 neighbors of x are in the same

component, we already know that

(C1) {x, y},M, U ⊆ C.

Since GC
3 consists of cliques and the G3 neighborhood of x is exactly M we get

(C2) M ∪ {x} is a (maximal) clique in G3.

Similarly, since U is the G1 neighborhood of x, by definition

(C3) U is a clique in G3.

It follows from Lemma 15 that no two vertices in M ∪ {x} belong together to a triple in
F and similarly U meets every triple in F in at most one vertex.

(C4) We may assume that K = ∅.

Proof. Suppose that k ≥ 1. First we show that the constraints (K1) and (K2) of Lemma 14
are valid for F . Suppose, on the contrary to (K1), that there is a vwz ∈ F , K∩vwz = {v},
v ∈ ei. We have x /∈ vwz, because we know F [x]. If wz ∩ L ̸= ∅ then we get an A
configuration. If one of w, z is y, say w = y, we can choose a z′ ∈ U ∪ V , z′ ̸= z (since
|U ∪ V | ≥ 2) and find the A configuration ei ∪ {x}, vyz, xyz′. Thus we may assume
that w, z ∈ M ∪ U ∪ V , and by (C2) at least one of them, say z, is in U ∪ V . But now
ei ∪ {x}, vwz, xyz form an A. To check (K2) is obvious. Applying (1), we get

ε(n) := f(n)− ⌊1
4
(n− 1)2⌋ ≤ |F| − ⌊1

4
(n− 1)2⌋ ≤ |H| − ⌊1

4
(n− 2k − 1)2⌋,

implying |H| ≥ f(n− 2k)− ε(n− 2k) + ε(n). Thus |H| ≥ f(n− 2k). By induction, this
must hold with equality and H ∈ F(n−2k). Also (1) holds with equality, so F is obtained
from H by a sequence of 2- and 4-extensions, i.e., F ∈ F(n).

(C5) L = ∅.
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Proof. Suppose that ℓ ≥ 1. By a case check similar to the proof of (C4), one can verify
that any triple vwz ∈ F that meets P1 in a single vertex creates an A configuration.
Thus, the only triples in F that meet P1 are those in its five-ring. Let H be the rest of
the triples. We obtain

f(n) ≤ |F| = |H|+ 5 ≤ f(n− 4) + 5.

This is a contradiction, noting that under our conditions n ≥ 8.

(C6) We may assume that M ̸= ∅, therefore U ̸= ∅.

Indeed, M = ∅ implies [n] = {x, y} ∪ U ∪ V with degF(xy) = n − 2. As we have seen
before Lemma 14, this implies that F is a 2-extension of F \ {x, y}, and we are done by
induction.

(C7) y is an isolated vertex in GC
1 .

Indeed, suppose that yz ∈ E(GC
1 ). Clearly z ∈ M . Every z ∈ M has a G1 neighbor in

U , say zw ∈ E(G1). Then, by definition, the two G1 edges yz and zw place yw in G3.
However, yw is a G4 pair.

Since y is isolated in GC
1 , according to the structure of GC

1 described in Lemma 16,
only cases (L2) or (L4) are possible, so every other component of GC

1 is a (balanced or

almost balanced) complete bipartite graph. Consider the G1 component C̃ to which x

belongs. We know from F [x] that NGC
1
(x) = U and NGC

3
(x) = M . Thus, C̃ is a complete

bipartite graph of G1-edges with parts {x} ∪M and U .
Let us conclude this case with the following statement.

Claim 18. Suppose that |C| = p is even and C is a near optimal component with a
pendant G4 edge. Then equality holds in (11), i.e., |E(GC

1 )| − |E(GC
3 )| −

p
2
= −1.

Proof. By (C7) the graph GC
1 has an isolated vertex (namely y). Then (L1) is not possible

in Lemma 16.

9.6.2 Case 5: The G4 edges form a tree in a near optimal component

It is, in fact a subcase and a continuation of Case 4. We maintain the assumptions and
conclusions of Case 4, and add the assumption that GC

4 is a tree. Again let x be a degree
one vertex of GC

4 , and let y be its unique neighbor in G4.

(C8) The G4 neighborhood of y is {x} ∪M ∪ U .

Proof. We already know that the vertices in {x} ∪ U are in the G4 neighborhood of y,
and those in V are not. As K = L = ∅, it remains to show that M ⊆ NG4(y).

The arguments leading to (C7) can be carried out for any choice of a leaf of GC
4 . We

may assume that all such leaves are incident to G42 edges, otherwise we are done. Thus,
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for every leaf of GC
4 its unique neighbor in GC

4 is an isolated GC
1 vertex. If there is only

one isolated vertex in GC
1 (namely y), then it must be that vertex, regardless of the choice

of the leaf of GC
4 . This implies that GC

4 is a star, and it is centered at y. In particular,
M ⊆ NG4(y).

Consider the case when GC
1 has at least two isolated vertices, y and y′. The near

optimality of C and Lemma 16 imply that only the case (L4) is possible, there are no
more isolated vertices. By (C7) each leaf of the tree GC

4 is adjacent to an isolated vertex
of GC

1 . So the tree GC
4 consists of two stars with centers y and y′ and a path connecting

these centers. In particular, all but one of the GC
4 neighbors of y are leaves. According

to (L4) the non-isolated components of GC
1 are balanced complete bipartite graphs, in

particular such is C̃ = K({x} ∪M,U), so |U | = |{x} ∪M | ≥ 2. All vertices in U are GC
4

neighbors of y, so at least one of them, say u, is a leaf in GC
4 adjacent to y. Now consider

any vertex z ∈ M . As zu ∈ E(GC
1 ), z and u must have a common GC

4 neighbor, which
can only be y. This shows that z ∈ NG4(y), completing the proof.

(C9) For every pair ab with a ∈ {x} ∪M , b ∈ U , the unique triple in F containing it is
aby.

Indeed, suppose abz is that unique triple. Then az, bz ∈ E(GC
4 ), so z is the middle

vertex of a path of length 2 in GC
4 . Since GC

4 is a tree, this path a-z-b is the unique path
connecting a to b in the tree. But ay and by are tree edges by (C8) so z = y.

(C10) |U | ≥ 2.

Indeed, by Lemma 16 and the near optimality of C we know that K({x} ∪ M,U) is
balanced or almost balanced. We have (|M | + 1) − |U | ≤ 1, so |U | ≤ 1 gives |M | ≤ 1.
Writing M = {z}, U = {u}, we have zuy ∈ F by (C9). As zu is the only own pair of
this triple, there must be another triple zyv ∈ F . The only remaining options are v = x
or v ∈ V . Both are impossible: the former because degF(xz) = 0, the latter because the
pair yv, v ∈ V , is an own pair of xyv.

Next, we give an upper bound on the number of triples in F .

- Triples containing no vertex of V :
Since {x} ∪ M and U are cliques in G3, any triple in F can contain at most one
vertex from each of them (Lemma 15). Thus triples avoiding V must be of the form
aby with a ∈ {x} ∪M , b ∈ U . By (C9) all these are indeed triples in F , so we have
(m+ 1)s of them.

- Triples containing exactly one vertex of V :
There are t such triples containing xy. There are no other such triples. Indeed, any
other such triple would have to be of the form zuv, z ∈ M,u ∈ U, v ∈ V . But then,
taking w ∈ U \ {u}, we get an A configuration: zuv, zwy, xyv.
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- Triples containing exactly two vertices of V :
There are no such triples. Indeed, suppose zvw is such a triple, with v, w ∈ V .
Then z ̸= x, because vw is not an edge of F [x]. If z = y we get a C configu-
ration: yvw, xyv, xyw. If z ∈ M then taking u ∈ U we get an A configuration:
zvw, zuy, xyv. Finally, suppose z ∈ U . Since zy is not an own pair of xyz, there is
another triple zya ∈ F containing it. The vertex a cannot be in V (by the previous
paragraph), so we get an A configuration: zvw, zya, xyv.

- Triples contained in V :
By the induction hypothesis, there are at most f(t) such triples.

Altogether, we get that the number of triples in F is at most (m + 1)s + t + f(t).
Using (m+ 1) + s = n− t− 1, n ≥ t+ 5, and the notation δ(t) := f(t)− 1

4
(t− 1)2 with

the convention δ(0) = −1
4
, we obtain

|F| − 1

4
(n− 1)2 ≤ −1

4
(n− 1)2 +

1

4
(n− t− 1)2 + t+

1

4
(t− 1)2 + δ(t)

=
1

4
(2t2 + 4t+ 1− 2nt) + δ(t) ≤ 1

4
(1− 6t) + δ(t).

Note that δ(t) = −1
4
for even t, and for odd t we have δ(1) = δ(3) = 0 and δ(t) = 1

when t ≥ 5. We know that |F| − 1
4
(n − 1)2 ≥ δ(n) ≥ −1

4
, whereas the upper bound

1
4
(1 − 6t) + δ(t) is at most −5

4
for t ≥ 1. So we must have t = 0 and n even. In this

case, as we have seen, F consists of all triples aby with a ∈ {x} ∪M , b ∈ U . Thus F is
the construction based on the Turán graph with the vertex y common to all triples, i.e.,
F = F∗

n, completing the proof of F ∈ F(n) in Case 5.

9.7 Proof of Theorem 13: the end

Recall that we partitioned [n] into the connected components C1, ..., Cr of G4 of sizes
p1, . . . , pr, pi ≥ 2 for all i. We may also suppose that each pendant G4 edge is a G42 edge.

9.7.1 Case 6: The opposite of Case 5

This is the last case, and we will show that it leads to a contradiction. We suppose that
for each component C of size p either GC

4 is not a tree, i.e., p − |E(GC
4 )| ≤ 0, call this

Case 6/1, or it is not near optimal, i.e., |E(GC
1 )| −

p−2
2

< |E(GC
3 )| (Case 6/2). Note that

in both cases

⌈p
2
⌉ − |E(GC

4 )|+ |E(GC
1 )| − |E(GC

3 )| ≤ 0. (12)

Indeed, Lemma 16 states |E(GC
1 )| − ⌊p

2
⌋ ≤ |E(GC

3 )|. Adding this to p− |E(GC
4 )| ≤ 0

we obtain (12) in Case 6/1. In Case 6/2 we add |E(GC
1 )| −

p−3
2

≤ |E(GC
3 )| to the obvious

p− 1− |E(GC
4 )| ≤ 0 and get p+1

2
− |E(GC

4 )|+ |E(GC
1 )| − |E(GC

3 )| ≤ 0.
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Hence in the sum in the last line of (10) each term σ(Ci) is non-positive. Even more,
in Case 6/1 we have σ(Ci) ≤ −1

2
when pi is odd, and σ(Ci) is negative in Case 6/2 as

well. Therefore in Case 6 we get |F| ≤ 1
4
(n2 − 2n) ≤ f(n). Here equality must hold, so

to avoid negative terms each pi should be even and Case 6/2 is also excluded.
So from now on, we may suppose 6/1 holds with equality in (12) for each i. So each pi

is even, pi = |E(GCi
4 )|, and equality holds in Lemma 16, i.e., (L1) holds. Thus Ci contains

a perfect matching of G1 edges. Then Claim 18 implies that GCi
4 has no pendant edge,

each degree is at least 2. So GCi
4 should be 2-regular, connected, i.e., each GCi

4 is an even
cycle, pi ≥ 4.

We are going to show that each pi is exactly 4. Let the vertex set of C be [p] with GC
4

edges 12, 23, ..., (p − 1)p, and p1. The GC
1 edges are diagonals of length 2 in GC

4 . They
also contain a matching of size p

2
, and this is only possible if there are crossing edges like

13 and 24 with 123, 234 ∈ F1.
Suppose that there exists a triple containing 14, say 14z ∈ F . Since 13 and 24 are

covered exactly once by the triples of F we have z /∈ {1, 2, 3, 4}. The pair 12 is not a G41

edge (because 123 does not have two own pairs) so it is a G42 edge, there exists a triple
12w ∈ F , w ̸= 3, containing it. The triples 12w, 14z, 234 form an A configuration unless
w ∈ {4, z}. To avoid C we have w ̸= 4, so w = z and 12z ∈ F . One can have the same
argument starting with the pair 34 in place of 12 and obtain 34z ∈ F . Then we got a
five-ring with vertex set {1, 2, 3, 4, z}, a contradiction, because 12, etc., are G4 edges.

We conclude that the pair 14 is uncovered. If it is a G3 edge then there are two G1

pairs w1 and w4, both diagonals of length 2. But this is impossible since p is even and
the arc 1234 is of odd length. So 14 is a G40 edge. Thus 1234 form a 4-cycle in G4, p = 4.
This must be true for each component, so G4 is a vertex disjoint union of 4-cycles such
that each contains two triples and a G40 pair. So G1 is a perfect matching and there is
no G3 edge at all.

Consider any 4-cycle C in G4, say with 123, 234 ∈ F , 14 ∈ E(G40) and 12, 23, 34 ∈
E(G42). We have a triple 12z ∈ F with z ̸= 3, and (to avoid C) z ̸= 4. Every pair 4z with
z /∈ C is contained in a triple, so we have some triple 4zw ∈ F . The triples 12z, 234, 4zw
form an A configuration unless w ∈ {1, 2, 3}. The case w = 1 is not allowed because
14 ∈ E(G40), and the case w = 2 is not allowed because 24 ∈ E(G1). So w = 3, 34z ∈ F .
The triples 12z, 34z have no G1 pair, hence their pairs 1z, 2z, 3z, 4z are G2 pairs. The
pair 23 cannot appear in any triple in F except 123, 234. Indeed, 23z is excluded because
2z, 3z are own pairs of other triples, and 23w for w /∈ C ∪{z} creates the A configuration
12z, 34z, 23w. We conclude that the set of triples in F that meet C in exactly two vertices
is of the form {12z, 34z : z ∈ ZC} where ZC is a non-empty set disjoint from C.

Next, we discuss five-rings. We claim that they must be vertex disjoint. Indeed, any
two of them can meet in at most one vertex. If two of them on vertex sets R1, R2 share
a vertex x, then in order to avoid an A configuration all 16 pairs ab, a ∈ R1 \ {x},
b ∈ R2 \ {x} must be uncovered. However, the only uncovered pairs are G40 edges and
they are pairwise disjoint.

Now, for any two distinct 4-cycles Ci, Cj in G4, we write Ci → Cj if ZCi
∩Cj ̸= ∅. As
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shown above, in this case all pairs in Ci × (ZCi
∩Cj) are G2 edges. For any i ̸= j, exactly

one of Ci → Cj and Cj → Ci holds. Indeed, if both held then pairs in (ZCj
∩Ci)×(ZCi

∩Cj)
would be G2 edges contained in two triples in F . If neither held then all pairs in Ci ×Cj

would have to be GR edges (nothing else is allowed), which is impossible because adjacent
GR edges must come from the same five-ring (as five-rings are disjoint).

We have thus defined a tournament T on {C1, . . . , Cr}. As ZCi
̸= ∅ for every i, every

Ci has at least one out-neighbor in T , so T cannot be transitive. But then it contains a
directed triangle, which gives rise to an A configuration. This contradiction completes
the proof.

10 Excluding A, B and D

Recall that ex(n,ABCD) = ⌊1
8
n2⌋ for all n ≥ 1 and in Theorem 1 in Section 2 we have

described Fn,k, the extremal families. In this section we show that for large enough n,
excluding A, B and D has the same effect on the size of a triple system as excluding
all triangles. For finitely many cases ex(n,ABD) can exceed ⌊1

8
n2⌋, e.g., for n = 4 the

complete triple system K3
4 :=

(
[4]
3

)
is ABD-free, while ⌊1

8
n2⌋ = 2. For n = 7 two K3

4

sharing a vertex give ex(7,ABD) ≥ 8 (and here equality holds) while ⌊1
8
n2⌋ = 6. For

n = 16 the family of 8 K3
4 occupying the rows and columns of a 4 × 4 square lattice is

ABD-free and has a completely different structure than Fn,k. Denote this triple system
by Q4×4, and note that |Q4×4| = ⌊1

8
n2⌋ = 32.

Theorem 19.

ex(n,ABD) = ⌊1
8
n2⌋ for n ≥ 8.

Moreover, for n ≥ 11 the families Fn,k described in Section 2 are the only extremal
systems, except that Q4×4 is also extremal in the case n = 16.

For n = 8, 9, 10 here is the complete list of extremal families.
n = 8: F8,2 = {12x : 5 ≤ x ≤ 8} ∪ {34x : 5 ≤ x ≤ 8},

Q2
8 = two K3

4 sharing a vertex (this triple system has an isolated vertex),
Q3

8 = two vertex disjoint K3
4 .

n = 9: F9,2 = {12x : 5 ≤ x ≤ 9} ∪ {34x : 5 ≤ x ≤ 9},
Q2

9 = two K3
4 on 1234 and 1567 with two additional triples 289, 589.

n = 10: F10,2 = {12x : 5 ≤ x ≤ 10} ∪ {34x : 5 ≤ x ≤ 10},
F10,3 = {12x : 7 ≤ x ≤ 10} ∪ {34x : 7 ≤ x ≤ 10} ∪ {56x : 7 ≤ x ≤ 10},
Q3

10 = three K3
4 sharing a vertex,

Q4
10 = three K3

4 forming a path, {1234, 4567, 789X}.
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10.1 Non-uniform triangle-free hypergraphs

Győri [16] proved his upper bound in the following more general form. Let H be a
triangle-free multi-hypergraph on n ≥ 100 vertices. Then∑

E∈H

(
|E| − 2

)
≤ ⌊1

8
n2⌋. (13)

In this formulation, H may contain edges of different sizes, and may contain multiple
copies of the same set of vertices. Such multiple copies are considered distinct for the
purpose of forming a triangle, and are counted with multiplicity in the summation in (13).

Given an ABD-free triple system F one can prove |F| ≤ ⌊1
8
n2⌋ for n ≥ 100 using (13)

as follows. Let Q := {Q1, . . . , Qq} be all the vertex sets of C configurations in F , i.e.,
|Qi| = 4 and at least three triples within Qi are in F . Note that distinct Qi can share
at most one vertex, otherwise we get a D configuration. Let H be the multi-hypergraph
having the following edges: two copies of each Qi, i = 1, . . . , q and one copy of each F ∈ F
such that F ̸⊆ Qi, i = 1, . . . , q. Note that

|F| ≤ 4|Q|+ |F \ (∂Q)| =
∑
E∈H

(
|E| − 2

)
. (14)

Indeed, the inequality holds because each Qi contains at most 4 triples in F . The equality
holds because each Qi contributes

(
4 − 2

)
+

(
4 − 2

)
= 4 to the sum, and every other

triple in F contributes 3− 2 = 1. Upon checking that H is triangle-free, (13) implies the
desired bound ⌊1

8
n2⌋ for the right-hand side of (14).

The above proof does not yield the extremal systems and only works for n ≥ 100.

Definition 20. A (simple) hypergraph H is called a Q4-family on [n] if there is a partition
H = Q∪ T ∪ E such that

– Q ⊆
(
[n]
4

)
, T ⊆

(
[n]
3

)
, E ⊆

(
[n]
2

)
,

– H is triangle-free, and

– |H ∩H ′| ≤ 1 for any two distinct members H,H ′ ∈ H.

Lemma 21. Let H be a Q4-family on [n] with Q ≠ ∅ and suppose n ≥ 15. Then

8|Q|+ 7

2
|T |+ |E| < 2⌊1

8
n2⌋ (15)

except in the case when T = E = ∅ and ∂Q is the triple system Q4×4.

This is a simplified version of an inequality from [16] where Győri considered 8|Q| +
4|T | + |E|. Although (15) does not seem to imply (13), and it does not apply to multi-
hypergraphs, its proof is simpler and valid for 15 ≤ n < 100, too.
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Proof. Let σ(H) := 8|Q|+ 7
2
|T |+ |E|, and σ3(n) := max{σ(H) : H is a Q4-family on [n]

with Q = ∅}. Since a complete bipartite graph can be considered as a Q4-family we have
σ3(n) ≥ ⌊1

4
n2⌋. As a first step we prove that for all n ≥ 0

7

2
|T |+ |E| ≤ 1

4
(n2 + 5). (16)

Indeed, σ3(0) = σ3(1) = 0, σ3(2) = 1 = 1
4
22, σ3(3) =

7
2
= 1

4
(32 + 5). By inspection we can

see that σ3(n) is maximized for n = 4, 5, 6 when H consists of a single triple and an edge,
two triples sharing a vertex, or two disjoint triples joined by three disjoint pairs. This
gives σ3(4) =

9
2
= 1

4
(42 + 2), σ3(5) = 7 = 1

4
(52 + 3), and σ3(6) = 10 = 1

4
(62 + 4).

For n ≥ 7 let T1, . . . , Tℓ be a maximal family of pairwise disjoint triples from T , let
L = ∪Ti, |L| = 3ℓ, and L := [n] \ L. The case ℓ = 0 is obvious, so we may suppose that
ℓ ≥ 1. Make a tally of the pairs in G := (∂T ) ∪ E . Every vertex x ∈ [n] \ Ti has at most
one G-neighbor in Ti, so G can have at most 3ℓ+3

(
ℓ
2

)
edges in L, ℓ(n− 3ℓ) edges joining

L and L. Since G is triangle-free on L it can have at most 1
4
(n− 3ℓ)2 edges in it. Define

weights w(e) on the edges of G as follows. The weight w(e) = 7
6
if e lies in L, w(e) = 5

4
if

e joins L and L, and finally w(e) = 1 for edges in L. The sum of the weights of the three
pairs in T ∈ T is 3× 7

6
if T ⊆ L, it is 7

6
+2× 5

4
if |T ∩L| = 2, it is 2× 5

4
+1 if |T ∩L| = 1,

and there is no T ∈ T such that |T ∩ L| = 0. So every triangle T in G belongs to T and
receives at least 7

2
total weight. Hence

7

2
|T |+ |E| ≤ 7

6

(
3ℓ+ 3

(
ℓ

2

))
+

5

4
ℓ(n− 3ℓ) +

1

4
(n− 3ℓ)2

=
1

4

(
n2 + ℓ2 − nℓ+ 7ℓ

)
.

(17)

The polynomial pn(ℓ) := ℓ2 − nℓ + 7ℓ attains its maximum over 0 ≤ ℓ ≤ ⌊n
3
⌋ at ℓ = 0 or

ℓ = ⌊n
3
⌋, so it is at most 4 for n = 7, at most 2 for n = 8, at most 3 for n = 9, and at

most 0 for n ≥ 10. This completes the proof of inequality (16).

Next, consider the case |Q| ≥ 1 and let Q1, . . . , Qk be a maximal family of pairwise
disjoint quadruples from Q, let K = ∪Qi, |K| = 4k, and K := [n] \ K. Define the
hypergraph H3 on the vertex set K as

– the triples of T and the pairs of E contained in K, and

– the triples of the form Q ∩K when Q ∈ Q, |Q ∩K| = 1, and

– the pairs of the form Q ∩K when Q ∈ Q, |Q ∩K| = 2, and

– the pairs of the form T ∩K when T ∈ T , |T ∩K| = 1.

This is a Q4-family without any quadruple, so (16) gives

σ(H3) ≤
1

4
((n− 4k)2 + 5).
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Let ∂2H be the set of pairs that are contained in some edge of H. Define the graph G as
the set of pairs in ∂2H meeting K. As before, G can have at most 6k + 4

(
k
2

)
edges in K

and k(n− 4k) edges joining K and K. Define weights w(e) on the edges of G as follows.
The weight w(e) = 4

3
if e lies in K, w(e) = 3

2
if e joins K to K. Define weights on the

members of H3 as needed, w(S) = 7
2
for triples in H3 and w(e) = 1 for pairs in H3.

It is easy to check that the total weight in each member of Q ∈ Q is at least 8, it is
at least 7

2
for the members of T , and it is at least 1 for pairs in E . Indeed, if Q ⊆ K then

it gets 6 × 4
3
= 8, if |Q ∩K| = 3 then it gets 3 × 4

3
+ 3 × 3

2
, if |Q ∩K| = 2 then it gets

4
3
+4× 3

2
+1, and if |Q∩K| = 1 then it gets 3× 3

2
+ 7

2
. If T ∈ T and T ⊆ K then it gets

3× 4
3
, if |T ∩K| = 2 then it gets 4

3
+ 2× 3

2
, if |T ∩K| = 1 then it gets 2× 3

2
+ 1, and if

T ∩K = ∅ then its weight is 7
2
. Finally, the weight of the (relevant) pairs is at least 1.

Hence

8|Q|+ 7

2
|T |+ |E| ≤

∑
e∈G

w(e) + σ3(n− 4k) (18)

≤ 4

3

(
6k + 4

(
k

2

))
+

3

2
k(n− 4k) +

1

4

(
(n− 4k)2 + 5

)
(19)

=
1

4
n2 +

1

12

(
8k2 − 6kn+ 64k + 15

)
.

Here 2k(4k − n + 32− 2n) + 15 < −12 for n ≥ 18 (and 1 ≤ k ≤ ⌊n
4
⌋), it is less than −3

for n = 17, and it is negative for n = 16 and k = 1, 2, 3.

For the case n = 16 and k = 4 we have K = V (G) and G has 24 edges in Q1, . . . , Q4

and at most 4 ×
(
4
2

)
= 24 further edges. Recall that the weight of each edge is 4

3
. So

every Q ∈ Q gets weight 8, T ∈ T gets weight 4, and a pair E ∈ E has weight 4
3
. So

σ(H) ≤ 48× 4
3
= 64, as claimed. Here equality can hold only if T and E are both empty,

and |Q| = 8. Then Q must have the lattice structure.

Finally, in the case n = 15 we use (18) directly. By (17) we have σ3(15−4) ≤ 1
4
112 so in

the case (n, k) = (15, 1) instead of (19) we have σ(H) ≤ 1
4
n2+ 1

12
(8k2 − 6kn+ 64k) which

is less than 2⌊1
8
n2⌋. Similarly, in the case (n, k) = (15, 2) using σ3(15− 2× 4) ≤ 1

4
(72 +4)

leads to σ(H) < 2⌊1
8
n2⌋.

In the case (n, k) = (15, 3) we define another weight function on the edges of ∂2H.
We assign weight 4

3
to each pair. With this weighting every member of Q receives a total

weight 8, a triple in T gets 4 and a pair from E gets 4
3
. The graph ∂2H has 18 edges

covered by Q1, Q2, and Q3, there are at most 12 edges between these three quadruples,

there are at most 3 × 3 edges from K to K, and at most
(|K|

2

)
= 3 edges in K. Hence

|∂2H| ≤ 42 and σ(H) ≤ 56 = 2⌊1
8
n2⌋. However, here equality can hold only if all the

42 pairs of ∂2H belong to members of Q. But it is not possible to add to Q1, Q2, Q3

four more quadruples that form with them a Q4-family. This completes the proof of the
lemma.
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10.2 Proof of Theorem 19

Let F be an ABD-free triple system on [n] with |F| ≥ ⌊1
8
n2⌋, n ≥ 8. Our aim is to

prove that |F| = ⌊1
8
n2⌋ and F is among the families prescribed earlier. We start as in the

beginning of Subsection 10.1.
Let Q := {Q1, . . . , Qq} be all the vertex sets of C configurations in F , i.e., |Qi| = 4

and at least three triples within Qi are in F . Define F3 as the set of triples from F having
three own pairs, and let F2 := F \ (∂Q ∪ F3). Each member of F2 has exactly two own
pairs, the set of these are denoted by E . Then the family H = Q∪F3 ∪ E is a Q4-family.

If Q = ∅ then F is ABCD-free and Theorem 1 can be applied. So from now on, we
may suppose that q ≥ 1. In case of n ≥ 15 we can apply Lemma 21. We get

2|F| ≤ 8|Q|+ 2|F3|+ |E| ≤ σ(H) < 2⌊1
8
n2⌋

unless F = Q4×4. So the proof is complete for n ≥ 15.
From now on we may suppose that n ≤ 14 (and q ≥ 1). These are finitely many cases

so one can check them with a computer. For completeness we sketch a case by case check
in the next subsection.

10.2.1 The case 8 ≤ n ≤ 14

Starting with Q1 = 1234 and adding new quadruples one by one it can be seen that there
are 16 possibilities for Q. The list is presented below (also see Figure 4). κ denotes |∪Q|,
U := ∪Q, and i′ denotes the element 10 + i.

1. q = 1, κ = 4, Q1 = {1234}

2. q = 2, κ = 7, Q2 = {1234, 1567}

3. q = 2, κ = 8, Q3 = {1234, 5678}

4. q = 3, κ = 10, Q4 = {1234, 1567, 1890′}

5. q = 3, κ = 10, Q5 = {1234, 4567, 7890′}

6. q = 3, κ = 11, Q6 = {1234, 1567, 890′1′}

7. q = 3, κ = 12, Q7 = {1234, 5678, 90′1′2′}

8. q = 4, κ = 12, Q8 = {1234, 5678, 1590′, 261′2′}

9. q = 4, κ = 13, Q9 = {1234, 5678, 90′1′2′, 1593′}

10. q = 4, κ = 13, Q10 = {1234, 1567, 1890′, 11′2′3′}

11. q = 4, κ = 13, Q11 = {1234, 1567, 1890′, 81′2′3′}
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Figure 4: The 16 possibilities for Q on 14 vertices

12. q = 4, κ = 13, Q12 = {1234, 4567, 7890′, 0′1′2′3′}

13. q = 4, κ = 14, Q13 = {1234, 5678, 890′1′, 1′2′3′4′}

14. q = 4, κ = 14, Q14 = {1234, 1567, 890′1′, 82′3′4′}

15. q = 4, κ = 14, Q15 = {1234, 5678, 590′1′, 52′3′4′}

16. q = 5, κ = 14, Q16 = {1234, 5678, 90′1′2′, 1593′, 260′4′}.

In all cases we define a graph G by selecting two own pairs from each triple in F\(∂Q).
This G is triangle-free. Then we find an upper bound α for the possible number of edges
of G in U , a bound β for the number of G-edges joining U to [n] \ U , and a bound γ for
the number of G-edges in [n] \ U . In particular, we have γ ≤ ⌊1

4
(n− κ)2⌋. Then

|F| ≤ 4|Q|+ 1

2
|E(G)| ≤ 4q + ⌊1

2
(α + β + γ)⌋. (20)

In almost all cases (20) immediately gives |F| < ⌊1
8
n2⌋.

— Case ofQ1. α = 0, β ≤ n−4, γ ≤ 1
4
(n−4)2, so |F| ≤ 4+ 1

2
(α+β+γ) ≤ 1

8
(n2−4n+32).

This is less than ⌊1
8
n2⌋ for n ≥ 9. In case of n = 8 equality must hold, G is a 4-cycle on

[8] \Q1 plus four edges to Q1. But this cannot be realized by triples.
— Case of Q2. α = 0, β ≤ 2(n−7), γ ≤ ⌊1

4
(n−7)2⌋. So |F| < ⌊1

8
n2⌋ for n ≥ 11 by (20).

In case of n = 10 we have that γ = 2 and β = 6, but this cannot be realized. In case of
n = 9 we obtain Q2

9. The case of n = 8 is obvious, F = ∂Q (= Q2
8).
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— Case of Q3. For n ≥ 11 we have α ≤ 4, β ≤ 2(n−8), so |F| ≤ 1
8
(n2−8n+80) < ⌊1

8
n2⌋.

In case of n = 8 we have F = ∂Q (= Q3
8). If n = 9 then only one more triple can be

added to Q3
8, and in case of n = 10 at most two more can be added. These are too few,

so we are done.

— Case of Q4. Here α = 0, β ≤ 3(n− 10) so (20) gives |F| < ⌊1
8
n2⌋ for n ≥ 11. In case

of n = 10 we have F = ∂Q (= Q3
10).

— Case of Q5. Here α = 3, β ≤ 3(n− 10) so (20) gives |F| ≤ 1
8
(n2 − 8n+ 88) < ⌊1

8
n2⌋

for n ≥ 12. In case of n = 10 we have F = ∂Q (= Q4
10). In case of n = 11 one can add

at most one new triple to Q5, so we have |F| ≤ 13.

— Case of Q6. Here α = 7, β ≤ 3(n− 11) so (20) gives |F| ≤ 1
8
(n2− 10n+113) < ⌊1

8
n2⌋

for n ≥ 12. In case of n = 11 we have F = ∂Q so |F| ≤ 12.

— Case of Q7. Here α = 12, β ≤ 3(n−12) so (20) gives |F| ≤ 1
8
(n2−12n+144) < ⌊1

8
n2⌋

for n ≥ 13. In case of n = 12 one can add at most four disjoint new triples to Q7, so we
have |F| ≤ 16.

— Case of Q8. Here α = 4, β ≤ 4(n− 12) so (20) gives |F| ≤ 1
8
(n2 − 8n+ 96) < ⌊1

8
n2⌋

for n ≥ 13. In case of n = 12 one cannot add any new triple to Q8, so we have |F| ≤ 16.

In the rest of the cases n ∈ {13, 14} and |U | ≥ 13. Let η (or ηn) be the size of F\(∂Q).
Since |Q| is at least 4 we have more restrictions, it is easier to give an upper bound for
η. In the cases Q9–Q15 we have to show that η13 < 21− 16 = 5, and η14 < 8. In the case
Q16 we need η14 < 4.

— Case of Q9. No more triples meeting 1593′, so η13 ≤ 3 and η14 ≤ 6.

— Case of Q10. Obviously η13 = 0 and η14 = 0.

— Case of Q11. η13 = 0 and η14 ≤ 2.

— Case of Q12. η13 = 0 and η14 ≤
(
4
2

)
.

— Case of Q13. No more triples meeting 890′1′, so η ≤ 3.

— Case of Q14 and Q15. η = 0.

— Case of Q16. η ≤ 2.

11 Excluding B, C and D

For BCD-free families we know the upper bound

ex(n,BCD) ≤ ex(n,CD) = ⌊1
4
(n− 1)2⌋.

The extremal construction for ex(n,CD) – of the form FT for some tournament T – does
contain B configurations, so this bound cannot be exactly matched. But we do have an
asymptotically matching construction.

Theorem 22.

ex(n,BCD) =
1

4
n2
(
1− o(1)

)
.
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Our construction uses Wilson’s well-known decomposition theorem, which we recall
now.

Theorem 23 (Wilson [22]). For every fixed graph H there exists n0 = n0(H) such that
the following holds for all n ≥ n0:
There exists a decomposition of the edge set E(Kn) of the complete graph on n vertices
into copies of H if and only if the number of edges of H divides

(
n
2

)
, and the greatest

common divisor of the vertex degrees in H divides n− 1.

Proof of Theorem 22. For every integer m ≥ 2 we construct a graph Hm to which we
will apply Theorem 23. It has m2 vertices, partitioned into

(
m
2

)
pairs A1, . . . , A(m2 )

and a

set B of size m. The graph induced on each Ai ∪ B, 1 ≤ i ≤
(
m
2

)
, is complete, and these

are all the edges of Hm. Thus

� |E(Hm)| =
(
m
2

)
(2m+ 1) +

(
m
2

)
=

(
m
2

)
(2m+ 2) = m(m− 1)(m+ 1).

� gcd
(
{degHm

(v) : v ∈ V (Hm)}
)
= gcd(m+ 1,m2 − 1) = m+ 1.

Let n ≥ n0(Hm) be such that 2m(m − 1)(m + 1) divides n − 1. Then both divisibility
conditions in Theorem 23 are satisfied, so we can find a decomposition of E(Kn) into

1
m(m−1)(m+1)

(
n
2

)
copies of Hm.

In each copy of Hm in the decomposition, we place
(
m
2

)
m triples of the form Ai ∪ {b}

where 1 ≤ i ≤
(
m
2

)
and b ∈ B. Within each copy, this triple system is triangle-free:

it actually follows the construction presented before Theorem 1. Let Hn
m be the system

formed by all these triples in all copies of Hm. Because the triples in a given copy use only
edges of that copy of Hm, and distinct copies are edge-disjoint, triples in distinct copies
can share at most one vertex. This immediately implies that Hn

m is CD-free. Suppose
there is a B configuration in Hn

m. Then the two triples in it that share an edge must come
from the same copy of Hm and be of the form Ai ∪ {b}, Ai ∪ {b′} for some b ̸= b′ ∈ B.
The third triple contains {b, b′}, which is an edge of the same copy of Hm. Thus the third
triple could only come from this same copy, but no triple in the construction contains two
vertices of B. We have shown that Hn

m is BCD-free. The number of triples in it is

|Hn
m| =

(
m

2

)
m · 1

m(m− 1)(m+ 1)

(
n

2

)
=

1

2

m

m+ 1

(
n

2

)
.

When m and n both go to infinity, with n satisfying the above conditions with respect
to m, namely n ≥ n0(Hm) and 2m(m− 1)(m+ 1)|n− 1, we have |Hn

m| = 1
4
n2
(
1− o(1)

)
.

For sufficiently large n that does not satisfy the divisibility condition, we can find an n′

that does, n − 2m(m − 1)(m + 1) < n′ < n, and take the triple system Hn′
m, still of the

required asymptotic size.
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