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Games in characteristic function form are used to mode1 an allocation of decision power among 
individuals involved in a voting situation. The problem of strong representation is to find a 
strategically acceptable social choice function that entails the allocation of power prescribed by a 
given game. Within the class of non-weak characteristic function games, we fully characterize the 
games that admit a strong representation. We apply this result to Peleg’s problem of strong 
representation of simple games. Our results indicate that a strong representation requires 
significantly more than has been recognized in the literature. 

1. Introduction 

The notion of the power of the various coalitions with respect to a given 
social choice function has often been used in the theory of social choice. It 
can be found already in Arrow’s (1963) General Possibility Theorem: the 
notion of a decisive coalition is used to derive the existence of a dictator. 
Later literature has offered more extensive descriptions of the allocation of 
power entailed by social choice functions, using game theoretic objects as 
descriptive tools. Peleg (1978b) went one step further: he suggested to treat 
the game as the preliminary data of the problem, and to look for social 
choice functions (with desirable properties) that entail the allocation of 
power reflected by the given game. Problems of this type are representation 
problems. Their interest lies in the fact that they display the possibilities and 
limitations in designing social choice functions that allocate power in any 
prescribed form. 

In this paper we focus on the representation problem considered by 
Ishikawa and Nakamura (1980). The game theoretic object they used is 
characteristic function games. In this context of social choice functions, where 

*This is a revised version, with the same title, of Research memorandum no. 54 (The Hebrew 
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have had the benefit of his guidance and encouragement - for all this I am very grateful. 
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the possible outcomes are described by a finite set of alternatives A, a 
characteristic function game v is a specification of the feasible set of 
outcomes u(S) (subset of A) for each coalition S (subset of the set N of 
individuals). Using Peleg’s (1978a) notion of exact and strong consistency as 
the criterion for the acceptability of social choice functions on strategic 
grounds, they asked the following question: what conditions does v have to 
satisfy in order that it be possible to find an acceptable social choice function 
that entails the allocation of power prescribed by v? Such a social choice 
function is called a strong representation of the characteristic function game v. 

Ishikawa and Nakamura give sufficient conditions and necessary con- 
ditions for the existence of strong representations, but these are hardly 
satisfactory. The necessary conditions reflect well-known core conditions, 
rather than the specific (and higher) demands of this problem.’ The sufficient 
conditions are much stronger than the necessary conditions, and seem too 
crude. In this paper we formulate and prove necessary and sufficient 
conditions for the existence of strong representations of characteristic func- 
tion games. This is a full solution of the problem, except that we restrict 
ourselves to games that do not endow any individual with veto power (such 
games are called non-weak). 

Thus, the role of the present paper is not to suggest new notions or 
problems, but rather to solve a problem that has already been formulated in 
the literature. Nevertheless, we restate in section 2 all the necessary deft- 
nitions and recall the conditions of Ishikawa and Nakamura. Following this, 
we state our own conditions, and indicate their sufficiency. This does not 
involve any new proof; it suffices to observe what is really required for 
Ishikawa and Nakamura’s proof to go through. 

Section 3 is the central part of the paper. Here we prove that our 
conditions are necessary for the existence of a strong representation of a non- 
weak characteristic function game. Thus, we obtain a full characterization of 
the family of games (within this class) that possess strong representations. 
The proof, although elementary, is quite complex and follows a rather 
unexpected line. 

In section 4 we interpret the conditions and the characterization, discuss 
their relationship with other work in the area, and give some examples. We 
illustrate further the power of the characterization obtained by exhibiting its 
consequences for the problem of strong representations of simple games. This 
problem, analysed in Peleg (1978b), is solved here for the class of symmetric 
simple games. A solution for the class of all simple games is a more general 
result of this paper’s characterization; it is obtained in a separate paper 
[Holzman (1984)]. 

‘This feature is common to other work pertaining to exact and strong consistency. We 
elaborate on this in section 4. 
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2. Definitions and preliminary results 

2.1. Choice, effectivity and games 

The basic ingredients of the choice situations considered here are a set N 
of individuals and a set A of alternatives facing them. Both sets are assumed 
to be finite and to contain more than one element. The preferences of any 
individual over A may take the form of any linear order over A. L denotes 
the set of all linear orders over A. If we have R’ E L for each individual i E N, 
we have a social profile of preferences, which we denote RN. LN denotes the 
set of all possible profiles. 

Definition 2.1. A social choice function (SCF) is a function F: LN+A. 

Thus, a SCF is a deterministic rule that assigns a chosen alternative to 
every possible profile of preferences. Given such a rule, coalitions (non-empty 
subsets of N) may or may not have the power to enforce certain outcomes. 
This notion is captured and made precise by the following definition of 
effectivity with respect to a SCF: 

Definition 2.2. Let F be a SCF, let S be a coalition and let x be an 
alternative. We say that S is effective for x (with respect to F) if, for all 
RN E LN, [max(RS) =x*F(RN) =x1.’ 

Using this definition for a given SCF, we get information about the 
effectivity of the various coalitions for the various alternatives. The next 
definition introduces the game theoretic object that can be used to express all 
this information. 

For a set X, P(X) denotes the set of all subsets of X, while 2’=9’(X) 

Definition 2.3. A characteristic function game is a function v: 2N+P(A). v is 
monotonic if, for all S, TEAM, [SC T*v(S) cv(T)]. In this case we write, for 
short, that v is a MCFG.3 

Definition 2.4. Let F be a SCF. The characteristic function game associated 
with F, v* =v*(F), is defined by [XE v*(S)oS is effective for x (with respect to 
F)] for all SE 2N, x E A. 

‘For REL. , max(R) denotes the best element of A according to the order R. For a coalition S, 
we write max(Rs) =x if max(R’) = x for all i E S. 

‘Ishikawa and Nakamura required in their definition, in addition to the above, that v(N) = A. 
Although this seems very natural, it will not be satisfied by the characteristic function games 
associated with, e.g., imposed SCFs. 
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We remark that v* is always monotonic. Conversely, given a MCFG v, we 
may ask whether or not there exists a SCF F such that v=v*(F). This is a 
representation problem. The notion of a strong representation is derived 
from this by adding a constraint on the admissible SCFs. This constraint is 
motivated by requirements of strategical stability, which are introduced in 
the next subsection. 

2.2. Strong representations 

When the individuals in N have to vote in order to choose an element of 
A, they are facing a game in strategic form. Each individual may report any 
order in L as his preference relation. An analysis of this interaction, under 
the assumptions that the individuals are completely informed and that 
coordination of strategies by coalitions is unrestricted, leads to the following 
notion of equilibrium. (For a coalition S, Ls denotes the set of all S-profiles, 
i.e., assignments of orders in L to the members of S; if Ps E Ls and Q” E LN 
then Ps, QN-s denotes the profile obtained from Q” by substituting Ps for 
the components corresponding to the members of S.) 

Definition 2.5. Let F be a SCF and let RN E LN. Let further Q” E LN. We say 
that QN is a strong equilibrium point of the F-voting game at RN unless there 
exist SE 2N and Ps E Ls such that F(P’, Q”-“) is preferred in R’ to F{Q”) for 
all i E S. If, moreover, F(QN) = F(RN), we say that Q” is exact. 

If QN is an exact and strong equilibrium point of the F-voting game at RN 
(where F is the voting rule and RN is the sincere profile), then playing Q” will 
not create any incentive for deviation nor any distortion of the sincere 
outcome. 

Definition 2.6. A SCF F is exactly and strongly consistent if, for each 
RN~LN, there exists an exact and strong equilibrium point of the F-voting 
game at RN. 

We regard this requirement as the criterion for the acceptability of a SCF 
on strategic grounds. For more motivation of this definition, the reader is 
referred to Peleg (1978a) or Peleg (1984). 

Definition 2.7. Let v be a MCFG. A SCF F is a strong representation of v if 
(i) F is exactly and strongly consistent, and (ii) v*(F)=v. 

For v to have a strong representation, it means that the allocation of 
power (in other words, the effectivity relation) prescribed in v can be 
implemented in terms of an acceptable SCF. 
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2.3. The conditions 

In order to formulate conditions on MCFGs, in connection with the 
question of the existence of strong representations, it is convenient to use the 
terminology of blocking coalitions. Given a MCFG Y, we say that a coalition 
S is blocking for an alternative x if x $ u(N--S). Since the blocking relation 
determines 0, we may use it as an alternative form of u, via the following 
detinition: 

Definition 2.8. Let u be a MCFG. The blocking form of u consists of the 
collections .@(x)~p(N), for x EA, defined by (i) NEB(x) for all XEA, and (ii) 
for S~~~S~~(~)ux~u(~-~]. 

Thus, a(x) is the collection of those coalitions that are blocking for x. It 
contains always, by definition, the total coalition. It may contain the empty 
set; this happens if x$ v(N). (In what follows, the empty set is not excluded; 
in particular, it is allowed to appear as a component in a partition of N.) 

We introduce now Ishikawa and Nakamura’s necessary conditions. 

Definition 2.9. Let u be a MCFG. We say that u satisfies condition A 
[respectively condition B] if there exist no enumeration x1,. . .,x, of the set 
of alternatives A and partition S1,. . . , S, of the set of individuals N so that 
Si # B(xJ [resp. Si 15 @(xi)] for i = 1,. . . , m. 

Theorem 2.10 (Ishikawa and Nakamura). Let u be a MCFG satisfying u(N) = A. 
For u to have a strong representation, it is necessary that it satisfies conditions 
A and B. 

The necessity of condition A can be explained as follows. If it is violated, a 
profile can be constructed in the spirit of the ‘paradox of voting’; for this 
profile, every alternative is dominated; hence no alternative can be the 
outcome of a strong equilibrium point. The necessity of condition B is a 
simple feasibility argument: if everything can be blocked simultaneously, one 
is led to a contradiction. 

In order to understand the suf’hcient conditions, we require the notion of a 
feasible elimination procedure. It was introduced by Peleg as a basis for the 
construction of exactly and strongly consistent SCFs, and was generalized by 
Ishikawa and Nakamura. 

We use the following notation. For R E L and A, E 2A, min(R / A,) denotes 
the worst element of A, according to the order R. For a coalition S, we write 
min(RS 1 A,) =x if min(R’ 1 A,) =x for all ie S. 

Definition 2.11. Let u be a MCFG and let RNe LN. A feasible elimination 
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procedure at RN (with respect to V) is a sequence (x,,S,;. . .;x,_~,S,,,-~;X,,,) 
satisfying (i) x 1, . . _ , x, is an enumeration of A, (ii) S,, . . . , S,_ 1 are pairwise 
disjoint subsets of N, and (iii) for j= l,...,m-1, Sj~B(xj) and 
min(Pj\ (xj,. . . , x,,J) = xj. An alternative x E A is maximal at RN (with respect 
to u) if there exists a feasible elimination procedure at RN with x,=x. 
M(u, RN) denotes the set of all maximal alternatives at RN. 

A maximal alternative, if it exists, is the outcome of successive elimination 
of alternatives that are regarded, each at the respective step of the procedure, 
as the worst remaining alternative by the members of a blocking set of 
individuals. It can be shown (and was in fact shown by Ishikawa and 
Nakamura, although not explicitly formulated) that if v satisfies condition B 
and F satisfies F(RN)6M(v,RN) for all RNe LN, then F is a strong representa- 
tion of u. For a construction of such F to be possible, one has to know that 
M(u, RN) #4 for all RN~L N. To guarantee this, Ishikawa and Nakamura 
introduced the following condition. 

For a set X, 1x1 denotes the cardinality of X. 

De~nit~o~ 2.12. We say that a MCFG v satisfies condition C if there exist 
no enumeration x1,. . . ,x, of A and partition So,S1,. . . ,S, of N so that 
/S,I5i;-2 and for i=l,...,m Si$.@(xi). 

They showed that, for u satisfying Y(N) = A and condition C, M(u, RN) # # 
for all RN E LN, thus obtaining the following theorem. 

Theorem 2.13 (Ishikawa and Nakamura). Let v be a MCFG satisfying u(N) = A. 
For v to have a strong representation, it is suf~cient that it satisfy conditions 
B and C. 

It is dificult to see, by looking directly at condition C, how it performs its 
role in the theorem. More insight will be gained by considering the string of 
conditions that we shall introduce here, to replace condition C, While the 
conjunction of our conditions is weaker than condition C,4 they perform the 
same role in a more transparent way. 

For a MCFG t’, B,(X) denotes the collection of all minimal sets in 9(x), 
i.e., those sets in B(X) that do not have any proper subsets in B(x). 

Definition 2.14, Let v be a MCFG, and let k be an integer, 05 k srn-2, 
where m=/Al. We say that u satisfies condition D(k) if there exist no 
enumeration x 1, . . . , x, of A and partition S,,. . . ,S, of N so that (i) 
SiEg,(XJ, i=Il,..., k and (ii) Sj~~(Xj), j=k+ l,..., m. 

4This is not difficult to see. It will be shown in section 4. 
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Theorem 2.15. Let v be a MCFG. For v to have a strong representation, it is 
su~c~ent that it satisfy conditions B and /‘$‘z; D(k). 

Proof. We shall prove that if z1 satisfies condition D(k) for every k =O, . . . , 
m-2 then M(v, RN) # 4 for all R“‘E LN. (Given this, the theorem follows in 
the same way as in Ishikawa and Nakamura’s paper; see above.) The 
argument is that, given RN~LN, a feasible elimination procedure 

(x1,S,;...; x,_ 1, S,_ r ; x,) can be constructed step by step, where at step k 
we pick an alternative xk, distinct from all xi, i < k, and a set S,, disjoint from 
all Si, i < k, such that S, E a,,,(~,) and min(RSX 1 (A - (x1,. . . , xk _ ,})) = xk. 
Indeed, to see that this construction can be carried out, assume that k steps 
went through, so we have (x,,S,;. ..; x,,S,) with the appropriate properties; k 
is any integer between 0 and m-2 (the case k=O takes care of the initial 
step, and the case k = m-2 is the last to worry about, since after k = m - I 
steps we already have the whole procedure). For each x E A -ix,, . _ .,x,1, let 

If it were the case that S,#@(x) for each XE A- {x1,. . . ,x,1, the sets 
S i,. . . , S, together with the sets S,, x E A- {x1,. . .,x,}, would yield a counter- 
example to condition D(k). Therefore there exists x E A - (x1,. . . , xk) such that 
S, E B(x); we can take this x as xk + i, and a subset of S, that is in g,,,(x) as 
S k+lt to carry on the construction. lo 

We remark that when the sufficient conditions of Theorem 2.15 are 
satisfied, a strong representation F can be constructed that has two further 
desirable properties: it is monotonic (if x is chosen and the preferences 
change in favor of x, then x is still chosen), and it is faithful (F displays all 
the symmetries among individuals in v). As these properties are away from 
the focus of this paper, we omit a formal statement and proof of this 
fact. 

3. The characterization theorem 

In this section we shall prove that the sufficient conditions for the 
existence of a strong representation (Theorem 2.15), are also necessary 
conditions, when we restrict ourselves to the class of non-weak games. We 
shall discuss this restriction in the last paragraph of the paper. 

Definition 3.1. Let v be a MCFG. An individual i E N is a veto player if i E S 
for every coalition S such that o(S)= A. v is non-weak if there are no veto 
players. 
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Theorem 3.2. Let v be a non-weak MCFG. For v to have a strong represen- 
tation, it is necessary and suflcient that it satisfy conditions B and /‘$lz D(k). 

This is our characterization theorem. The su~ciency of the conditions was 
established in Theorem 2.15. The necessity of conditions B and D(0) is a 
result of Ishikawa and Nakamura cited above. [See Theorem 2.10. Notice 
that condition D(0) is exactly condition A. Notice also that the assumption 
u(N) =A is satisfied by any non-weak MCFG, since if v(N) # A then no S 
satisfies v(S) = A and therefore all the individuals are veto players.] 

Thus, we have to prove the necessity of the conditions D(k), k = 1,. . . , m - 2. 
That this is true is rather surprising, since these conditions were introduced 
to suit the needs of elimination procedures, while here we have to derive 
them from the existence of any strong representation. The proof being quite 
complex, we shall first outline its structure. 

The necessity of condition D(1) reflects a deep analysis of the requisites of 
exact and strong consistency. This forms the kernel of the proof (Lemma 
3.14). It would seem that the analysis would become hopelessly complicated 
if one attempted to deal with conditions D(k), k> 1, in the same manner. 
Induction saves the day. It exempts us from the need to work further with 
social choice functions; instead, we work directly with the conditions and 
establish implications between them. However, in order for the induction 
argument to go through, it is necessary to strengthen the induction hypo- 
thesis. This strengthening involves working with conditions D*(k), that are 
similar to the D(k), but are expressed in terms of sets of alternatives rather 
than only single alternatives. Effectivity functions enable us to express these 
things, so we start by introducing them. (As the following definitions are, 
mostly, natural generalizations of similar definitions given in section 2, the 
reader should refer to that section for comparison and interpretation.) 

Definition 3.3. An effectivity function is a function E: 2N+P(2A). E is mono- 
tonic if (i) for all S, T E 2N, [SC T*E(S) c E(T)], and (ii) for all SE 2N and C, 
DE 2A, [C E E(S) and Cc D]*D E E(S). E is maximal if, for all SE 2”- (Nj 
and CE~*-(A), either CEE(S) or A-CCE(N-S). 

Definition 3.4. Let F be a SCF. We say that a coalition S is effective for a 
subset C of A (with respect to F) if, whenever RN is a profile in which every 
member of S prefers every element of C to every element of A-C, F(RN) f C. 
The effectivity function associated with F, E*= E*(F), is defined by 
[C E E*(S)-+S is effective for C (with respect to F)], for all SE 2N, C E 2A.5 

‘For simplicity’s sake, we do not introduce two other effectivity functions that can be 
associated with a SCF, namely the a- and P-effectivity functions. We can afford this simplifica- 
tion since the three notions coincide for exactly and strongly consistent SCFs; see Peleg (1984, 
Corollary 4.1.29). 
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De~n~tion 3.5. Let E be an effectivity function. A SCF F is a strong represen- 
tation of E if (i) F is exactly and strongly consistent, and (ii) E*(F) = E. 

An important notion defined with respect to effectivity functions is the 
notion of the core, which we recall now. 

Definition 3.6. Let E be an effectivity function and let RN E LN. For XE A, 
Bc A- (x) and SC N, we shall write B dom(RN, S)x if BE E(S) and every 
member of S prefers in RN every element of B to x. The core of A with 
respect to E and RN, C(E, RN), is the set of alternatives x for which 
Bdom(RN,S)x hoids for no Bc A--(x) and SC N. E is stable if C(E, RN)## 
for all RN E LN. 

In the following Proposition we state, for future reference, some basic 
properties of the effectivity functions that are associated with exactly and 
strongly consistent SCFs (in other words, those that have a strong represen- 
tation). Proofs can be found in section 4.1. of Peleg (1984). 

Proposition 3.7. Let E be an effectivity function. Zf E has a strong represen- 
tation then E is monotonic, maximal and stable. Any strong representation F of 
E satisfies F(RN) E C(E, RN) for all RN E LN. 

The last preparation, before we can start to formulate the conditions D*(k) 
for effectivity functions, is to introduce for them too the blocking form. 

Definition 3.8. Let E be an effectivity function. The blocking form of E 
consists of the collections s(C) cp(N), for CE Y(A), defined by (i) N EB(C) 
for all CEJY(A), and (ii) for S 5 N[SE.G@(C)-G&# E(N -S)]. 

In the next definition, as well as later on, we shall formulate conditions on 
an effectivity function by referring directly to its blocking form. 

Definition 3.9. Let E be an effectivity function. We say that E satisfies 
condition D*(O) if there exist no partitions C,, . . . , C, of A and S,, . . , S, of N 
SO that S,QB(Ci) for i=l,...,p. 

This condition generalizes condition D(0) by allowing for arbitrary par- 
titions of the alternatives, not only into singletons. As explained above, we 
shall need these more general statements in our proof. In the first step, we 
shall show that the same argument that leads to the necessity of condition 
D(0) can be applied to obtain the necessity of condition D*(O). 

Lemma 3.10. Any stable effectivity function satisfies condition D*(O). 
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ProojY Assume that E is a stable effectivity function, but C,,. . . , C, and 
S r, . . . , S, are partitions for which condition D*(O) is violated. Clearly p 2 2, 
since by definition No&(A). We shall obtain a contradiction by considering 
a profile RN of the following form: 

s, s, ..* S,_l s, 

C, C3 C, C1 

C3 C4 C1 C, 
. . . * . . ‘f. 

c, Cl cd-2 q-1 

Cl c, c,-I c, 

(In this scheme, column j describes the preferences of each member of Sj. In 
any column, all elements of a set are preferred to all elements of a set 
depicted below it. The preferences within the sets Ci are immaterial. The 
construction is a generalized version of the ‘paradox of voting’.) 

We shall show that C(E, RN) =4, which contradicts stability. Let XE C,. 
Then C, dom(RN, N - S,)x, by the assumption S, q! @(C,,) and the scheme 
above; hence x $ C(E, RN). By the symmetry in the assumptions and the cyclic 
construction of RN, it is obvious that the same argument shows that 
Ci n C(E, RN) = q5 for all i; hence C(E, RN) = Cp. 0 

Corollary 3.11. Let E be an ef~ct~~ity function. If E has a strong represen- 
tation then E satisfies condition D*(O). 

Proof. By Proposition 3.7 and Lemma 3.10. 13 

We shall formulate now the conditions D*(k) for k= 1,. . . ,m-2. When 
dealing with them, we assume of course that the number of alternatives m is 
at least 3. The generalization of D(k) to D*(k) is not as straightforward as 
that of D(0) to D*(O) above; we shall later establish the relevant implications 
between the D*(k) and the D(k). In part of the formulation of D*(k) we stick 
to single alternatives. For them, we retain the notations 98(x) [instead of 

~(b))l and ~A4 

Dejhition 3.12. Let E be an effectivity function, and let k be an integer, 
15 ksm-2, where m= IAl. We say that E satisfies condition D*(k) if there 
exist no x r ,..., x~EA, C,, C,E~(A) and S, ,..., Sk, T,, T2eP(N) so that 

(i) (qf,. . ., (xk>, C,, CZ is a partition of A, 
(ii) S1,..., S,, T,, T, is a partition of N, 
(iii) Sie@Jxi), i = 1,. . . , k, and 
(iv) I;:4~(Cj), j= 1,2. 
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The next step will be to prove the necessity of condition D*(l). In the 
proof we shall refer several times to the following remark: 

Remark 3.13. Let E be an effectivity function and let F be a strong 
representation of E. Let SE 2N - {IV} and C E 2* - (A} satisfy SE g(C). Let RN 
be a profile in which every member of S prefers every element of A-C to 
every element of C. Then F(RN) # C. 

Proof. From S Ed and S # N we know that C$ E(N - S). By Proposition 
3.7 E is maximal, hence A- CE E(S). Since E = E*(F), this means that S is 
effective for A-C (with respect to F); hence F(RN) E A-C. 0 

Lemma 3.14. Assume that E is an effectivity function such that no singleton 
belongs to any of the collections B(x). If E has a strong representation then E 
satisfies condition D*( 1). 

Proof. Let E be as assumed, and suppose that condition D*(l) is violated. 
Let, accordingly, {x}, Ci, C, and S, T,, T, be partitions of A and N 
respectively so that SE g’,(x) and Tj $ 98(Cj), j = 1,2. 

We observe that 1 < ISI < INI. The first inequality follows from the assump- 
tion of the Lemma. For the second inequality, suppose that S = N. Pick an 
individual i E N. Then N - {i} #99(x) since N is minimal in 99(x), and 

(4 $@(A-(4) by th e assumption of the lemma and the monotonicity of E 
(known from Proposition 3.7). These two facts constitute together a violation 
of condition D*(O), contradicting Corollary 3.11. 

Let S(l), S@) be a partition of S into two non-empty coalitions. We shall 
consider a profile RN of the following form: 

S(l) Sc2) Tl T2 

c, c, x x 

Cl c2 c2 Cl 

X X Cl c2 

(For the conventions for interpreting such a scheme, see the proof of Lemma 
3.10.) 

Let F be a strong representation of E. By Remark 3.13 F(R”)#x. W.l.o.g., 
F(RN) E C,. Let QN be an exact and strong equilibrium point of the F-voting 
game at RN (see Definitions 2.5 and 2.6). We distinguish two possible cases. 

CaseI. There exist ie S and YE A- {x} such that xQ’y (i.e., i prefers x to y 
in QN). 
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We claim that Tt u T, E %(A - (x, y>). Otherwise, condition D*(O) is violated 
for the partitions A - {x, y}, {x}, {y> of A and Tl u T,, S-{i}, (i> of N [indeed, 
S-(i)~~(x) as SE~?~( x , ) and (i> $98(y) by the assumption of the lemma]. 

We construct a Tl u T,-profile PT1 ” T2 as follows: every individual in 
Tl u T2 ranks x as best and y as second-best (the rest of the ranking is 
immaterial). Denote PN = PT1 ” Tz, QS (i.e., PN is obtained from Q” when the 
members of Tl u Tz deviate to 2’ rlUT2). By Remark 3.13 F(PN)$A-{x,y). 
Also, (x) dom(PN, Tl u Tz u {i>)y, so by Proposition 3.7 F(PN) # y. The only 
remaining possibility is F(PN)=x, but this shows that the deviation is 
profitable for the members of Tl u T2. 

Case II. For all icS, the worst alternative in Q’ is x. 

We claim that S’(l) u Tl EB(CJ. Otherwise, condition D*(O) is violated for 
the partitions C,, ix}, Cz of A and S(l) u T,, St2), T2 of N. 

We construct a S(l) u T,-profile PS(IJUT1 as follows: every individual in 
S(l) u Tl ranks every alternative in C, above x and every alternative in Cr 
bt(;;r; (the ranking within the sets Cj is immaterial). Denote PN= PS’l)UT1, 

Q . By Remark 3.13 F(PN)$ C,. Also, C, dom(PN,S u TJx [recall that 
T, $&?(C,)], so F(PN)#x. Hence F(P”)EC,, but this shows that the deviation 
is profitable for the members of S’(i) u Ti. iJ 

Having proved the necessity of condition D*(l), we proceed to obtain the 
necessity of all the L)*(k) by induction. 

Lemma 3.15. Let E be a monotonic and max~mai e~ect~vity function. Zf E 
satisfies condition D*(l) then E satisfies &‘cf D*(k). 

Proof. For any integer k, 2 5 kgm- 2, we shall show that if E satisfies 
conditions D*(l) and D*(k- 1) then it satisfies condition D*(k). 

Indeed, assume that condition D*(k) is violated for the partitions 
{xl> ,..., (x,), C,, Cz of A and S,,.. ., Sk, T,, T2 of N. We observe first that 
S,#4 for i=l,..., k. Otherwise, say Sb= +_ Then condition D*(k- l), that E 
is assumed to satisfy, is violated for the partitions (x1>, . . . , (xk- ,}, C, u (x,J, 
C, and S,;..., S-i, T,, T2. [T, $B(C, u (xr>) follows from Tl $g(C,) by 
monotonicity.] 

From the non-emptiness of the Si it follows that Sk u Tl E 2N- (N). 
Hence maximality requires that either (i) S, u Tl $B({xk} u C,), or (ii) 
N-(&u T,)$L#?(A--((x,) u C,)). If (i) holds then condition D*(k-1) is 
violated for the partitions (x,>, . . . , {xk- 1), (xkj u C,, C, and S,, . . . , S,_,, 
Sk w 7;, Tz. If (ii) holds then condition D*( 1) is violated for the partitions 
(xk>, C,, A-(&j u C,) and S,, T,, N-(S, u G). 0 
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We proceed now to the last step in the proof of the main theorem. This 
step consists of going back from the conditions D*(k) to the original 
conditions D(k). 

Lemma 3.16. Let E be a monotonic and maximal e~ectiv~ty function. Define a 
MCFG vE by [XE ve(S)+) E E(S)], f or all SET* and x E A. If E satisfies 
,A$‘:~ D*(k) then v, satisfies ,/“$‘Z~ D(k). 

Proof We remark first that in passing from E to vE we lose the information 
concerning effectivity for sets of more than one alternative. However, for 
single alternatives E and uE carry the same information. Thus, the collections 
W(x) defined with respect to E coincide with those defined with respect to vE, 
so we do not distinguish between them. 

The satisfaction of condition D(0) follows directly from the satisfaction of 
condition D*(O). Assume now that 15 k grn - 2 and that we have a counter- 
example to condition D(k) consisting of the enumeration x1,. . . ,x, of A 
and the partition S,, . . ., S, of N. So Si~,!Z8m(~i), i= I,. . . , k, and Sj$9@J, 
j=k+l m. ,..‘, 

As there exists some irz (1,. . . , ml with Si# 4, there exists a subset of 
indices Ic(ki-l,..., mf with lil=m-k-l and UiErSi#N. W.l.o.g., i= 
{k+l,..., m - l} satisfies this. We denote T = l_j$$: r Si, so T # N. 

We show now that ~~~~W({X~+~,...,X,-~~). If T=+ then Sk+i=4, so 

tp$B(X k+ I), hence by monotonicity tft # g(fx,+ r, . . . , x, _ , f). Thus, we may 
assume that 7’#4, so TEA*--(N}. NOW, if I’E~~({x~+~,...,x,_~}) then 
maximality requires that N - 7’#B(A - {xk+ I,. . .,x,_ 1>). But this entails 
a violation of condition D*(O) for the partitions fx k+J>...&-1). 
A--(x~+~ ,..., x,,_~) and Sk+r ,..., Sm_l, N-T 

So we know that T#g(fx,+,,..., x,_ ,I). This, in turn, entails a violation 
of condition D*(k) for the partitions (x1}, . . . , (xk), (xk+ 1,. . . ,x,_ 1), (xm) and 
Si,...,Sk, 7; S,. Cl 

Having proved all the ingredients, we are ready to sum up. 

Proof of Theorem 3.2. As indicated above, what was to be proved in this 
section is the necessity of the conditions D(k), k = 1,. . . ,m-2, for the 
existence of a strong representation of a non-weak MCFG. 

So, let u be a non-weak MCFG and let F be a strong representation of v. 
We assume rnz 3, otherwise there is nothing to prove. Let E =E*(F). F is a 
strong representation of E, so by Corollary 3.11 E satisfies condition I)*(O). 
As u is non-weak, E satisfies the assumption of Lemma 3.14 [indeed, 
(i> E.%?(X) would mean that x$ v(S) for all SC N - (i>, making i a veto 
player]. Hence E satisfies condition D*(l). E is monotonic and maximal 
(Proposition 3.7), hence we know from Lemma 3.15 that E satisfies 
ArZ:D*(k). Given that it also satisfies D*(O), we conclude from Lemma 3.16 
that uE satisfies /‘$Zz D(k). But clearly v = vE, so we are done. [ZI 
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4. Discussion and application 

The following interpretation may help understand conditions B and 
,/“$Z~ D(k), and thus Th eorem 3.2. Let Y be a MCFG, given in blocking form 
by the collections &9(x), x EA. Let us perceive the relation SEAR as saying 
that it is in the power of the members of S to prevent the outcome x (this 
perception is formalized in Remark 3.13). The grand coalition N is in a 
position to determine the outcome, so it is in its power to prevent all 
outcomes except one. 

Consider now a partition S,, . . ., S, of N together with an enumeration 

xi,*-., x, of A. We may regard this as a ‘division of labour’: Si is assigned 
the task of preventing the outcome xi_ For any given division of labour, 
some tasks can be carried out and others cannot [according as Si EZ?~(X~) or 
not]. We can observe the ‘feasibility coefficient’ of the given division of 
labour: the number of tasks that can be carried out. Thus, with any division 
of labour we associate a feasibility coefficient, which may take integer values 
between 0 and m, and is a measure of what the division of labour can 
accomplish. 

Let us take now the view (often cited to motivate superadditivity require- 
ments for games) that the grand coalition should be able to achieve, when 
acting together, anything that can be accomplished by any division of labour. 
Since N cannot prevent all outcomes (simultaneously), this view requires that 
the feasibility coefficient of any division of labour should be at most m- I. 
This is exactly what condition B requires. 

Let us take now the view (that is, in a certain sense, the converse of the 
above superadditivity argument) that any division of labour should be able 
to accomplish the full power of the grand coalition. Actually, we have to be 
more careful. Call a division of labour ‘inefficient’ if one of the tasks can be 
carried out by a proper subset of the coalition to which it is assigned [i.e., 
there exist i and 7;~ Si with ~~ I]. Otherwise, call it ‘efficient’. Restrict- 
ing the above requirement to efficient divisions of labour, and recalling that 
N can prevent all outcomes except one, we require: the feasibility coefficient 
of any efficient division of labour should be at least m- 1. This is exactly 
what the conjunction ,A$‘:: D(k) requires [indeed, condition D(k) rules out 
efficient divisions of labour with feasibility coefficient k]. 

Thus, conditions B and A::$ D(k) may be viewed, under this interpreta- 
tion, as a su~radditivity requirement and its converse. From this we are 
led to the following interpretation of our characterization theorem: when 
allocations of power that do not endow individuals with veto power are 
considered, the requirement that the allocation of power be implementable in 
terms of a (strategically) acceptable SCF amounts to a superadditivity 
requirement and its converse. 

In this form, our result is reminiscent of the following result: for maximal 
effectivity functions, stability (see Definition 3.6) is equivalent to super- 
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additivity and subadditivity. 6 However, this similarity might be misleading, 
by giving the impression that the existence of a strong representation amounts 
just to core stability. Indeed, an important consequence of our work is that 
the existence of a strong representation requires signi~~antly more than core 
stability. For characteristic function games, core stability’ amounts to 
condition A, as shown by Ishikawa and Nakamura (1980). This condition A 
is just D(O), one end point of our string of conditions D(k), k=O,. . . ,m-2. In 
the domain of effectivity functions, already the canonical example of a stable 
effectivity function, namely the one derived from the proportional veto 
function [see Moulin (1981)], taken for the case of 3 alternatives and 4 
individuals, violates condition D*(l) and therefore (Lemma 3.14) has no 
strong representation. 

The difference between the requirement of core stability and that of the 
existence of a strong representation may be explained as follows. While 
stability guarantees that we can always choose an outcome upon which no 
coalition can improve on its own (irrespective of what the others do), in 
voting situations coalitions may still improve the outcome for their members 
by exploiting the actual votes of the others. This type of exploitation is well 
illustrated in the proof of Lemma 3.14, where the improvement is constructed 
in each of the cases taking into account the votes of individuals outside the 
deviating coalition. Our result, compared as above with results on stability, 
points to the significance of the difference between the notion of stability 
embodied in the core and the more demanding notion of strong equilibrium 
underlying the concept of a strong representation. 

Another consequence of this work that sheds light on the concept of a 
strong representation is the following. Assuming conditions B and 
&Z$ D(k), f easi bl 1’ e e imination procedures were shown in section 2 to supply 
a strong representation. In section 3, with the assumption of non-weakness, 
these same conditions were shown to be necessary for the existence of any 
strong representation. Therefore, whenever a non-weak MCFG can be 
strongly represented, this can be done using the method of elimination.8 In 
other words, replacing the general requirement of exactly and strongly 

6We do not state here the definitions of these two properties. One direction of this equivalence 
is due to Abdou (1981), the other is due to Pdeg (1983). 

7The de~nition of this notion for MCFGs is analogous to De~nition 3.6, except that only 
domination by single alternatives is considered. 

‘The same is true on the level of effectivity functions (this is an outcome of the conditions for 
effectivity functions established in section 3). When interpreting this fact, however, one should 
bear in mind two things. First, it is not claimed (and it is not in general true) that every stable 
outcome for a given allocation of power can be reached by elimination; it is the allocation itself, 
not its stable outcomes, that can be implemented through the method of elimination. Second, we 
do not consider in this paper implementation by mechanisms that are not SCFs; if such 
mechanisms (game forms) are allowed, the class of implementable allocations of power does 
increase. 

J-Math-- D 
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consistent choice by the actual method of choice by elimination entails no 
loss of generality in terms of the attainable (non-weak) allocations of power. 

As we have emphasized the strength of the conditions B and &JZi D(k), 
one might get the impression that they are hardly ever satisfied. This, 
however, is not true. The verification of these conditions is, generally 
speaking, a difficult task. But when the MCFG has many symmetries, this 
task is greatly simplified. We shall give two examples satisfying the con- 
ditions. The first provides a whole class of MCFGs where all individuals are 
treated symmetrically. The second provides a specific MCFG where indiv- 
iduals are treated according to their weights. We define the MCFGs directly 
in blocking form. 

Example 4.1. Let the set of individuals N and the set of alternatives A be 
given, and denote (NI = n. Let there be assigned an integer b,, 05 b, gn, to 
every XEA, in such a way that 1 xeAb,=n+l. Define 99(x)=(ScN:/S/~bJ. 
The verification of conditions B and &ZtD(k) is immediate. We remark 
that non-weakness is satisfied as soon as min,,, b,z2. 

Example 4.2. Let N = { 1,. . . ,7} and let (A( = 3. Let there be assigned weights 
wi to the individuals as follows: wi = 2, wi = 1 for i =2,. . . ,7. For S c N, 
denote W(S) =Cips wi. Define 5@(x) = {Sc N: w(S)? 3) for all xe A. This is a 
non-weak MCFG that satisfies conditions B and l\&,,D(k), as one can 
easily check. 

We proceed now to discuss the relation between our work and other 
papers in the area. The most directly related paper is Ishikawa and 
Nakamura (1980), whose results we reviewed in section 2. They dealt with 
the same problem as we do here. By the above discussion it should be clear 
that their necessary conditions (A and B) are much weaker than our 
conditions B and /jr:: D(k); they did not go beyond core stability. Their 
suff&ient conditions (B and C) are stronger than our conditions B and 
AT:: L)(k). Indeed, f rom a counterexample to condition D(k) one can 
construct a counterexample to condition C by extracting one individual out 
of each of the k minimal blocking coalitions9 and collecting them in So. To 
see that condition C is strictly stronger than l\;Z:D(k), one can check that 
the MCFG of Example 4.2 violates condition C. 

Two papers, Oren (1981) and Polishchuk (1978), dealt with the symmetric 
case where the collections a(x) are defined by numbers b, (see Example 4.1). 
While our conditions B and &Z$D(k) applied to the symmetric case yield 
the equality xxsA x b =n + 1, Oren proved only that the inequalities 

9To be able to do this, we must know that d, does not belong to any of the collections a(x). 
This amounts to assuming $hT)= A, an assumption that Ishikawa and Nakamura made 
throughout. 
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0S.c XEA b,-(n+ 1) sm-2 are necessary for the existence of a strong repres- 
entation. Then, assuming that in fact 1 XEA b,= n+ 1 (an assumption that is 
now justified, by our results, for the non-weak case), he gave a characteriza- 
tion of the class of all strong representations. Polishchuk did prove that 
xxeA b,=n+ 1 must hold if there exists a strong representation and 
min xeA b&2, but he did so only in the special case m= 3. Thus we see that 
even for the relatively simple symmetric case, previously known necessary 
conditions are much weaker than those found generally in this paper. 

We shall show now how our result can be applied to solve the problem of 
the existence of strong representations of simple games. This problem was 
introduced and analysed in Peleg (1978b), and we recall here the definitions. 

Definition 4.3. A simple game is a pair G =(N, YV), where YJY c 2N is the 
collection of winning coalitions, satisfying, for all S, T ~2~, [SEW and 
SCT]=TEW. G is weak if nSEIY S# 4, non-weak otherwise. G is sym- 
metric if there exists a positive integer w such that, for all SE 2N, 
[SE %‘“olSlz w]. In this case, we shall write G =(n, w), where n = INI. 

Definition 4.4. Let F be a SCF. The simple game associated with F, G* = 
G*(F) = (N, W*), is defined by [S E-W* OS is effective for every XEA (with 
respect to F)], for all SEAR. 

Definition 4.5. Let G=(N, V) be a simple game. A SCF F: LN+A is a 
strong representation of G of order m if (i) F is exactly and strongly 
consistent, (ii) G*(F) = G, and (iii) (Al = m. 

As G*(F) contains less information about F than u*(F), in looking for a 
strong representation of a simple game we have more degrees of freedom 
than in doing so for a characteristic function game. The relationship between 
the two problems is clarified by the following definition and remark: 

Definition 4.6. Let G = (N, ?V) be a simple game and let o: 2N-+B(A) be a 
MCFG. We say that G is induced by v if YV= {S: v(S) = A}. For a simple 
game G=(N, ^llr) and a set of alternatives A, $JG) denotes the collection of 
all MCFGs u:~~-+P(A) that induce G. 

Remark 4.7. Let G be a simple game and let m be an integer 22. Let A be 
a set of m alternatives. Then G has a strong representation of order m if and 
only if there exists a MCFG UE~~(G) that has a strong representation. 

This remark follows directly from the definitions, since for every F, G*(F) 
is induced by u*(F). Using Theorem 3.2, we obtain the following: 
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Corollary 4.8. Let G be a non-weak simple game and let m be an integer 22. 
Let A be a set of m alternatives. Then G has a strong representation of order 
m if and only if there exists a MCFG VE$~(G) that satisfies conditions B and 
/“$Jz; D(k). 

While this corollary gives an answer to the question of the existence of a 
strong representation for every non-weak G and every rnz 2, this is an 
indirect answer, as it involves the veri~cation of conditions for various 
MCFGs rather than for G itself. It is possible to translate this indirect 
answer into a direct one, but this requires a lot more work; we do this in a 
separate paper [Holzman (1984)]. However, in the special case of symmetric 
simple games it is easy to perform this translation, so we shall do it here. 

Theorem 4.9. Let G=(n, w) be a symmetric simple game with w < n, and let m 
be an integer 22. Then G has a strong representation of order m if and only 
if ms(n+l)/(n-w+l). 

Proof: As the assumption w <n expresses non-weakness in the symmetric 
case, Corollary 4.8 applies here. Let A be a set of m alternatives. Denote 
b = n - w + 1. We have to show that there exists a MCFG v~fl~(G) that 
satisfies conditions B and ,f$‘$ D(k) if and only if mb 5 n + 1. 

If mb 5 n -I- 1, we can assign integers b, to x E A in such a way that xx.A 6, = 
n+l and min XEA b,= b. Then the MCFG constructed as in Example 4.1 
satisfies the requirements. To prove the converse, assume that mb & n + 2. We 
can construct a partition S,, . . . , S, of N where ISi( 5 b for i = 1,. . . , m and the 
inequality is strict in at least two places. For any v E yA(G) and any x E A, no 
coalition with less than b members belongs to B(x). Indeed, if ITI <b then 
N - TE YY = (S: u(S) = A>, hence by the de~nition of the blocking form of o 
7’+&?(x). Therefore, for any v E$~(G), for an arbitrary enumeration x1,. . . ,x, 
of A and for the above partition S,,. . . ,S, of N, we have for all i either 
Si $g(xi) or Si E$,,(x~) with the former being the case in at least two places. 
This being a violation of some D(k), 02 ks m - 2, we conclude that no 
u E yA(G) satisfies the conditions. 0 

We recall that Peleg (1978b) proved the ‘if’ part of Theorem 4.9. In the 
opposite direction, however, he proved only that the inequality mS(n- l)/ 
(n-w) must hold when G has a strong representation of order m. This upper 
bound was obtained by the argument that a strong representation requires 
core stability. Thus the gap between the exact result of Theorem 4.9 and 
Peleg’s upper bound reflects again the fact that a strong representation 
requires more than core stability. This gap may be sizeable: if G =(lO, 9) then 
the interval where strong representations exist is 25 rns 5, while Peleg’s 
upper bound is 9. 
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Finally, a remark about the assumption of non-weakness. Peleg (1978b) 
proved that a weak simple game has a strong representation of every order 
mzZ. This leads us to two observations. First, the application of the 
characterization obtained in Theorem 3.2 affords a full solution of the 
problem of the existence of strong representations for simple games, because 
the weak case has already been solved. Second, the non-weakness assumption 
in Theorem 3.2 cannot be dispensed with. Indeed, if Theorem 3.2 were true 
without this assumption then Theorem 4.9 would be true even when w=n, 
which would contradict Peleg’s result for weak simple games. 

From a no~ative point of view, the non-weakness assumption seems 
justifiable for large societies (one individual should not be in a position to 
overrule the common wish of everyone else). When the society is small, 
however, non-weakness is normatively less persuasive and formally incom- 
patible with strategical stability. Indeed, core stability requires that condition 
A be satisfied, which can happen in the non-weak case only if n> m (more 
individuals than alternatives); strong representation requires in the non-weak 
case n>2m-2 [as follows from A::: D(k)]. This suggests an investigation 
of strong representations of weak MCFGs, which is not undertaken in this 
paper. 

References 
Abdou, J., 1981, Stabilitb et maximalite de la fonction veto, Thesis (CEREMADE, University of 

Paris IX). 
Arrow, K.J., 1963, Social choice and individual values (Wiley, New York). 
Holzman, R., 1984, The capacity of a committee, Research memo. no. 61 (The Hebrew 

University of Jerusalem, Jerusalem) forthcoming in Mathematical Social Sciences 13. 
Ishikawa, S. and K. Nakamura, 1980, Representations of characteristic function games by social 

choice functions, International Journal of Game Theory 9, 191-199. 
Moulin, H., 1981, The proportional veto principle, Review of Economic Studies 48, 407416. 
Oren, I., 1981, The structure of exactly strongly consistent social choice functions, Journal of 

Mathemati~l Economics 8,207-220. 
Peleg, B., 1978a, Consistent voting systems, Econometrica 46, 153-161. 
Peleg, B., 1978b, Representation of simple games by social choice functions, International 

Journal of Game Theory 7,81-94. 
Peleg, B., 1983, Core stability and duality of effectivity functions, Report no. 5/83 (The Hebrew 

University of Jerusalem, Jerusalem). 
Peleg, B., 1984, Game theoretic analysis of voting in committees (Cambridge University Press, 

Cambridge). 
Polishchuk, I., 1978, Monotonicity and uniqueness of consistent voting systems, Research memo. 

no. 32 (The Hebrew University of Jerusalem, Jerusalem). 


