Available online at www.sciencedirect.com

SCIENCE@DIHECTQ GAMES ar].d
Economic
o Behavior
ELSEVIER Games and Economic Behavior 47 (2004) 104-123

www.elsevier.com/locate/geb

Bundling equilibrium in combinatorial auctions

Ron Holzmar®* Noa Kfir-Dahav’ Dov Monderert and
Moshe Tennenholtz

a Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 32000, Israel
b Faculty of IE and Management—Information Systems, The Technion—lIsrael Institute of Technology,
Haifa 32000, Israel
¢ Faculty of IE and Management—Economics, The Technion—Israel Institute of Technology, Haifa 32000, Israel

Received 10 June 2002

Abstract

This paper analyzes ex post equilibria in the VCG combinatorial auctions. if a family of
bundles of goods, the organizer may restrict the bundles on which the participants submit bids,
and the bundles allocated to them, to belin The ¥-VCG combinatorial auctions obtained in
this way are known to be truth-telling mechanisms. In contrast, this paper deals with non-restricted
VCG auctions, in which the buyers choose strategies that involve bidding only on bundi&s in
and these strategies form an equilibrium. We fully characterize tBbdeat induce an equilibrium
in every VCG auction, and we refer to the associated equilibrium as a bundling equilibrium.
The main motivation for studying all these equilibria, and not just the domination equilibrium, is
that they afford a reduction of the communication complexity. We analyze the tradeoff between
communication complexity and economic efficiency of bundling equilibrium.

0 2003 Elsevier Inc. All rights reserved.

JEL classificationC72; D44; D78

1. Introduction

The Vickrey—Clarke—Groves (VCG) mechanisms (Vickrey, 1961; Clarke, 1971; Groves,
1973) are central to the design of protocols with selfish participants (e.g., Ephrati and
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Rosenschein, 1991; Nisan and Ronen, 2001; Tennenholtz, 1999; Varian, 1995), and
in particular for combinatorial auctions (e.g., Weber, 1983; Krishna and Perry, 1998;
de Vries and Vohra, 2000; Wellman et al., 2001; Monderer and Tennenholtz, 2000;
Lehmann et al., 1999), in which the participants submit bids, through which they can
express preferences over bundles of goods. The organizer allocates the goods and collects
payments based on the participants’ bidBhese mechanisms allow to allocate a set of
goods (or services, or tasks) in a socially optimal (surplus maximizing) manner, assuming
there are no resource bounds on the agents’ computational capabilities. There are at
least two sources of computational issues, which arise when dealing with combinatorial
auctions: winner determination—finding the optimal allocation (see, e.g., Rothkopf et al.,
1998; Tennenholtz, 2000; Sandholm, 1999; Fujishima et al., 1999; Anderson et al., 2000;
Sandholm et al., 2001; Hoos and Boutilier, 2000), and bid communication—-the transfer of
information, on which we focus in this paper.

The VCG mechanisms are designed in such a way that truthful revealing of the agents’
private informatioR is a dominant strategy for them. They have been applied mainly in the
context of games in informational form, where no probabilistic assumptions about agents’
types are requiredl.Domination and equilibrium in such games have traditionally been
referred to as ex post solutions because they have the property that if the players were told
about the true state, after they chose their actions, they would not regret their 4ctions.

The revelation principle (see, e.g., Myerson, 1979) implies that the discussion of other,
non-truth revealing equilibria of the VCG mechanisms may seem unneeded, and indeed it
has been ignored by the literature. It can be proved that every mechanism with an ex post
equilibrium is economically equivalent to another mechanism—a direct mechanism—in
which every agentis required to submit his information. In this direct mechanism, revealing
the true type is an ex post dominating strategy for every agent, and it yields the same
economics parameters as the original mechanism. However, the two mechanisms differ in
the set of inputs that the player submits in equilibrium. This difference may be crucial
when we deal with communication complexity. Thus, two mechanisms that are equivalent
from the economics point of view, may be considered different mechanisms from the CS
point of view.

1 Motivated by the FCC auctions (see, e.g., Cramton, 1995; McMillan, 1994; Milgrom, 1998) there is an
extensive recent literature devoted to the design and analysis of multistage combinatorial auctions, in which the
bidders express partial preferences over bundles at each stage. See, e.g., Wellman et al. (2001), Perry and Reny
(1999), Ausubel (2000), Parkes (1999), Parkes and Ungar (2000), Ausubel and Milgrom (2001).

2 This paper deals with the private-values model, in which every buyer knows his own valuations of bundles of
goods. In contrast, in a correlated-values model, every buyer receives a signal (possibly about all buyers’ valuation
functions), and this signal does not completely reveal his own valuation function (see, e.g., Milgrom and Weber
(1982), Jehiel and Moldovanu (2001), McAfee and Reny (1992), Dasgupta and Maskin (2000), Perry and Reny
(1999, 1999a) for discussions of models in which valuations are correlated).

3A game in informational form is a pre-Bayesian game. That is, it has all the ingredients of a Bayesian game
except for the specification of probabilities.

4 Alternatively, ex post solutions may be called probability-independent solutions because, up to some
technicalities concerning the concept of measurable sets, they form Bayesian solutions for every specification
of probabilities.
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Thus, tackling the VCG mechanisms from a computational perspective introduces a
vastly different picture. While the revelation of the agents’ types defines one equilibrium,
there are other (in fact, over-exponentially many) equilibria for the VCG auctions.
Moreover, these equilibria have different communication requirements.

The communication problem has motivated researchers in economics and in computer
science to examine the properties of simpler auction mechanisms, in which rational
buyers do not fully reveal valuations (see, e.g., Gul and Stacchetti, 2000; Parkes, 1999;
Parkes and Ungar, 2000; Wellman et al., 2001; Ausubel and Milgrom, 2001; Bikhchandani
et al., 2001). The main goal of the above papers was to characterize models in which the
suggested auctions lead to efficient outcomes. Such models are very rare, and they assume
various forms of substitution properties (see, e.g., Gul and Stacchetti, 1999).

In this paper we deal with unrestricted valuation functions, and analyze ex post
equilibriain the VCG mechanisms. L&t be a family of bundles of goods. We characterize
thoseX, for which the strategy of reporting the true valuation over the bundlés is a
player-symmetric ex post equilibrium. An equilibrium that is defined by stidh called a
bundling equilibriur® We prove thatZ induces a bundling equilibrium if and only if it is
a quasi-fiel of bundles. The class of bundling equilibria includes a natural subclass that
consists of partition-based equilibria, in which the familyis a field (i.e., it is generated
by a partition).

The main topic we study is the quantitative tradeoff between economic efficiency and
communication complexity offered by the class of bundling equilibria.other words,
we address the following question: How much economic efficiency needs to be sacrificed
in order to keep the communication complexity at an acceptable level? The underlying
assumption is that a VCG mechanism is used, and the buyers’ strategies form an ex post
equilibrium. We measure the (worst case) economic inefficiency of a given equilibrium
by the supremum, taken over all profiles of valuations for any number of buyers, of the
ratio between the optimal social surplus and the surplus obtained in that equilibrium. We
measure the communication complexity of a given bundling equilibrium by the number of
bundles inx .8 Qualitatively, it is clear that a& becomes larger the economic inefficiency
is reduced at the expense of higher communication complexity. Our main results give

5 It is far from obvious, but true, that every ex post equilibrium in the VCG mechanisms must be of this
form, i.e., associated with a family of bundlésin the above sense. In particular, every ex post equilibrium is
player-symmetric. This is proved in a subsequent paper (Holzman and Monderer, 2002).

6 A quasi-field is a non-empty set of sets that is closed under complements and under disjoint unions.

7 The same kind of tradeoff is studied in (Nisan and Segal, 2002) for a wider class of mechanisms. One
difference between our approach and that of (Nisan and Segal, 2002) is that we look at equilibrium profiles only.
Another difference, which is important for a comparison of our results and those of (Nisan and Segal, 2002), is
that we view the set of goods as fixed and allow the number of buyers to vary in our worst-case analysis, whereas
in (Nisan and Segal, 2002) the number of buyers is fixed and the bounds obtained are asymptotic as the number
of goods becomes large. Communication complexity in equilibrium has been discussed also in (Shoham and
Tennenholtz, 2001).

8 In our context, this measure of communication complexity seems very intuitive, and therefore we do not
delve into formal definitions of communication complexity that apply to more general situations. See (Nisan and
Segal, 2002) for a discussion of two approaches to this concept: the dimensionality measure, suited for continuous
settings and common in economics (e.g., Hurwicz, 1977), and the bit-count measure, suited for discrete settings
and common in computer science (e.g., Kushilevitz and Nisan, 1997).
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guantitative bounds on this tradeoff for partition-based equilibria, which are tight in
infinitely many cases.

Thus, we are looking at a full spectrum of equilibria. At one end, we have the
truth-telling equilibrium that yields the maximum social surplus but has prohibitive
communication complexity. At the other end, we have the very simple but potentially
highly inefficient equilibrium in which the buyers only bid on the bundle of all goods. As is
common in a multiple equilibria setup, we do not know what equilibrium will be reached.
However, the buyers will reach an equilibrithwhich reflects a reasonable compromise
between complexity and efficiency considerations. Note that had the organizer known
the chosen equilibrium (i.e., the famil¥¥) she could have restricted the allowed bids
(and allocations) to bundles i&. In such case, this equilibrium becomes a domination
equilibrium. However, the organizer may not wish to restrict the bids because she is
handling many auctions with different types of users, and itis not reasonable for her to keep
changing the rules of the auction. Alternatively, the organizer can recommend to the buyers
to bid only on bundles in the family' that induces the selected bundling equilibrium.
Each buyer is free to accept or reject the recommendation, but in view of the equilibrium
property, it is rational for the buyers to follow the recommendation.

Section 2 provides the reader with a rigorous framework for general analysis of VCG
mechanisms for combinatorial auctions. In Section 3 we introduce bundling equilibrium,
and provide a full characterization of bundling equilibria for VCG mechanisms. Then
we discuss bundling equilibrium that is generated by a partition, titled partition-
based equilibrium. In Section 4 we deal with the social surplus of VCG mechanisms
for combinatorial auctions when following partition-based equilibrium, exploring the
spectrum between economic efficiency and communication efficiency.

2. Combinatorial auctions

In a combinatorial auction there is a seller, denoted by 0, who wishes to sell a set
of m items A = {a1,...,a,}, m > 1, that are owned by her. There is a set of buyers
N={12,...,n},n > 1. LetI" be the set of all allocations of the goods. That is, every
y € I' is an ordered partition off, y = (y:)ienujo)- A valuation functionof buyeri is
a functionv; : 24 — %, wheref denotes the set of real numbers, with the normalization
v; () = 0, which satisfies: B C C, B, C € 24, thenv; (B) < v;(C).

Let V; be the set of all possible valuation functionsiofobviously V; = V; for all
i, j € N),andletV = x;cyV;. We assume each buyer knows his valuation function only.

A mechanismM = (X, d, c¢) for allocating the goods is defined by sets of messages
X;, one set for each buyerand by a paild, ¢) with d: X — I', andc: X — %", where
X = x;enX;. d is called the allocation function andthe transfer function; if the buyers
send the profile of messages X, buyeri receives the set of goods(x) and pays:; (x)
to the seller; his utility is¢; (v;, x) = v; (d; (x)) — ¢; (x). In a general model of auctions the

9 For example, the agents may reach the equilibrium by a process of learning (see, e.g., Hon-Snir et al., 1998).
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seller may set reserve prices (in the form of a valuation function). We asdNomeserve
prices?

A strategyof i is a functionb; : V; — X;. A profile of strategie® = (b1,...,b,) IS
player-symmetridf b; = b; for all i, j € N. A profile of strategie$ = (b1, ..., b,) is an
ex post equilibriumif for every agent, for everyv; € V;, for everyv_; € V_;, and for
everyx; € X;,

wi (v, bi (i), b—i(v—)) = ui(vi, xi, b_i (v_7)), (2.1)

whereb_;(v_;) = (b;(v})) j+i. A strategyb; of i is anex post dominant strateder i, if
(2.1) holds for every_;, for everyv; € V;, for everyv_; € V_;, and for every; € X;.

Obviously, if b; is an ex post dominant strategy for every is an ex post equilibrium,
but not necessarily vice versa. An ex post equilibribnin which every strategy; is ex
post dominant is called an ex pakimination equilibrium

A mechanism(X, d, c¢) is called adirect mechanism ifX; = V; for everyi € N. That
is, in a direct mechanism a buyer’s message contains a full description of some valuation
function. A direct mechanism is calledith revealingif for every buyeri, telling the truth
(bi (vi) = v;) is an ex post dominant strategy.

For an allocatiory and a profile of valuations, we denote bys(v, y) thetotal social
surplusof the buyers, that is

S.y) =Y vi().
ieN
We also denote:

Smax(v) = maxS(v, y).
yel’

Well-known truth revealing mechanisms are the VC (Vickrey—Clarke) mechartsms.
These mechanisms are parametrized by an allocation funéfithhat is socially optimal.
That is, S(v, d(v)) = Smax(v) for everyv € V. The transfer functions are defined as
follows:

cfl(v)=2/nea]3(Zvj(yj)—Zvj(dj(v)). (2.2)
J#i J#

The mechanisms differ in the allocation they pick in cases in which there exist more than
one socially optimal allocation, and therefore in the second term in (2.2). We will refer to
a VC mechanism by the allocation functidnthat determines it. Note that<Q ¢? (v) <
v; (d; (v)) for everyi e N andv € V. This implies that a truth telling buyer always gets
non-negative utility (this is called individual rationality), and the seller’s revenue is always
non-negative.

More general mechanisms are the VCG mechanisms. Every VCG mechanism is
obtained from some VC mechanism by changing the transfer functions: A VCG

10 This is not an innocuous assumption. The general case is discussed in Section 3.3. For discussions of the
importance of reserve prices see, e.g., (Myerson, 1981; Ausubel and Cramton, 1999a).
1 By VC mechanisms we refer here to what is also known as Clarke mechanisms or the pivotal mechanism.
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mechanism is defined by a socially optimal allocation functiband by a family of
functionsh = (h;);en. The transfer functions are defined by

o (v) = rynanZ vi(yj) = Z vj (dj ) + hi(v-p).
JF# JF#

Observe that a VCG mechanism is strategically equivalent to the VC mechanism it
is based on, and moreover they require the same communication and result in identical
allocations. For our purposes, therefore, we may (and will) restrict attention to VC
mechanisms without loss of generality. Of course, the individual rationality and revenue
non-negativity properties noted above for VC mechanisms do not carry over to general
VCG mechanisms.

Itis well known that in any VCG mechanism truth telling is an ex post dominant strategy
for every buyer, and hence forms an ex post equilibrium. In the next section we discuss
other ex post equilibria in the VCG mechanisms.

3. Bundling equilibrium

Let ¥ C 24 be a family of bundles of goods. We deal only with such familiggor
which

o feX.

A valuation functiorw; is a X -valuation functionf

vi(B)= max v;i(C), foreveryB e 24.
CeX,CCB

The set of all ¥-valuation functions inV; is denoted byVl.E. We further denote
V¥ = Xjen V,.E. For every valuation function; we denote bwf its projection onVl.E,
that is:

v¥(B)= max v;(C), foreveryB e 24
CeX,CCB

Obviouslyv* € V&, and forv; € V¥, v¥ = v;. In particular v>*)* = v> for ever
1 1 1 1 1

1

v € Vi. Let ¥ :V; - V:* be the projection function defined by
) =v?.

An allocationy is a X-allocationif y; € X for every buyer € N. The set of allX-
allocations is denoted bi > .
The following theorem is proved in (Holzman and Monderer, 2002).

Theorem (Holzman and Mondererlet N be a set of buyerswith n = |[N| > 3. Let
b= (b1,...,b,) be a profile of strategies such that for eve¥y C N the restriction of
b to N’ forms an ex post equilibrium in every VCG mechanism with buyevséthens is
player-symmetricand moreover there exists® C 24 such thath; = f* for everyi € N.
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Here we are interested in the following question: For whith do we have that
(f%,..., f%¥) is an ex post equilibrium in every VCG mechanism (with any number of
buyers)? In such a case we c#ft abundling equilibriumfor the VCG mechanisms and
say thatX induces a bundling equilibrium. The next example shows that not e¥ery
induces a bundling equilibrium.

Before we present the example we need the following notationBlLe®4, we denote
by wp the following valuation function:

1 ifBCC,
0 otherwise'?
If B=¢, wg(C)=0 forallCe24.

If B0, wB(C)z[

Example 1. Let A contain four goods, b, ¢, d. Let
Y ={a,d, bed,abe, A, 9}.12

Let vz = w,, v3 = wy. Consider buyer 1 with; = wy.. Note thaty; € V> fori =2, 3.

If buyer 1 usesf¥ he declares (bcd) = vj(abc) = vi(A) = 1 andv;(C) = 0 for all
otherC, and there exists a VC mechanism that allocat&s?2,d to 3, andbc to the seller.

In this mechanism the utility of 1 from using> is zero. On the other hand, if agent 1
reports the truthi,.), he receives (in every VC mechanisbt)and pays nothing. Hence,
his utility would be 1. Thereforg ¥ is not in equilibrium in this VC mechanism, and hence
X does not induce a bundling equilibrium.

3.1. A characterization of bundling equilibria
¥ c 24 is called aquasi-fieldif it satisfies the following propertie%

e B e X implies thatB¢ € X, whereB = A\ B.
e B,CeXYandBNC =¢implythatBUC € ¥.2°

Theorem 1. X induces a bundling equilibrium if and only if it is a quasi-field.

Proof. Supposer is a quasi-fieldConsider a VC mechanism with an allocation function
d.We show that £, ..., %) is an ex post equilibrium in this VC mechanism.

Assume that every buyei, j # i, uses the strategy; = f*. Letv_; € V_;. We have
to show that for buyer with valuationv;, v is a best reply ta*,. As truth revealing is
a dominant strategy in every VC mechanism, it suffices to show that bisyatility when
submittingviZ is the same as when submitting That is, we need to show that

S((Ui, Ufi)’ ]/) —a= Smax(Uis UE:,') -,

12 ForB # ¢, a valuation function of the forrw g is called a unanimity TU game in cooperative game theory.
An agent with such a valuation function (up to scaling) is called by Lehmann et al. (1999) a single-minded agent.
13 We omit braces and commas when writing subsets.of
14 Recall our assumption that we deal only wihsuch thay) € X.
15 Equivalently, the union of any number of pairwise disjoint set&'ifs also inX.
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wherey =d(v{, v*), anda is the first term in (2.2) which depends only of:..
Hence, we have to show that

S((vi, v%).v) = Smax(vi, v5)). (3.1)
Obviously,
S((vi,v%). ¥) < Smax(vi, vZ;). (3.2)
As v;(B) > v¥ (B) for everyB € 24,
S((visv%),v) = S((v7,v%), v) = Smax(vi”, vZ)). (3.3)

Let & = d(v;,v*). For j #i and j # 0, let Ef € ¥ be such thalsjf C & and
v (E7) =v7 (). Letg® = (Ujx0,&7)¢, and letég =1,

BecauseX is a quasi-fields* € X, and henc&* e I'*. As & C £, £ is also
optimal for (v;, v*,). Hence

Sma(vi, v5}) = S((vi, v%), €%) = S((v7, v%), £%) < Smax(v]”, v%). (3.4)
Combining (3.2), (3.3), and (3.4) yields (3.1).

Supposer induces a bundling equilibriunWe first show that ifB € X', thenB¢ € X.

If B = A then by definitionB¢ =@ € X. Let B C A. Assume, for the sake of contradiction,
thatB® ¢ ¥. Letvy = wp andvy = wpe. Note thatvy’ = vy. Thus, if buyer 2 useg*, he
declaresv. If buyer 1 usesf*, he declares;, wherevy (B¢) = 0. Hence, there exists
a VC mechanisna, that allocatesB to agent 2 and* to the seller. However, if buyer 1
deviates and declares his true valuation, then this VC mechanism all&atesim, and
he pays nothing. Hence, there is a profitable deviation ffdma contradiction.

Next, we show that ifB, C € X are disjoint thenB U C € X. By the first part of the
proof, it suffices to show thatB U C)¢ € X. Clearly, we may assume that the s8tsC,
and(B U C)¢ are all non-empty. Assume, for the sake of contradiction,tBat C)¢ ¢ .
Consider three buyers with valuations= wuc)c, v2 = wg, v3 = wc. Proceeding as in
the first part of the current part of the proof yields a similar contradictian.

It may be useful to note that if * is a buyer-symmetric equilibrium for a fixed set of
buyers, then¥ is not necessarily a quasi-field. For example, if there is only one buyer,
every X such thatd € X induces an equilibrium. In the case of two buyers, being closed
under complements is necessary and sufficientfdo induce an equilibrium. However,
it can be deduced from the proof of the only if part of Theorem 1, that for a fixed set of
buyersnN, if n = |N| > 3, thenX must be a quasi-field if it induces an equilibrium for the
set of buyersv.

3.2. Partition-based equilibrium

Letr ={A1, ..., Ax} be apartition ofA into non-empty parts. Thatig; # ¢ for every
Ajem, Uf:lAi = A, andA; NA; = foreveryi # j. Let X; be the field generated by.
That is, ¥, contains all the sets of goods of the fotw; A;, wherel C {1,...,k}. To
avoid confusionl € ¥,;. For convenience, we will usg” to denotef >~ . A corollary of
Theorem 1 is
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Coroallary 1. f™ is a bundling equilibrium.

Proof. As X is a field it is in particular a quasi-field. Hence, the proof follows from
Theorem 1. O

A bundling equilibrium of the formy ™, wherer is a partition, will be called partition-
based equilibriumThus, a partition-based equilibrium is a bundling equilibriifmthat is
based on afield = X';. It is important to note that there exist quasi-fields, which are not
fields. For example, let = {a, b, c,d}. ¥ ={ab, cd, ac, bd, A, #} is a quasi-field, which
is not a field. We note, however, that whan= | A| < 3, the notions of quasi-field and field
coincide.

3.3. Reserve prices

The seller may wish to prevent the sale of goods at a price that she considers too low.
This is modeled by assuming that the seller has a valuation funggiomhere are two
common methods to modify the VCG auction’s rules in order to allow the seller to express
her preference®® In one of them, the seller submits a hig, which is not known to the
buyers. Of course, the buyers must believe that the seller cannot change her bid after they
make their bids. This is the case when the seller and the organizer are not the same entity,
or if the auction is controlled by a trusty third party. In such a case, the seller is just an
additional player in the auction game. However, in the associatedl)-person game, the
payoff of the additional player is not determined by the VCG scheme, and our results do
not hold for such games.

In the second approach the seller announgess part of the auction’s rules. In such a
case our results are easily generalized as follows:

Theorem 1,. X induces a bundling equilibrium if and only if it is a quasi-field and

vrzvf.

Hence, the seller may keep all bundling equilibria alive by introducing a reserve price
which is a{#, A}-valuation function, and she can kill all bundling equilibria except for the
domination equilibrium by submitting an arbitrary valuation function with a positive price
for each good. We do not attempt in this paper to analyze the design stage, in which the
seller decides strategically whieh to announce.

4. Economic efficiency and communication complexity

Let X C 24. If every buyer useg >, then in every VCG mechanism, the total surplus
generated when the valuations of the buyers are givandy is Smax(v?).

16 Both methods appear in eBay auctions.
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We denote

Sy-max(v) = max S(v, y).
yelZ

Obviously,
Sx-max(v) = Sz-max(vr) = Smax(vr), for everyv e V.

For convenience we denots-max by Sx, and we callSy the X-optimal surplus
function (note thatS,a = Smax). When X' is a field generated by a partition we write
Sy for Sx_.

If X is a quasi-field we say that ttemmunication complexityf the equilibriumf >
is the number of bundles i, that is| X’|. Notice that this is a natural definition because a
buyer who is using/* has to submit a vector ¢ | numbers to the sellér. Thus, if is
a partition, the communication complexity i€2 If X1 C X, thenSx, (v) < Sx,(v) for
everyv € V. So, X induces more surplus (a proxy for economic efficiency) thanbut
¥, also induces higher communication complexftyHence, there is a tradeoff between
economic efficiency and computational complexity.

For every family of bundle’ with A € X we define

S
r;} — sup max(V)

, (4.2)
veV,v#£0 Sy (v)

whereV = Vi1 x --- x V,,. Thus,r%. is a worst-case measure of the economic inefficiency
that may result from using the strategy” when there are buyers. Obviously% > 1,
and equality holds fo& = 24. A standard argument using homogeneity and continuity of
Smax/ Sy shows that the supremum in (4.1) is attained, i.e., it is a maximum.

The following remark gives a simple upper bound on the inefficiency associated with
X.

Remark 1. For everyX C 24 with A € X, and for every € V,

Smax(v) < nSx(v),
wheren is the number of buyers. Consequently,

ry. <n.
Proof. Lety =d(v), whered is any VC mechanism.

Smax(®) = S, 1) =Y vi(y) < Y_vi(A)=Y v¥(A)<nSp(v). O

ieN ieN ieN

17 A discussion of the way this can be extended to deal with the introduction of concise bidding languages
(Nisan, 2000; Boutilier and Hoos, 2001) is beyond the scope of this paper.

18 |ncidentally, unlike social surplus, the revenue of the seller is not a monotone function of the quasi;field
as can be seen from simple examples. Yet, it is commonly believed that social optimality is a good proxy for
revenue. This was proved to be asymptotically correct when the number of buyers is large, and the organizer has
a Bayesian belief over the distribution of valuation functions, which assumes independence across buyers (see
Monderer and Tennenholtz, 2000). It was also proved to be correct in models that assume the possibility of a
resale (Ausubel and Cramton, 1999).
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However, we are interested mainly in upper bounds on the economic inefficiency that
are independent of the number of buyers. For every family of bundlesth A € X we
define

rx = supry. (4.2)
n>1
It is easy to see that, since any allocation assigns non-empty bundles to at O3t |
buyers, the supremum in (4.2) is attained for semem. WhenX = X, for a partitionr,
we writer, instead ofr s .

In the following subsection we characterize and estimatethereby obtaining a
guantitative form of the tradeoff between communication and economic efficiency in
partition-based equilibria.

4.1. Communication efficiency vs. economic efficiency in partition-based equilibria

We first express; in terms of the partitiont = {A1, ..., A;} only. A feasiblefamily
for 7 is a family A = (H;);_, of (not necessarily distinct) subsets{df . . ., k} satisfying
the following two conditions:

o HiNH;#@forevery 1<i, j <s.
o |{i:l € H;}| <Ay forevery 1< < k.

We writes = s(A) for the number of sets in the familyt (counted with repetitions).

Theorem 2. For every partitionr,
rr =maxs(A),

where the maximum is taken over all famili@ghat are feasible forr.

Proof. We first prove that, < maxs(A). It suffices to show that for evenye V there
exists a feasible family for 7= such that

Smax(v) < s(4) - Sz (v).
Letv e V. Lety be a socially optimal allocation. That is,

Smax(v) = Z ;i (¥i)-
ieN
For everyy; lety be the minimal setirt’; that containg;. Thatisy” = Uc;; A; where
Ji={le{l,....k}: AiNy; #£0}.
Let & be a partition of N to r subsets, such that for evetyj e I € &, i # j,
yrn )//’7 = (. Assumer is theminimalcardinality of such a partition. For everye & let
H; =, Ji- Thatiis, eactd; is a set of indices of parts; in  that should be allocated
to the buyers i in order for each of them to get the goods they received in the optimal
allocationy. Note that ifI #£ J, H; N H; # ¢, otherwise we can joid andJ together
in contradiction to the minimality of the cardinality §f Hence,A = (Hy) ¢ is a family
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of subsets of1, ..., k} that satisfies that any two subsetsdrintersect. Furthermore, the
second condition for feasibility is also satisfied, because for any dieed, .. ., k} there
are at mostA;| buyersi with y; N A; # @, and hence at mos$#,;| parts/ € & such that
[ € H;. Thus,A is a feasible family fotr with s(A) =r.

EveryH,, I € & defines a¥;-allocation. In this allocation everye I receives/”, and
the seller receives all other goods. Theref®ig ; v; () < Sz (v) for everyI € £. Hence,

Smax(®) < Y vi(¥7) =D Y wi(y) <Y Se () =rSx(v).

ieN 1€t iel l1€&

Next, we prove that, > maxs(A). It suffices to show that for every feasible famiy
for r there exists a profile of valuations= (vy, .. ., v,) # 0 for some numbet of buyers
satisfying

Smax(v) = s(4) - Sz (v).

Let A = (H;);_, be a feasible family forr. By the second condition of feasibility,
we can associate with eadh a set of goods; containing one good from eacky such
that/ € H;, in such a way that the seB are pairwise disjoint. By the first condition of
feasibility, for every 1< 7, j < s there can be no two disjoint sef$, C; € X, such that
B; C C;, B.,' - Cj.

Now, we taken = s buyers, and let buyer have the valuation; = wp,. Then
Smax(v) = s whereasS; (v) =1. O

Theorem 2 reduces the determination of the economic inefficiency mesgsucea
purely combinatorial problem. However, this combinatorial problem does not admit an
easy solutiort? Nevertheless, we will use Theorem 2 to calculatén some special cases,
and to obtain a general upper bound for it which is tight in infinitely many cases.

The following proposition determinesg for partitionssz with a small number of parts.

We use the notationg| and [-] for the lower and upper integer rounding functions,
respectively.

Proposition 1. Let|A| = m, and letr = {A1, ..., A} be a partition ofA into kK non-empty
sets.

o If k =1thenr, =m.

o If Kk =2 thenr, = max|Ai|,|A2|}. Consequentlythe minimum ofr, over all
partitions of A into 2 parts is[m/2].

e If k =3 thenr, = max|A1|, |A2]|, |A3s|, lm/2]}. Consequently, the minimum of
over all partitions ofA into 3 parts is|m/2].

Proof. In each case, we determine the maximums©@fl) over all familiesA that are
feasible forr.

19 The special case of this problem, in whi¢h;| = |A;| for all A;,A; € 7, has been treated in the
combinatorial literature using a different but equivalent terminology (see, e.g. Furedi, 1990). But even in this
case, a precise formula for mag\) seems out of reach.



116 R. Holzman et al. / Games and Economic Behavior 47 (2004) 104-123

Fork =1, a feasible family consists of at mdsti| = m copies of{1}, and therefore
maxs(A) = m.

A feasible family fork = 2 cannot contain two set#]; and H;, such that ¥ H; and
2 ¢ H;, because such sets would be disjoint. Hence, for any feasible fainigjther all
sets contain 1 or all of them contain 2. Therefarg)) < max{|A1|, |A2|}. On the other
hand, feasible families of sizel1|, | A2| trivially exist.

Suppos& = 3, and denote

Bi=14; forl=123.
We first show thats(A) < max{B1, B2, B3, lm/2]} for every feasible familyA. If A
contains some singletofi}, then all sets inA must contain/, and hences(A) < B;.
Otherwise, A consists ofs1o copies of{1, 2}, s13 copies of{1, 3}, s23 copies of{2, 3},
ands123 copies of{1, 2, 3}, for some non-negative integers, s13, 523, s123. We have the
following inequalities:

512+ 513+ 5123 < B, 512+ 523+ 5123 < B2, 513+ 523+ 5123 < fB3.
Upon adding these inequalities we obtain

2(s12+ s13 + 523) + 3s123 < m,
which implies

$(A) =512+ 513+ 523+ 5123 < [m/2].

We show next that there exists a feasible familyith s(A) = maxX 1, B2, B3, lm/2]}. If
this maximum is one of th@;’s, this is trivial. So assume thg@ < |m/2] forl =1, 2, 3.
If m is even then the familyt that consists of

1= W copies of{1, 2}, s13= %23—/32 copies of{1, 3},
03 = W copies of{2, 3},

is feasible (note that the prescribed humbers are non-negative begauspen /2| for
I=1,2,3,and they are integers becayier 82 + B3 = m is even). The size of this family

is s(A) = s12 + s13 + s23 = m/2. If m is odd, we make slight changes in the values of
$12, 513, s23. we add ¥2 to one of them and subtrac{2 from the other two. In this way
we get a familyA with s(A) = |m/2]. O

We see from Proposition 1 that if we use partitions into two parts (entailing a
communication complexity of 4), the best we can do in terms of economic efficiency
is rr = [m/2], and this is achieved by partitioning into equal or nearly equal parts.
Allowing for three parts (and therefore a communication complexity of 8) permits only a
small gain inr; (in fact, no gain at all whem: is even).

We will now state the two parts of our main result.

Theorem 3. Letw = {A1, ..., Ax} be a partition ofA into k non-empty sets of maximum
sizeB(m). (Thatis,B(r) = maxX{|A1], ..., |Ar]}.) Then

re < B@) - p(k), wherepk)= .nzakain{j,k/j}.
J=1..
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The proof of Theorem 3 is given in the following subsection.
Note that

(k) < Vk.

In particular, if all sets int have equal size:/ k, we obtain the upper bound

m

rr < \/l;

Now, consider the case when, for some non-negative intggee have
k=q?+q+1, (4.3)
|[Ail=q¢+1 fori=1,...,k. 4.4)

In this case

_ >+q+1
- g+1
and hence the upper bound of Theorem 3 takes the form

(k)

)

rr <k.

The second part of our main result implies that in infinitely many of these cases this upper
bound is tight.

Theorem 4. Letr = {A1, ..., Ax} be a partition that satisfie@.3)and (4.4) for someg
which is either0 or 1 or of the formp! where p is a prime number and is a positive
integer. Then

re =k.
We prove Theorems 3 and 4 in the following subsection.
4.2. Proofs of Theorems 3 and 4

We begin with some preparations. Lat= (H;);_, be a family of (not necessarily
distinct) subsets ofl, ..., k}. A vector of non-negative numbess= (5;);_, is called a
semi balance#f vector for A if for everyl € {1, ..., k},

Zaigl.

i:leH;

20 This concept is equivalent to what is called a fractional matching in combinatorics. We chose the term
semi balanced, because balanced vectors, defined by requiring equality instead of weak inequality, are a familiar
concept in game theory (see, e.g., Shapley, 1967).
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Proposition 2. Let A = (H;);_; be a family of (not necessarily distinytsubsets of
{1,...,k}suchthatd; N H; # ¢ foreveryl < i, j <s.Lets = (§;)]_, be a semi balanced
vector forA. Then

s
28 <gk), wherep(k)= max min{j, k/j}.
i=1 I=5

Proof. Assume without loss of generality that= | H1| is the minimal number of elements
in a member ofA. The proposition will be proved if we prove the following two claims:

Claim 1. Y3_, 8; <h.
Claim 2. Y5_,8; <k/h.

Proof of Claim 1. Letz =3, > i ey, 8i- AS everyH; intersectsti, everys; appears
in z at least once. Therefore> »;_; &;. Becausé is semi balanced} ;. ;. 6; < 1 for
everyl, and in particular fof € H1. Hencez <} ).y, 1=h. O

Proof of Claim 2. Let w = Zé‘zl > i 1en, 0i- Everys; appears inw exactly|H;| times.
Since|H;| > h for everyi, we havew > h)_:_; §;. On the other hand, as in the proof of
Claim 1, we obtainw < Zlelz k. Combining the two inequalities, we ggt}_; §; <
k/h. O

Therefore,

s
Y % <minfh.k/h} <g(k). O
i=1

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. Letw = {A1, ..., A;} be a partition ofA into k non-empty sets of
maximum size3 (). We have to prove that, < () - (k). By Theorem 2, it suffices to
show that for every feasible family for 7, we have

s(A) < B(m) - p(k).
Let A = (H;);_, be such a family. Consider the vectoe (§;);_; with
1
= 5

By the second condition of feasibility, this vector is semi balanced. Hence we may apply
Proposition 2 and conclude that

i i=1,...,s.

N

> 8 <g(k), orequivalently
i=1

—— < g(k),
B0) @(k)
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asrequired. O

In order to prove Theorem 4 we invoke a result about finite geometries (see, e.g.,
Dembowski, 1968). Afinite projective planeof orderg is a system consisting of a set
IT of points and a sett of lines (in this abstract setting, a line is just a set of points, i.e.,
L C IT for everyL € A), satisfying the following conditions:

o [M=|Al=¢%+q+1.

e Every pointis incident tg + 1 lines and every line contaigs+ 1 points.

e There is exactly one line containing any two points, and there is exactly one point
common to any two lines.

Such a system does not exist for everyHowever, it trivially exists forg = 0 (a single
point) and forg = 1 (a triangle) and it is known to exist for evegyof the formg = p',
where p is a prime number and is a positive integer. The first non-trivial example,
corresponding tg = 2, is called thd=ano plane

I1={1,223,4,56,7}, A =1{124 235 346 457,561 672 713}.

Proof of Theorem 4. Let 7 = {A1, ..., A;} be a patrtition that satisfies (4.3) and (4.4)
for someg which is either 0 or 1 or of the formp! wherep is a prime number andis

a positive integer. As,; < k follows from Theorem 3 (see the discussion preceding the
statement of Theorem 4), we need to prove only that k. By Theorem 2, it suffices to
show that there exists a familyy with s(A) = k which is feasible forr. Such a family is
given by the system of lines of a projective plane of orglewhen the points are identified
withl,...,k. O

4.3. More on the ranking of equilibria

The tradeoff between communication complexity and economic efficiency, as delin-
eated above, may be made concrete by the following scenario. Suppose that ef set
goods is given, and we are in a position to recommend to the buyers an equilibrium strategy.
Assume further that a certain levél of communication complexity is considered the max-
imum acceptable level. If we are going to recommend a partition-based equiligfium
then the number of parts in should be at most = |log, M |. From the viewpoint of eco-
nomic efficiency, we would like to choose such a partitionvith », as low as possible.
Which partition should it be?

According to Theorem 3, we obtain the lowest guarantesg, dsy making the maximum
size of a part it as small as possible, which means splittihdnto ¥ equal (or nearly
equal, depending on divisibility) parts. This leads to the question whether, for given
andk, the lowest value of itself (not of our upper bound) over all partitioms of A
into k parts is achieved at an equipartition, i.e., a partitiog= {Aq, ..., Ax} such that
lm/k] <|Aj| < m/kl,i=1,... k.

While Proposition 1 gives an affirmative answer o 1, 2, 3, it turns out, somewhat
surprisingly, that this is not always the case. This is shown in the following example.
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Example 2. Letm = 21 andk = 7. If 7 is an equipatrtition of the 21 goods into 7 triples
then, by Theorem 4., = 7. Consider now a partition’ = {A1, ..., A7} in which

|A1] =2, |A2] =4, |A3| =---=|A7] =3.

We claim that,s < 6.

In order to prove this, it suffices to show that there exists no feasible family of 7 sets
for ". Suppose, for the sake of contradiction, that (H;)/_, is such a family. Le#; be
an arbitrary set im. It follows from the second condition of feasibility that#f; contains
the element 1 then it shares it with at most one other set.iSimilarly, if H; contains
the element 2 then it shares it with at most three other sets ifor/ =3, ...,7, if H;
contains the elemeiitthen it shares it with at most two other setsdn This implies that
H; must contain at least three elements (because it must share an element with every other
set, and 3+ 2 < 6). Moreover, ifH; contains exactly three elements and one of them is 1,
then it also contains 2 (sincef12 + 2 < 6). On the other hand, we have

7 7 7 7 7
SE=Y3"1=3" 3 1= Y teHy <Y lAl=21
i=1 =1 =1

i=11eH; I=1i:1€eH;

Since everyH; has at least three elements, it follows that evékyhas exactly three
elements, and all the weak inequaliti¢s [ € H;}| <|A;| mustin fact hold as equalities.
In particular, there exist two sets in, say H; and H;, that contain the element 1. By
the above, they both contain 2 as well. LLéie the third element off;. Then among the
remaining five sets im, the setH; shares the element 1 with none of them, it shares the
element 2 with two of them, and the eleméntith at most two of them. This contradicts
the fact thatH; intersects every other set i,

It can be checked that in fagt, = 6 and this is the lowest achievable value among all
partitions of 21 goods into 7 sets. We omit the detailed verification of this.

The tradeoff between communication complexity and economic efficiency was quanti-
tatively analyzed above only for partition-based equilibria. It is natural to ask whether it is
possible to beat this tradeoff using the more general bundling equilibria. The answer is, in
a sense made precise below: sometimes yes, but not by much.

Example 3. Assume that the number of goodsis even, and let the set of goodsbe
partitioned into two equal part8 andC. Considery € 24 defined by

X ={DCA:|DNB|=|DNCl}.

Itis easy to check thaX is a quasi-field, and hence it induces a bundling equilibrium. The
communication complexity is

m/2 m/2

-2 (mfz)z > (mj/z) (m;nz/E j) - (mn;Z)
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We claim thatry = 2. Thatry > 2 can be seen by taking two buyers with valuations
wp andwc, respectively. To see that < 2, suppose that is a profile of valuations for a
set of buyersV, and lety be an optimal allocation. Split the s&tinto two sets:

Np={ieN:|lyinB|>2ly;NCl}, Nc={ieN:|yinB|l<|ynCl}.

Note that the sets of goods, i € Np, can be expanded to pairwise disjoint sets of goods
that belong toX'. In other words, there existsB-allocationé such thaty; C &; for every
i € Np. Similarly, there exists & -allocationn such thaty; C »; for everyi € N¢. Hence

Smax(®) =Y vi(y)= Y vi(y)+ Y vi(y) <Y _viE)+ Y vi(ni) <285 (v).

ieN ieNp ieNc ieN ieN

Thus,rx < 2.

We claim further that if a partitiorr of A satisfiesr; < 2 then|X;| > 2m=2 |ndeed,
supposer = {A1, ..., Ar}. Itis easy to find a feasible family of 3 sets forif one of the
A;’s has three or more elements, or if three of thé& have two elements each. Therefore,
rr < 2 implies that at most two of the selﬁ, ..., Ar have two elements and the rest are
singletons. Thug > m — 2 and| X, | > 2" 2

Since( ’”2) < 2"=2for all evenm > 10, we have the following conclusion: #f >
then every partltlon based equilibrium that matches the economic efﬂmenﬁfdias
a higher communication complexity thaf® . In other words, the quasi-field offers
an efficiency—complexity combination that cannot be achieved or improved upon (in the
Pareto sense) by any field.

The above example notwithstanding, the efficiency—complexity combinations which
arise from arbitrary quasi-fields are still subject to a tradeoff that is not much better than
for fields. This is the content of our final remark.

Remark 2. Let m = |A| and letk be a positive integer. Any quasi-field < 24 with
» < m/k must contain a partition oA into k non-empty parts, and therefore must satisfy
|X| > 2k,

Proof. Let there bem buyers, each with valuatiom, for a distincta € A. For thisv

we haveSmax(v) = m. If ry < m/k then we must havés (v) > k. Hence an optimal

X -allocation has to assign non-empty bundles of goods to at leéstyers. ThusY
containsk pairwise disjoint non-empty sets of goods, and therefore, being a quasi-field,
also a partition ofA into k non-empty parts. O
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