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Glossary

Bayesian game: A model for representing a game with incomplete information in which the
players have beliefs about the state of the world which they update upon receiving their private
information.
Bayesian Nash equilibrium: A strategy profile in a Bayesian game having the property that
every player, given any of his possible types, chooses an action that maximizes his expected
payoff in response to the other players’ strategies.
Behavior strategy: A strategy in which the player’s choices during the play of the game are
allowed to be random but must be mutually independent.
Complete information: Qualifies a situation where the description of the game is common
knowledge among the players.
Extensive form: A model for representing a game which includes a complete account of the
decisions to be made by the players, the order in which they occur, the information available to
the players at each stage, the distributions of the chance events, and the payoffs to the players
for any possible play.
Game-tree: A rooted tree used in an extensive form representation of a game.
Information set: A set of decision nodes of a player which are indistinguishable to him at
the stage when he has to make a choice at any one of them.
Maximin/minimax strategy: A strategy that is a player’s best choice from the point of
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view of the worst-case scenario.
Mixed extension: A game obtained from another game by allowing the players to use mixed
strategies.
Mixed strategy: A strategy that consists of choosing at random, according to some distribu-
tion, one of the player’s (pure) strategies.
Nash equilibrium: A strategy profile having the property that every player’s strategy maxi-
mizes his payoff given the other players’ strategies.
Perfect information: Qualifies a situation where every time a player has to make a decision
he is fully aware of all the decisions and all the outcomes of chance moves that took place in
the course of the play up to that stage.
Perfect recall: A weaker requirement than perfect information, where a player needs only to
be fully aware of his own previous decisions.
State of the world: A full description of the parameters of the game and the beliefs of the
players in a situation of incomplete information.
Strategic form: An abstract model for representing a game which specifies only the players’
possible strategies and the payoffs they obtain for each strategy profile.
Strategy: A way for a player to play a game. In the case of a game in extensive form, it
specifies the player’s choices at each of his information sets.
Strategy profile: A choice of strategies, one for each player.
Subgame perfect equilibrium: A Nash equilibrium of a game in extensive form that remains
a Nash equilibrium when restricted to any subgame.
Type: A full description of the attributes of a player, including his beliefs about the parameters
of the game and the other players’ beliefs, in a situation of incomplete information.
Value: In a zero-sum game, a number v such that player 1 can guarantee that he will receive
at least v and player 2 can guarantee that he will pay at most v.
Winning strategy: In a chess-like game, a strategy that guarantees that the player who uses
it will win.
Zero-sum game: A two-person game in which the two players’ payoffs always add up to zero.

Summary

This article introduces the basic models and ideas of the theory of non-cooperative games.
We begin by treating games in the usual sense of the word, such as chess. We show that for
a certain class of games, the outcome is completely determined if the players play optimally.
Then we indicate how the descriptive framework of game theory, including the extensive and
strategic form representations, can serve to model interactions between agents which do not
qualify as games in the usual sense. For zero-sum games, where one player’s gain is the other’s
loss, we introduce the concept of value, which is the expected outcome when the game is
played optimally. If players are allowed to use mixed (i.e., randomized) strategies, the minimax
theorem asserts that the value exists. Non-zero-sum games are more complex, and we cannot
hope to pinpoint their expected outcome as in the zero-sum case. The central concept for these
games is that of a Nash equilibrium, which is a choice of strategies for the players having the
property that every player does best by playing his strategy if the others do the same. Nash’s
theorem guarantees the existence of a Nash equilibrium in mixed strategies. Finally, we turn to
the modeling of incomplete information, which occurs when the players lack information about
the game they are facing. We present the concepts of a ”state of the world” and the ”type” of
a player, and show how they are incorporated in the Bayesian game model.
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1.Introduction

Non-cooperative game theory studies situations in which a number of agents are involved in an
interactive process whose outcome is determined by the agents’ individual decisions (sometimes
in conjunction with chance) and affects the well-being of each agent in a possibly different way.
The most obvious examples of such situations are parlor games, and the terminology we use has
its roots in this area: the entire situation is called a game, the agents are called players, their
acts are called moves, their overall plans of action are called strategies, and their evaluations of
the outcome are called payoffs. But the range of situations that we have in mind is much wider,
and includes interactions in areas such as economics, politics, biology, computing, etc. Thus,
the significance of non-cooperative game theory to the understanding of social and natural
phenomena is far bigger than its name may suggest.

The basic premise of our analysis is that players act rationally, meaning first and foremost that
they strive to maximize their payoffs. However, since their payoffs are affected not only by their
own decisions but also by the other players’ decisions, they must reason about the other players’
reasoning, and in doing so they take into account that the other players, too, act rationally.

The qualification ”non-cooperative” refers to the assumption that players make their decisions
individually, and are not allowed to forge binding agreements with other players that stipulate
the actions to be taken by the parties to the agreement. The players may be allowed to
communicate with each other prior to the play of the game and discuss joint plans of action.
But during the play of the game they act as autonomous decision makers, and as such they will
follow previously made joint plans only if doing so is rational for them.

The theory of non-cooperative games comprises three main ingredients. The first of these is
the development of formal models of non-cooperative games that create unified frameworks
for representing games in a manner that lends itself to formal mathematical analysis. The
second ingredient is the formulation of concepts that capture the idea of rational behavior in
those models. The main such concept is that of equilibrium. The third ingredient is the use
of mathematical tools in order to prove meaningful statements about those concepts, such as
existence and characterizations of equilibrium.

In any concrete application of the theory, the first step is to represent the situation at hand by
one of the available formal models. Because real-life situations are typically very complex and
not totally structured, it is often impossible and/or unhelpful to incorporate all the elements of
the situation in the formal model. Therefore, this step requires judicious decisions identifying
those important features that must be modeled. Once the model is constructed, its analysis
is carried out based on the appropriate concept of equilibrium, drawing on general results
of non-cooperative game theory or, as the case may be, exploiting attributes of the specific
application. This analysis yields conclusions which may then be reformulated in terms of the
real-life situation, providing insights into, or predictions about, the behavior of the agents and
the long-term steady states of the system being investigated.

Another sort of application is sometimes called game theoretic engineering. It involves making
recommendations to organizations on how to set up the ”rules of the game” so that the rational
behavior of the agents will lead to results that are desirable from the organization’s point of
view. Examples include the revision of electoral systems, the design of auctions, the creation
of markets for emission permits as a means to efficiently control pollution, etc. (see Mechanism

Theory). This sort of application seems to be gaining more and more recognition lately.
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This article is organized according to several standard criteria for classifying non-cooperative
games: how the payoffs of the players are related, the presence or the absence of chance, the
nature of the information that the players have.

We do not attempt to present here a comprehensive survey of non-cooperative game theory.
The omission of certain parts of the theory, even important ones, is unavoidable in such an
article. Some of these areas are covered in other articles within this topic. What we try to do
here is offer a gentle introduction to a small number of basic models, ideas and concepts.

2.Chess-Like Games

2.1.The Description of the Game

The game of chess is a prime example of a class of games that we call chess-like games. We
first give a verbal description of what we mean by a chess-like game.

In such a game there are two players who take turns making moves. One of the players
is designated as the one who starts, we call this player White and the other player Black.
Whenever a player chooses a move, he is perfectly informed of all moves made prior to that
stage. The play of the game is fully determined by the players’ choices, that is, it does not
involve any chance. For every initial sequence of moves made alternatingly by the two players,
the rules of the game determine whether the player whose turn it is to play should choose a
move—in which case they also determine what his legal moves are—or whether the play has
ended—in which case they also determine the outcome: a win for White, a win for Black, or
a draw. It may be the case that the rules allow for a play consisting of an infinite sequence of
moves, but such infinite plays must also be classified as resulting in one of the three possible
outcomes mentioned above.

Examples of chess-like games are chess, checkers, tic-tac-toe. Note that Kriegspiel (a version of
chess in which a player does not observe his opponent’s moves) is not a chess-like game, due to
the lack of perfect information. Backgammon is not a chess-like game because it involves dice.

We formally describe a chess-like game by means of a rooted tree (T, r), called the game-tree.
Here T is a tree (that is, a connected acyclic graph which may be finite or infinite), and r, the
root, is a designated node of T . We think of T as being oriented away from r. The edges that
fan out from r correspond to the legal moves of White at his first turn. Each of these edges
leads to a new node, and the edges that fan out from this new node correspond to the legal
moves of Black after White chose the specified edge from r as his first move. It goes on like
this: non-terminal nodes whose distance from r is even (respectively odd) are decision nodes
of White (respectively Black), and the edges that fan out correspond to the legal moves of
the respective player given the moves made so far. A maximal branch of (T, r) is a path that
starts at the root r and either ends at a terminal node or is infinite. Every maximal branch
corresponds to a play of the game. (Note the distinction we make between the usage of ”game”
and ”play”. A game is the totality of rules that define it, whereas a play of the game is a
complete account of what happens a particular time when the game is played.) To complete
the formal description of the game, we specify for each maximal branch whether it is a win for
White, a win for Black, or a draw.

The realization that every chess-like game can in principle be represented by a game-tree as
above, even though for most games constructing the actual game-tree is impractical, is an
important conceptual step towards the analysis of such games.
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2.2.The Determinacy of Chess-Like Games

The next important concept is that of a strategy. By a strategy we mean a complete set of
instructions that tell a player what to do in every situation that may arise in the play of the
game in which he is called upon to make a move. In terms of the formal description of a
chess-like game by a game-tree, a strategy of a player is a function σ from the set of his decision
nodes into the set of edges, such that σ(x) is one of the edges that fan out of x.

It is clear from the above that a pair of strategies, σ for White and τ for Black, fully determines
a play of the game, and in particular any such pair (σ, τ) results in a win for White, a win
for Black, or a draw. In effect, the comprehensive definition of the concept of strategy renders
the actual play of the game unnecessary, in principle: We may imagine the players announcing
(simultaneously) their respective strategies to a referee or a machine, who can determine right
away the outcome based on the announced strategies.

A strategy σ of White is a winning strategy, if for every strategy τ of Black, the pair (σ, τ)
results in a win for White. In other words, σ guarantees a win for White. A winning strategy
for Black is defined similarly. A drawing strategy for a player is a strategy that guarantees
at least a draw for that player, that is, using that strategy he will win or draw against any
strategy of his opponent.

The following theorem was discovered by John von Neumann (but is often referred to, wrongly,
as Zermelo’s theorem).

Theorem 1. Let G be a chess-like game in which the length of a play is finitely bounded (i.e.,
there exists M < ∞ such that in every play of the game there are at most M moves). Then
one of the following statements is true:
(a) White has a winning strategy in G.
(b) Black has a winning strategy in G.
(c) Both White and Black have drawing strategies in G.

It is important to understand that Theorem 1 does not merely state the tautological fact that
every play of the game results in one of the three possible outcomes. Rather, the theorem asserts
that every game (as opposed to every play of a game) satisfying the theorem’s assumptions
may be classified as a win for White, a win for Black, or a draw, in the sense that it will always
end that way when played optimally. We refer to this property of a game G as determinacy.

The proof of Theorem 1 proceeds by ”backward induction”. Namely, one classifies every sub-
game starting at a terminal node of the game-tree (this is trivial), then every subgame starting
at a node from which all moves lead to terminal nodes, and so on, working one’s way to the
root of the tree. For every subgame encountered in this process, it is classified as satisfying (a),
(b), or (c), and at the end of the process G itself is classified. Thus, the proof of Theorem 1
is constructive, leading to an algorithm for classifying a game and finding a winning strategy
for the player who has one (or drawing strategies for both players). Nevertheless, for most
real-life games, the computational complexity of constructing the game-tree, let alone running
this algorithm, is much too high. Thus, although Theorem 1 renders the games it applies to
uninteresting, in principle, to players with unbounded computational abilities, in practice the
games still hold interest to humans. The issues related to discovering winning strategies and
the complexity of this task are studied within the field of ”combinatorial games”, which grew
quite independently of the rest of game theory.
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Incidentally, the question of whether or not the game of chess itself satisfies the assumptions
of Theorem 1 depends on a careful scrutiny of the rules of chess regarding, e.g., the repetition
of positions on the board. Assuming an interpretation of the rules that makes the length of a
play of chess finitely bounded, we can conclude from Theorem 1 that chess is either a win for
White, a win for Black, or a draw. But nobody knows which of these it is!

There are results extending Theorem 1 to certain classes of chess-like games with infinite plays.
These results, starting from Gale and Stewart’s theorem on ”open games”, depend on topo-
logical assumptions on the set of maximal branches of the game-tree which constitute a win
for a given player. Using the Axiom of Choice, Gale and Stewart also showed that there exist
infinite chess-like games which are undetermined, that is, for which the conclusion of Theorem
1 is false. This direction of research has revealed strong connections with the foundations of
mathematics, and has grown quite independently of game theory, in the field called ”descriptive
set theory”.

3.Representations of Non-Cooperative Games

3.1.An Informal Description of the Class of Games

The games that we consider here are more general than the chess-like games considered above
in several respects:

• There is a finite number n of players, possibly n > 2.

• The order in which the players are called upon to make a move is arbitrary, and the
identity of the player who has to move at a given stage may depend on the moves made
up to that stage.

• Information may be imperfect, meaning that at the time when a player is called upon
to make a move, he may have only partial information on the moves made prior to that
time. This includes also the possibility of simultaneous moves, which may be represented
as sequential moves with the provision that the player who moves later must do so without
being informed of the choice of the player who moved earlier.

• There may be chance moves, that is, moves not controlled by any player but rather
selected from a set of possible moves according to some probability distribution.

• The outcome associated with any play of the game, rather than being a win for some
player or a draw, is represented by an n-tuple of real numbers (u1, . . . , un), where ui

measures the utility that player i derives from the outcome. This permits to represent
the outcomes of chess, for instance as (1, 0), (0, 1), or ( 1

2
, 1

2
), and also allows for much

more general situations, as we will see below.

This more flexible framework includes a variety of parlor games like Kriegspiel, backgammon,
bridge, poker, monopoly. More importantly, many real-life situations which are not normally
thought of as ”games”, may usefully be modeled as such. Examples include: competition
between firms in an oligopolistic market, campaigns of opposing candidates running for election,
struggle between genes as part of evolution, interaction between processors involved in a parallel
computation, and more.
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There is, however, one important implicit assumption about the games we consider here, the
validity of which must be assessed for any real-life application. This is the assumption of
complete information, meaning that a player knows the entire description of the game, and
moreover he knows that every other player knows the entire description of the game, and
furthermore he knows that every other player knows that every other player knows the entire
description of the game, and so forth. This condition is expressed concisely by saying that the
description of the game is common knowledge.

This concept should be distinguished from the concept of perfect information: while perfect
information pertains to knowledge of what happened in the current play of the game, complete
information pertains to knowledge of the game itself (its rules, the relevant probability distri-
butions, who is informed of what and when, the utilities of the various outcomes to the various
players). For example, bridge players who have mastered the rules of the game are engaged
in a game of complete information which has, however, imperfect information: a player is not
informed of the cards dealt to the other players. In modeling real-life situations, the assump-
tion of complete information is more problematic. We deal with the modeling of incomplete
information in Section 6.

3.2.The Extensive Form

The extensive form representation of a non-cooperative game uses a game-tree as in the case
of chess-like games, but with additional structure. We present the ingredients of this represen-
tation one by one:

• A finite non-empty set of players N . Without loss of generality N = {1, . . . , n}.

• A rooted tree (T, r), where T is a tree with node-set V and edge-set E, and r is a node in
V . The nodes represent positions that may arise in the course of the play, with r being
the initial position. The edges represent moves in the game. We denote by Ex the set of
edges that fan out of node x, that is, the set of possible moves at x.

• An ordered partition (V0, V1, . . . , Vn) of the set of non-terminal nodes in V . For every
i ∈ N , the set Vi consists of the decision nodes of player i. The set V0 contains the nodes
at which the move is selected randomly.

• For every i ∈ N , there is a partition Πi of Vi with the following property: whenever
x, y ∈ I ∈ Πi, we have |Ex| = |Ey|. The sets I ∈ Πi are called information sets of player
i. The interpretation of an information set is the following. Suppose we have x ∈ I ∈ Πi.
When the position x is reached, player i is called upon to choose a move without knowing
that the actual position is x; he is only informed that the current position is an element
of I. In other words, player i can distinguish between his different information sets, but
not between positions in the same information set.

• For every i ∈ N and every I ∈ Πi, there is a set LI of cardinality equal to that of Ex for
every x in I, and a family of bijections lx : Ex → LI , one for each x in I. The role of
the set LI and the bijections lx is to attach a label to every move at every position in the
information set I. This is necessary in order to enable player i to specify a chosen move
at an unknown node within I.

• For every x ∈ V0 there is a probability distribution Px on the set Ex. It is understood
that when the position x is reached, a move in Ex is selected at random according to the
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Figure 1: A two-person game in extensive form

distribution Px, and that the choices at different nodes in V0 are made independently of
each other.

• To every maximal branch of (T, r) there is assigned an n-tuple (u1, . . . , un) ∈ <
n. Here

ui is the utility that player i derives from a play of the game along the given maximal
branch. It is understood that these are von Neumann-Morgenstern utilities, meaning that
the utility derived from a random play with a specified distribution equals the expected
utility according to that distribution. The n-tuples (u1, . . . , un) are called payoff vectors.

A game described as above is called an n-person game in extensive form. It is said to be finite
if the tree T is finite. It is a game with perfect information if all the information sets are
singletons. A weaker property is that of perfect recall. It requires that if two decision nodes x

and y of player i are in the same information set, then the sequences of decisions of player i

himself involved in reaching the two positions x and y must be identical.

It is customary to represent finite games graphically by drawing the game-tree with the following
conventions:

• The players’ names or numbers appear next to their decision nodes.

• Decision nodes belonging to the same information set are encircled together.

• Labels or probabilities attached to moves appear next to the corresponding edges.

• Payoff vectors appear next to the terminal nodes of the corresponding maximal branches.

We illustrate these conventions by depicting an example in Figure 1. The game is verbally
described as follows. First, a lottery takes place. With probability 1

4
, the play ends with payoff
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1 to player 1 and 0 to player 2. With probability 1

4
, the play ends with payoff 0 to player 1 and

2 to player 2. With probability 1

2
, player 1 has to choose between a, b, and c. If player 1 chose

a, player 2 is informed of this and has to choose between d, e, and f , whereupon the play ends
with the payoff vectors indicated in the figure. If player 1 chose b or c, player 2 is informed of
this (but not which one of b, c was chosen) and has to choose between g and h, whereupon the
play ends with the payoff vectors indicated in the figure.

Let G be a game in extensive form. A strategy of player i in G is a function σ defined on the
set Πi of information sets of i, such that for every I ∈ Πi we have σ(I) ∈ LI . When a position
x is reached, satisfying x ∈ I ∈ Πi, the strategy σ dictates that the next move will be the edge
e ∈ Ex for which lx(e) = σ(I). Note, for example, that in the game given in Figure 1, player 1
has three strategies and player 2 has six strategies.

It turns out that it is sometimes beneficial to a player to choose his strategy in a randomized
way. This is a key idea of non-cooperative game theory, which will become clearer in the next
sections. Here we only introduce the necessary terminology. Let G be a game in extensive
form. Let Si be the set of strategies of player i in G. For the sake of clarity, the members of Si

will be called pure strategies.

A mixed strategy of player i in G is a probability distribution on the set Si. If player i uses a
mixed strategy, this means that he performs a lottery before the play of the game, the outcome
of which determines which of his pure strategies he will play. The lotteries of different players
are performed independently of each other.

A behavior strategy of player i in G is a function σ defined on the set Πi of information sets
of i, which assigns to every I ∈ Πi a probability distribution σ(I) on the set LI . If player i

uses a behavior strategy, this means that whenever he is called upon to make a decision in the
course of the play, he performs a lottery to determine his choice at that stage. The lotteries
performed at different stages, as well as those performed by different players, are independent
of each other.

Under the natural embeddings, the set of pure strategies of a player is contained in the set of
his behavior strategies, which in turn is contained in the set of his mixed strategies. In general,
the set of mixed strategies is larger than the set of behavior strategies, as it allows a player
to correlate his choices at different information sets. However, in games with perfect recall,
Harold Kuhn showed that there is no loss of generality in restricting players to use behavior
strategies instead of mixed strategies.

An n-tuple of strategies, one for each player in G, is called a strategy profile. It is clear from the
above that a strategy profile (pure, mixed, or behavior) determines a probability distribution on
the set of plays of the game. (Note that even in the case of pure strategies, the resulting play is
still in general random, due to the existence of chance moves.) This allows us to associate with
every strategy profile a payoff vector which is the expectation, according to the probability
distribution induced on the plays, of the payoff vectors assigned to the various plays of the
game.

3.3.The Strategic Form

The observation we just made suggests a more compact representation of a game, which focuses
on the mapping from strategy profiles to payoff vectors. This is called the strategic form
representation of the game.

9



An n-person game in strategic form (the term ”normal form” is also used in lieu of ”strategic
form”) is specified by the following ingredients:

• A finite non-empty set of players N . Without loss of generality N = {1, . . . , n}.

• For every i ∈ N , a non-empty set Si of strategies of player i is given.

• For every i ∈ N , a real-valued payoff function πi : S1 × · · · × Sn → < of player i is given.

The game is said to be finite if the strategy sets Si are finite. In the case of a finite two-person
game, it is customary to represent it schematically by a table in which the rows correspond to
the strategies in S1, the columns correspond to the strategies in S2, and the box of the table in
position (σ, τ) contains the two numbers π1(σ, τ), π2(σ, τ) in this order.

We can pass from an extensive form representation to a strategic form representation of the
same game by letting Si be the set of pure strategies of player i, and defining πi at a strategy
profile to be the i-th coordinate of the expected payoff vector associated with that strategy
profile. We illustrate this in Table 1 by representing the game given in Figure 1.
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Table 1: The strategic form of the game in Figure 1

Passing from the extensive form to the strategic form entails a loss of information: we cannot
reconstruct the extensive form from the strategic form. Nevertheless, for many purposes the
strategic form is all we need to know about the game, and is more convenient to work with.

We observe, in particular, that while the concept of a behavior strategy cannot be captured
by the strategic form, the concept of a mixed strategy can be defined directly for the strategic
form: it is a probability distribution on the set Si of pure strategies of player i. (In the case of
a finite two-person game, we can visualize a mixed strategy of player 1 as a convex combination
of rows, and a mixed strategy of player 2 as a convex combination of columns.) Thus, given a
game G in strategic form with strategy sets Si and payoff functions πi, we can construct from
it a new game G∗ in strategic form, called the mixed extension of G. It has the same set of
players as G, player i’s strategy set S∗

i is the set of probability distributions on the set Si, and
player i’s payoff function π∗

i is the multilinear extension of the function πi (that is, we extend
πi by expectation).
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It is often the case that a game is given only in strategic form. The extensive form of the game is
either unknown or deemed irrelevant. In this case, the concept of a strategy becomes abstract,
not related to the course of action in an interactive process. Rather, we envision the play of
the game as consisting of a single stage in which the players simultaneously select strategies
from their respective strategy sets. Once they have done so, their payoffs are determined by
the payoff functions applied to the profile of selected strategies.

4.Two-Person Zero-Sum Games

4.1.The Concept of Value

A two-person zero-sum game is a game with two players in which the sum of the players’
payoffs is identically zero. In other words, one player’s gain is always the other player’s loss;
the interests of the two players are exactly opposed.

We may consider a zero-sum game in either of the two forms (extensive or strategic) presented
in Section 3. In strategic form, it is customary to write a zero-sum game as G = (S, T, π), with
the understanding that S and T are player 1 and 2’s strategy sets, respectively, and π, −π are
their respective payoff functions. Likewise, in the tabular representation (of a finite two-person
zero-sum game) it suffices to write just one number, the payoff to player 1, in every box of
the table. That is why these games are also called ”matrix games”. In such a game, player 1
chooses a row and tries to make the payoff as high as possible, while player 2 chooses a column
and tries to make the payoff as low as possible (because his actual payoff is the negative of the
entry in the table). Accordingly, player 1 is also referred to as the row player or the maximizer;
player 2 is the column player or the minimizer.

8 3

1 5

Table 2: A two-person zero-sum game

How should players engaged in a zero-sum game choose their strategies? Consider for example
the game given in Table 2. Player 1 may argue as follows: ”If I choose the first row, the worst
that can happen is that I get 3. If I choose the second row, the worst that can happen is
that I get 1. Hence I should choose the first row and thereby guarantee that I get at least
3.” Similarly, player 2 may argue as follows: ”If I choose the first column, the worst that can
happen is that I pay 8. If I choose the second column, the worst that can happen is that I pay
5. Hence I should choose the second column and thereby guarantee that I do not have to pay
more than 5.”

For a general zero-sum game (S, T, π), this logic suggests that a prudent player 1 should choose
a strategy σ in S that attains the maximum in the expression

v1 = maxσ∈S minτ∈T π(σ, τ). (1)
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Such a strategy of player 1 is called a maximin strategy. (We assume that the minima and the
maximum are attained. This is clearly true if the game is finite.) Similarly, a prudent player 2
should choose a strategy τ in T that attains the minimum in the expression

v2 = minτ∈T maxσ∈S π(σ, τ). (2)

Such a strategy of player 2 is called a minimax strategy.

The quantities v1 and v2 are the players’ optimal confidence levels. Namely, v1 is the highest
number α such that player 1 is able to guarantee that the payoff will be at least α regardless
of player 2’s choice of strategy, and similarly v2 is the lowest number β such that player 2 is
able to guarantee that the payoff (to player 1) will be at most β regardless of player 1’s choice
of strategy.

In the above example (the game given in Table 2) we had v1 = 3 and v2 = 5. In general, it is
easy to see that we always have v1 ≤ v2. The case when v1 = v2 is of particular interest, and
we proceed to analyze this case.

Let G be a zero-sum game, and let v be a real number. We say that v is a value of G, if
player 1 has a strategy that guarantees that the payoff will be at least v, and player 2 has a
strategy that guarantees that the payoff (to player 1) will be at most v. The following facts are
straightforward to check:

• If G has a value then it is unique.

• G has a value if and only if v1 = v2; in this case v = v1 = v2.

• Assume G is finite, and consider its tabular representation. Then G has a value if and
only if the table has a saddle point, that is, an entry which is the smallest in its row and
the largest in its column (possibly with ties); in this case, that entry is the value of G.
We illustrate this in Table 3.

1 3 −3 1 −2

4 2 3 2 5

2 0 1 −1 −1

Table 3: A two-person zero-sum game with a value

If G is a zero-sum game that has a value v, then the argument for playing the maximin/minimax
strategies is very persuasive. Consider the situation from player 1’s point of view. By using a
maximin strategy, he guarantees a payoff of at least v, without making any assumptions about
his opponent’s behavior. If he does attempt to outguess his opponent’s choice of strategy, a
reasonable assumption is that the opponent, arguing along similar lines, will use a minimax
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strategy. Basing his choice on this assumption, player 1 sees that he cannot achieve anything
higher than v, and choosing a maximin strategy gets him v. Thus, playing a maximin strategy
is indicated both from a conservative, insurance seeking, perspective, and as a best response to
the opponent’s anticipated choice. A similar analysis supports the play of a minimax strategy
by player 2.

It follows that when a game G with value v is played by two rational players, the expected
outcome is v. This explains the use of the word ”value” in this context. The number v is the
answer to the question: How much is the privilege to play the game G worth to player 1?

The situation is more complicated when the game in question does not have a value, that is,
when v1 < v2. Let us return to the example given in Table 2. We saw that the first row is the
maximin strategy and the second column is the minimax strategy. Now, if player 1 anticipates
the choice of the second column by his opponent, he concludes that it is better for him to choose
the second row, since 5 > 3. However, if player 2 anticipates that, he concludes that it is better
for him to choose the first column, since 1 < 5. This anticipatory logic leads to a vicious cycle,
and it is not clear what the players should do.

It is interesting to note that Theorem 1 about chess-like games can be rephrased using the value
terminology. We may view a chess-like game as a zero-sum game by assigning a payoff of 1 for
a win, −1 for a loss, and 0 for a draw. Then it is easy to see that statements (a), (b), and (c) in
the theorem correspond to the value being 1, −1, and 0, respectively. The theorem’s assertion
that one of (a), (b), and (c) must be true is equivalent to saying that the game has a value. By
imitating the proof of Theorem 1, it can be shown that every finite two-person zero-sum game
in extensive form with perfect information has a value.

This is an instance where the different roles of the two representations of a game—extensive and
strategic—are reflected. The concept of a value was defined directly in terms of the strategic
form. Yet, the perfect information feature, which can only be captured by the extensive form,
is essential in proving that a game has a value.

4.2.The Minimax Theorem

Let us return once again to the game given in Table 2. We found that the optimal confidence
levels of players 1 and 2 are 3 and 5, respectively. This was the case when we considered pure
strategies only. Can the players do better by using mixed strategies?

Consider first player 1. Suppose that he flips a fair coin to determine if he will play the first
or the second row. If player 2 chooses the first column, player 1 gets an expected payoff of
1

2
· 8 + 1

2
· 1 = 9

2
. If player 2 chooses the second column, player 1 gets an expected payoff of

1

2
·3+ 1

2
·5 = 4. In any case, player 1’s expected payoff from his coin flipping strategy is at least

4. True, he will not get at least 4 every time the game is played, but on average he will get
at least 4 regardless of what his opponent does (or whether his opponent is also randomizing).
Even if the opponent finds out about player 1’s coin flipping strategy, he cannot react to that in
a way that drives the expected payoff below 4. So the coin flipping strategy achieves for player
1 a confidence level of 4, which is higher than his optimal confidence level of 3 when using a
pure strategy. Actually, player 1 can do even better by a finer tuning of the probabilities. If
he plays the first row with probability 4

9
and the second with probability 5

9
, he guarantees an

expected payoff of 37

9
.
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Next, consider player 2. If he plays the first column with probability 2

9
and the second with

probability 7

9
, he guarantees an expected payoff of 37

9
, regardless of player 1’s behavior. This is

better than his optimal confidence level of 5 when using a pure strategy.

Let us observe what happened in this example. By introducing mixed strategies, both players
improved on their optimal confidence levels in pure strategies. Moreover, we saw that in the
mixed extension of the game, each player can guarantee a payoff of 37

9
by using a suitable mixed

strategy. So, whereas the original game did not have a value, the mixed extension does: its value
is 37

9
. The corresponding mixed maximin strategy for player 1 is ( 4

9
, 5

9
), and the corresponding

mixed minimax strategy for player 2 is ( 2

9
, 7

9
). The vicious cycle in the players reasoning that

was pointed out in the discussion above disappears when mixed strategies are allowed. As in
any game that possesses a value, the argument for using the mixed maximin/minimax strategies
in the mixed extension is a compelling one. We can safely predict that if the game is played by
rational players who are allowed to randomize, the expected payoff will be 37

9
(or, put otherwise,

if the game is played many times, the average payoff will approach 37

9
).

It was probably Émile Borel who first realized the effect of introducing mixed strategies. But
John von Neumann succeeded to prove that this effect, as described in the analysis of the
example above, holds in full generality. This is his celebrated minimax theorem.

Theorem 2. Let G = (S, T, π) be a finite two-person zero-sum game in strategic form. Let
G∗ = (S∗, T ∗, π∗) be the mixed extension of G. Then G∗ has a value, or equivalently,

maxσ∈S∗ minτ∈T ∗ π∗(σ, τ) = minτ∈T ∗ maxσ∈S∗ π
∗(σ, τ). (3)

The minimax theorem is closely related to the duality theorem of linear programming. The
two theorems are equivalent, in the sense that each one of them can be reduced to the other by
an easy transformation. A direct proof of either theorem is based on the separation properties
of convex polyhedra.

The connection to linear programming can be exploited for computational purposes. In or-
der to compute the value of a given finite game in mixed strategies and to find mixed max-
imin/minimax strategies, one may use any algorithm for solving linear programs. In the special
case when one of the players has only two pure strategies, an easy graphical method of solution
is available.

Quite separately from its game theoretic meaning, the minimax theorem may be construed
as asserting the equality of the maxmin and the minmax for a bilinear form defined on the
product of two simplices. Attempts to identify weaker conditions on the two spaces and/or on
the function that suffice for the equality to hold have led to many generalizations and variants,
with applications both in game theory and outside it.

5.Non-Zero-Sum Games

5.1.A Few Instructive Examples

In zero-sum games the interests of the two players are diametrically opposed. This is no longer
the case for general non-cooperative games, and many interest structures are possible. We
illustrate this with a few classical examples.
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1, 1 0, 0

0, 0 1, 1

Table 4: A pure coordination game

Pure coordination games are the exact opposite of zero-sum games, in that the interests of the
players coincide. A simple example is given in Table 4. A good way to think about this example
is to imagine that the two players are drivers heading towards each other on a two-way road.
Each of them has two available strategies: driving on the right or driving on the left. If both
choose the right side or both choose the left side, all goes well and they get a payoff of 1 each.
But if one of them chooses the right side and the other the left side, a collision results and the
payoffs are 0 to both.

It is quite clear that the worst case analysis on which we based the reasoning of players in
zero-sum games does not make sense here. Why should a player assume that the worst thing
to him will happen, when the other player’s interests are identical to his own? The only issue
in this pure coordination game is to devise a mechanism for coordinating the two players’
choices, so that they will end up getting the (1, 1) payoffs. In real life, this coordination is
achieved through the common knowledge of the law that stipulates driving on the right side
(in most countries) or on the left side (in some countries). Note that this law does not require
enforcement: once it becomes common knowledge, it is in the players’ best interest to obey it.
This observation is important, because the unavailability of enforcement mechanisms is a basic
premise of non-cooperative game theory.

2, 1 0, 0

0, 0 1, 2

Table 5: The battle of the sexes

Our next example is known as the ”battle of the sexes”. It is given in Table 5. The story that
goes with this game is about a man and a woman who face a decision on where to spend the
evening: the boxing arena or the concert hall. Quite stereotypically, the man prefers boxing
while the woman prefers the concert, but both prefer spending the evening together to being
apart. Each of them assigns a payoff of 2 to going together to the preferred event, 1 to going
together to the other event, and 0 to being apart.

This game displays a combination of common interests (going to the same place) and opposing
interests (concerning the choice of place). As in the previous example, it seems desirable to
devise a procedure that will make sure that the two players achieve the (2, 1) or (1, 2) payoffs.
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Each of the two possible agreements—going to the boxing arena or going to the concert hall—is
self-enforcing in the sense that once it is reached, it is in the players’ best interest to keep it.
But in this example, in addition to the coordination issue, there is a bargaining issue: which of
the two agreements will be reached?

Equity considerations seem to suggest a compromise that would give each player a payoff
of 3

2
. This may be achieved in a number of ways: choosing an agreement by a coin toss,

alternating between agreements each time the game is played, or making the more satisfied
player compensate the other one. However, none of these arrangements is an option in our
framework, where the game is non-cooperative and is played just once. Observe, in particular,
that mixed strategies cannot achieve the ( 3

2
, 3

2
) payoff vector, because no pair of mixed strategies

yields a probability of 1

2
each to the (2, 1) and (1, 2) outcomes. The point here is that mixed

strategies allow each player to perform an independent lottery in order to determine his choice
of strategy, but they do not allow the players to correlate their random choices.

2, 2 0, 3

3, 0 1, 1

Table 6: The prisoner’s dilemma

Our third example is the ”prisoner’s dilemma”, perhaps the most famous example in game
theory. It is given in Table 6. Here, the story is about two suspects who are accused by the
police of having committed a crime together. Each of them has the option to deny the charges
or to confess and incriminate the other. If both deny the charges then for lack of evidence they
will not be brought to justice for this crime, but they will be tried and convicted for a minor
offense, which results in a payoff of 2 to each of them. If both confess, they will be convicted for
the crime, but their sentence will be lenient in view of the confession—this results in a payoff
of 1 to each of them. If one of them confesses and incriminates the other (who denies) then,
in exchange for giving state’s evidence against the other suspect, he will not be indicted. His
payoff in this case is 3, while the other gets 0 (corresponding to the maximum prison sentence).

When a player in this game weighs his options, he realizes that regardless of whether the other
player denies or confesses, he is better off confessing. Indeed, 3 > 2 and 1 > 0. (We express
this fact by saying that confessing is a dominant strategy, that is, for any given strategy of the
opponent, this strategy yields a higher payoff than the alternative strategy.) Thus, rational
considerations lead both players to confess, thereby obtaining a payoff of 1 each. This result
seems paradoxical, since they could both get 2 by denying the charges. If they could sign a
binding agreement committing them to deny the charges, they would be well advised to do
so. However, such an agreement is not self-enforcing: the players have incentives to breach it.
Therefore, in the absence of enforcement possibilities, this agreement cannot be sustained and
the players will end up with a payoff of 1 each. Note that the police does not have to isolate
the two suspects in order to induce confessions. Even if they are allowed to communicate and
coordinate their actions, they may promise each other to stick together, but at the end of the
day their interests will lead them to confess.
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Attempts to understand this paradoxical conclusion and reconcile it with empirical evidence
have generated a significant body of research in game theory. The most important idea is that
of repeated games: if the players envision the game being played repeatedly an infinite number
of times, it may become rational for them to play cooperatively (i.e., to deny the charges every
time), because a player who deviates from this behavior can be punished by the other player
in a tit-for-tat fashion (see Stochastic and Repeated Games).

Finally, it should be emphasized that the prisoner’s dilemma plays an important role in game
theory not because of the peculiar story that gave it its name, but because it reflects a theme
which is common to many real-life conflict situations. Examples include price wars, arms races,
pollution effects, and more. In all these examples, everybody would be happier if everybody
behaved cooperatively, but the individual incentives lead the players away from that behavior.

5.2.The Concept of Nash Equilibrium

Let G = (S1, S2, . . . , Sn, π1, π2, . . . , πn) be a game in strategic form. Here n is the number of
players, Si is player i’s set of strategies, and πi is player i’s payoff function. A strategy profile
(σ1, σ2, . . . , σn) is a Nash equilibrium point (or simply an equilibrium) of G, if for every player
i and every strategy σi ∈ Si, we have

πi(σ1, . . . , σi−1, σi, σi+1, . . . , σn) ≤ πi(σ1, . . . , σi−1, σi, σi+1, . . . , σn). (4)

In words, an equilibrium has the property that no player can gain by a unilateral deviation
from it. Put otherwise, if a player assumes that the other players behave as prescribed in the
equilibrium, it is in his best interest to do so himself.

The notion of equilibrium, introduced by John Nash, is a fundamental concept in non-cooperative
game theory. It embodies the idea of a self-enforcing agreement between players. In a non-
cooperative framework, where players act according to their individual interests and binding
agreements are not available, only Nash equilibria can be sustained.

Let us identify the equilibrium points in the three examples of the previous subsection.

• In the pure coordination game of Table 4, there are two equilibrium points. In one of
them, both players drive on the right; in the other, both drive on the left. The mixed
extension of this game has one additional equilibrium, in which both players toss fair
coins to choose a side. The payoff vector associated with this (rather silly) equilibrium is
(1

2
, 1

2
).

• In the battle of the sexes (Table 5) there are two equilibrium points. In one of them,
both players go to the boxing arena; in the other, both go to the concert hall. The mixed
extension of this game has one additional equilibrium, in which each player goes to the
preferred event with probability 2

3
and to the other event with probability 1

3
. The payoff

vector associated with this equilibrium is ( 2

3
, 2

3
).

• In the prisoner’s dilemma (Table 6) there is a unique equilibrium point in which both
players confess. The same is true for the mixed extension.

The concept of Nash equilibrium is a static one. It tells us if a given strategy profile represents
a viable agreement, but it does not address the question of dynamics: how will that agreement
be reached, and what will determine which one of several equilibria of the same game will be
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reached? These issues are addressed by the theory of learning in games (see Evolution and

Learning in Games).

When applied to the special class of two-person zero-sum games, the concept of Nash equi-
librium agrees with the maximin/minimax analysis. More precisely, if G = (S1, S2, π1, π2) is
a zero-sum game then a strategy profile (σ1, σ2) is an equilibrium of G if and only if σ1 is a
maximin strategy of player 1, σ2 is a minimax strategy of player 2, and π1(σ1, σ2) is the value
of G. Note that, of the two properties of maximin/minimax strategies in zero-sum games with
a value—that of achieving the optimal confidence levels and that of being best responses to
each other—the Nash equilibrium concept retains only the latter for non-zero-sum games.

The question of existence of a Nash equilibrium is related to the question of existence of a value
in zero-sum games. An example of a zero-sum game without a value (e.g., that of Table 2)
is also an example of a game with no Nash equilibrium. The positive results on the existence
of a value also have analogues concerning the existence of a Nash equilibrium in non-zero-sum
games. We present them in the following subsections.

5.3.Existence of a Pure Strategy Equilibrium in Games with Perfect Information

The concept of equilibrium was defined for games in strategic form. It applies of course also to
games in extensive form, and in this case the existence of an equilibrium may be inferred from
properties of the representation. The following theorem, due to Harold Kuhn, is the counterpart
of Theorem 1 for non-zero-sum games.

Theorem 3. Let G be a finite n-person game in extensive form with perfect information. Then
G has a Nash equilibrium in pure strategies.

Similar to Theorem 1, this theorem is proved by backward induction. As a by-product of this
method of proof, we obtain that every game satisfying the assumptions of Theorem 3 has a
pure strategy equilibrium with a stronger property, called subgame perfect equilibrium. We
proceed to explain this stronger property, which was introduced by Reinhard Selten.

Let G be an n-person game in extensive form. Let (T, r) be the rooted game-tree in the
representation of G. For every node x of T , we denote by Gx the game represented by the
subtree of T rooted at x. The nodes of this subtree are all nodes y of T such that the path from
r to y includes x. All the other ingredients in the representation of Gx are naturally inherited
from the corresponding ones for G. Every strategy profile in G induces in a natural way a
strategy profile in Gx. A strategy profile in G is a subgame perfect equilibrium of G if for every
node x of T , the induced strategy profile in Gx is a Nash equilibrium.

We illustrate the distinction between a mere Nash equilibrium and a subgame perfect equilib-
rium by means of an example (Figure 2). In this game, the backward induction proceeds as
follows. At node x, player 2 prefers c to d, since 1 > 0. Taking this into account, player 1, at
his decision node, prefers b to a, since b yields him a payoff of 2 (given the choice of c over d)
while a gives him a payoff of 1. We obtain the strategy profile where 1 chooses b and 2 chooses
c, which is a subgame perfect equilibrium.

But the game has an additional Nash equilibrium, in which player 1 chooses a and player 2
chooses d. This is a Nash equilibrium, because player 1’s choice of a is best for him assuming
that player 2 chooses d at x, and player 2’s choice of d at x is immaterial assuming that player
1 chooses a. However, this equilibrium is not subgame perfect, because in the subgame Gx
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Figure 2: A game with a Nash equilibrium which is not subgame perfect

it induces a non-equilibrium. In other words, the ”irrational” choice of d at node x does not
violate the conditions for a Nash equilibrium, because when this strategy profile is played node
x is not reached at all. But the conditions for a subgame perfect equilibrium require it to be
in equilibrium even at nodes which are off the equilibrium path.

Clearly, a subgame perfect equilibrium represents more stability than a Nash equilibrium which
is not subgame perfect. But in real life, one does observe sometimes non-subgame perfect
equilibria. The game given in Figure 2 corresponds to the following situation. Player 1 (”the
authorities”) has to make a decision that affects player 2. He considers b to be the correct
decision, but player 2 wants him to choose a, which is better for player 2. In order to make him
do that, player 2 threatens that if player 1 chooses b, he will do d, something terrible to himself
(e.g., jump off the roof) which is also undesirable to player 1. It can be argued that this threat is
incredible, since it would be irrational for player 2 to carry it out, and therefore player 1 should
ignore it. But if player 1 accepts the threat and chooses a to avoid the consequences of b, the
players are actually at the non-subgame perfect equilibrium found above. The interpretation
of such an equilibrium is closely related to the role of ”incredible” threats.

5.4.Existence of a Mixed Strategy Equilibrium

In the absence of perfect information, or when the game is given in strategic form, the existence
of a Nash equilibrium in pure strategies is not guaranteed. But as in the zero-sum case, the
introduction of mixed strategies restores existence. The following theorem is due to John Nash.

Theorem 4. Let G be a finite n-person game in strategic form. Let G∗ be the mixed extension
of G. Then G∗ has a Nash equilibrium.

This theorem includes the minimax theorem (Theorem 2) as a special case. But unlike the
minimax theorem, whose proof employs linear methods only, the proof of Nash’s theorem
requires the use of topological methods. One defines a continuous mapping of the space of
mixed strategy profiles to itself in such a way that any fixed point must be a Nash equilibrium,
and one invokes Brouwer’s fixed point theorem to prove the existence of such a point.

The difference in the proofs is also reflected in the computational aspect. Computing the value
and the maximin/minimax strategies for the mixed extension of a finite two-person zero-sum
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game is easy. For the two-person, non-zero-sum case, it is still possible to find a mixed strategy
equilibrium by the Lemke-Howson algorithm. But in the general n-person case the situation is
worse, and one has to resort to the use of algorithms that approximate fixed points of continuous
maps.

While the existence issue is solved by Nash’s theorem, the non-uniqueness of Nash equilibrium
remains an important concern. As we have seen in examples, a game may have multiple
equilibria which differ significantly from each other. This undermines our ability to predict the
outcome of a game based on the Nash equilibrium concept. It is natural to try to introduce
additional requirements from an equilibrium, which make it more stable, more desirable, or
more likely to be achieved, hopefully without destroying existence.

This direction of research has generated a variety of concepts, called ”refinements” of Nash
equilibrium. One example is the concept of a subgame perfect equilibrium defined for games in
extensive form, that we discussed in the previous subsection. There are many other refinements,
both for games in extensive form and for games in strategic form. A detailed presentation of
these concepts is beyond the scope of this article.

6.Games with Incomplete Information

6.1.The Modeling of Incomplete Information

In Subsection 3.2 we showed how the notion of information sets allows us to handle imperfect
information, which occurs when a player has to make a decision with only partial knowledge
about the course of the play up to that moment. Here we will address the issue of incomplete
information, which occurs when a player has only partial knowledge about the description of
the game itself.

To illustrate this distinction, consider the example of an English auction, in which the partic-
ipants make public offers to buy a certain item at increasingly higher prices. Assuming that
the auction is conducted in a manner that prevents different participants from making offers
simultaneously, we are looking at a game with perfect information: at every stage each partic-
ipant knows the offers made up to that point. What a participant is typically uncertain about
is how much the item is worth to each of the other participants. These valuations determine
the utility levels that the participants associate with the outcomes of the auction. Thus, the
players lack information about the payoff functions, which are part of the description of the
game. This is a situation of incomplete information.

In such a situation, a player has beliefs about the values of the unknown parameters, which
may be expressed in the form of a (subjective) probability distribution over some set of possible
values. For example, in an auction with three participants, participant A may believe that
with probability 2

3
the item is worth $200 to participant B and $300 to participant C, and with

probability 1

3
it is worth $250 to participant B and $400 to participant C. Similarly, participant

B has beliefs about the valuations of A and C, and C has beliefs about those of A and B. We
assume that each participant knows his own valuation.

Clearly, a player’s beliefs about the values of the unknown parameters of the game are relevant
to his choice of action. But it is important to note that a player’s beliefs about the other players’
beliefs about the values of the unknown parameters are also relevant to his choice of action.
And so are his beliefs about the other players’ beliefs about his own and each other’s beliefs
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about the values of the unknown parameters, and so on. This leads to an infinite hierarchy of
beliefs, that needs to be specified in order to allow an analysis of the situation.

The modeling of these infinite hierarchies is facilitated by the introduction of two abstract
concepts: the set of all possible states of the world, and for every player, the set of all possible
types of that player. A state of the world ω encodes a full description specifying the parameters
of the game and each player’s type. A type ti of player i encodes a full description of his beliefs,
represented as a probability distribution on the set of those possible states of the world in which
he is of type ti.

The above ”definitions” are admittedly circuitous, and they should be regarded as declarations
of intent rather than definitions. The seminal work of John Harsanyi and subsequent work by
other researchers, in particular Mertens and Zamir, has shown how these concepts can be made
rigorous and at the same time tractable. The general model used to represent a game with
incomplete information is that of a Bayesian game. We describe its ingredients one by one:

• A finite non-empty set of players N . Without loss of generality N = {1, . . . , n}.

• A non-empty set Ω, whose elements are thought of as the possible states of the world
(although formally they are just elements of an abstract set). We allow Ω to be infinite,
in which case it also comes with a measurability structure.

• For every i ∈ N , there is a probability distribution Pi on Ω. It is called the prior of
player i, and it represents his beliefs about the state of the world before he receives any
information.

• For every i ∈ N , there is a (measurable) partition Πi of Ω. For ω ∈ Ω we denote by Πi(ω)
the part in Πi which contains ω. It is understood that if the actual state of the world is
ω, player i is informed that the state of the world belongs to Πi(ω). Upon receiving this
information, he updates his prior to a posterior Pi|Πi(ω) obtained from Pi by conditioning
on the event that the actual state of the world is in Πi(ω). The parts of the partition Πi

can be thought of as the possible types of player i.

• For every i ∈ N , there is a non-empty set Ai of possible actions of player i. The term
”action” is used here in the same sense as ”strategy” was used for games with complete
information, that is, an action of player i fully determines his conduct in the entire play
of the game. However, we reserve the term ”strategy” in the current context to mean a
type-dependent choice of action (see below). The set Ai is assumed to be the same in all
states of the world, and in particular independent of the type of player i. This entails no
loss of generality, because we can embed the actual action sets in some universal set.

• For every ω ∈ Ω and every i ∈ N , there is a function πω
i : A1 × · · · × An → < which

represents the payoff to player i when the state of the world is ω. The dependence of the
payoffs on the state of the world ω reflects the idea that ω encodes, among other things,
data about the parameters of the game.

This completes the description of a Bayesian game. A strategy of player i is a function σ : Πi →
Ai. By choosing a strategy, a player is in effect announcing before he knows his type what his
action will be for any of his possible types.
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For a given strategy profile σ = (σ1, σ2, . . . , σn) and a given type ti of player i (that is, part of
his partition Πi) which intersects the support of Pi, player i can compute his expected payoff,
which we denote by Etiπi(σ). By this we mean the expectation of πω

i (σ1(Π1(ω)), . . . , σn(Πn(ω)))
when ω is chosen at random from the posterior distribution Pi|ti. (The assumption that the
type ti intersects the support of the prior Pi means, in the finite case, that player i assigns
a positive probability to his being of type ti. This is necessary for the posterior Pi|ti to be
defined. In the case that Ω is infinite, some further, technical conditions are needed for the
above expectation to be well-defined.)

We arrive now to the concept of equilibrium for a Bayesian game G. For a strategy profile
σ = (σ1, σ2, . . . , σn), a player i, a type ti, and an action a ∈ Ai, we denote by (σ|ti 7→ a)
the profile obtained from σ by changing σi so that at ti it chooses a. A strategy profile
σ = (σ1, σ2, . . . , σn) is a Bayesian Nash equilibrium of G if for every player i, for every type ti
of player i which intersects the support of Pi, and for every action a ∈ Ai, we have

Etiπi(σ|ti 7→ a) ≤ Etiπi(σ). (5)

The condition for equilibrium means that each player, when he is informed of his type and he
evaluates his payoff by computing the expectation with respect to his posterior, finds it optimal
to stick to the action indicated for his type in his equilibrium strategy, if he assumes that the
other players follow their own equilibrium strategies.

6.2.Consistency and the Extensive Form Representation

In describing the Bayesian game model, we assumed that every player has a prior probability
distribution Pi on the set Ω of possible states of the world. We did not discuss how these
priors come into being. It may be argued that differences in beliefs between players can only be
explained by differences in their information. Since a prior is supposed to represent beliefs as
they are before receiving any information, such an argument may lead to the conclusion that
in a proper sense the players must all have the same prior.

We refer to the case when all players have a common prior, that is, there exists a probability
distribution P on Ω such that Pi = P for all i ∈ N , as the consistent case. There are good
conceptual arguments in favor of consistency, but there are also dissenting views. We do not
go into the debate here. In any case, consistency has the advantage of allowing a simpler
representation of the Bayesian game as a game in extensive form.

Let G be a consistent Bayesian game, with player set N , a set Ω of states of the world, a common
prior P on Ω, partitions Πi of Ω for i ∈ N , action sets Ai for i ∈ N , and payoff functions πω

i for
ω ∈ Ω and i ∈ N . We construct from G the following game in extensive form. First, a chance
move selects a state of the world ω from Ω according to the probability distribution P . Each
player i ∈ N is informed of his type, that is, of the part in Πi to which the selected ω belongs.
Then, the players simultaneously choose actions from their respective action sets Ai, i ∈ N .
(The simultaneity is captured in the extensive form by grouping together in an information set
of player i all of his decision nodes which follow a selection of any ω within one of his types,
regardless of the actions taken ”earlier” by other players.) The payoff to player i corresponding
to a play in which ω was selected by chance and the players chose the actions a1, a2, . . . , an is
πω
i (a1, a2, . . . , an).

In passing to the extensive form representation, we have eliminated the incompleteness of
information from our modeling. In effect, the lack of information about the game was converted
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into a lack of information about the outcome of the chance move, yielding a game with complete
but imperfect information. We may analyze this game as we would any such game, and in
particular assume that the description of the game itself in extensive form is common knowledge.

It can be checked that the transition to the extensive form representation preserves the equilib-
rium concept: the Bayesian Nash equilibria of the consistent Bayesian game are precisely the
Nash equilibria of the extensive form game that we constructed from it.
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