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Abstract

This paper analyzes ex post equilibria in the VCG combinatorial auctions. IfΣ is a family of
bundles of goods, the organizer may restrict the bundles on which the participants subm
and the bundles allocated to them, to be inΣ . The Σ-VCG combinatorial auctions obtained
this way are known to be truth-telling mechanisms. In contrast, this paper deals with non-res
VCG auctions, in which the buyers choose strategies that involve bidding only on bundlesΣ ,
and these strategies form an equilibrium. We fully characterize thoseΣ that induce an equilibrium
in every VCG auction, and we refer to the associated equilibrium as a bundling equilib
The main motivation for studying all these equilibria, and not just the domination equilibriu
that they afford a reduction of the communication complexity. We analyze the tradeoff be
communication complexity and economic efficiency of bundling equilibrium.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The Vickrey–Clarke–Groves (VCG) mechanisms (Vickrey, 1961; Clarke, 1971; Gr
1973) are central to the design of protocols with selfish participants (e.g., Ephra
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Rosenschein, 1991; Nisan and Ronen, 2001; Tennenholtz, 1999; Varian, 1995
in particular for combinatorial auctions (e.g., Weber, 1983; Krishna and Perry, 1
de Vries and Vohra, 2000; Wellman et al., 2001; Monderer and Tennenholtz,
Lehmann et al., 1999), in which the participants submit bids, through which they
express preferences over bundles of goods. The organizer allocates the goods and
payments based on the participants’ bids.1 These mechanisms allow to allocate a se
goods (or services, or tasks) in a socially optimal (surplus maximizing) manner, ass
there are no resource bounds on the agents’ computational capabilities. There
least two sources of computational issues, which arise when dealing with combin
auctions: winner determination–finding the optimal allocation (see, e.g., Rothkopf
1998; Tennenholtz, 2000; Sandholm, 1999; Fujishima et al., 1999; Anderson et al.,
Sandholm et al., 2001; Hoos and Boutilier, 2000), and bid communication–the trans
information, on which we focus in this paper.

The VCG mechanisms are designed in such a way that truthful revealing of the a
private information2 is a dominant strategy for them. They have been applied mainly i
context of games in informational form, where no probabilistic assumptions about a
types are required.3 Domination and equilibrium in such games have traditionally b
referred to as ex post solutions because they have the property that if the players w
about the true state, after they chose their actions, they would not regret their action4

The revelation principle (see, e.g., Myerson, 1979) implies that the discussion of
non-truth revealing equilibria of the VCG mechanisms may seem unneeded, and in
has been ignored by the literature. It can be proved that every mechanism with an e
equilibrium is economically equivalent to another mechanism—a direct mechanism
which every agent is required to submit his information. In this direct mechanism, reve
the true type is an ex post dominating strategy for every agent, and it yields the
economics parameters as the original mechanism. However, the two mechanisms d
the set of inputs that the player submits in equilibrium. This difference may be cr
when we deal with communication complexity. Thus, two mechanisms that are equi
from the economics point of view, may be considered different mechanisms from th
point of view.

1 Motivated by the FCC auctions (see, e.g., Cramton, 1995; McMillan, 1994; Milgrom, 1998) there
extensive recent literature devoted to the design and analysis of multistage combinatorial auctions, in w
bidders express partial preferences over bundles at each stage. See, e.g., Wellman et al. (2001), Perry
(1999), Ausubel (2000), Parkes (1999), Parkes and Ungar (2000), Ausubel and Milgrom (2001).

2 This paper deals with the private-values model, in which every buyer knows his own valuations of bun
goods. In contrast, in a correlated-values model, every buyer receives a signal (possibly about all buyers’ v
functions), and this signal does not completely reveal his own valuation function (see, e.g., Milgrom and
(1982), Jehiel and Moldovanu (2001), McAfee and Reny (1992), Dasgupta and Maskin (2000), Perry an
(1999, 1999a) for discussions of models in which valuations are correlated).

3 A game in informational form is a pre-Bayesian game. That is, it has all the ingredients of a Bayesia
except for the specification of probabilities.

4 Alternatively, ex post solutions may be called probability-independent solutions because, up to
technicalities concerning the concept of measurable sets, they form Bayesian solutions for every spec
of probabilities.



106 R. Holzman et al. / Games and Economic Behavior 47 (2004) 104–123

ces a
rium,
ions.

mputer
tional
1999;

ndani
ich the
assume

post
ize

s
s that
d

y and

rificed
rlying
ex post
rium
f the
. We

er of
cy
s give

f this
is

s. One
es only.
002), is
whereas

number
am and

do not
an and
ntinuous
settings
Thus, tackling the VCG mechanisms from a computational perspective introdu
vastly different picture. While the revelation of the agents’ types defines one equilib
there are other (in fact, over-exponentially many) equilibria for the VCG auct
Moreover, these equilibria have different communication requirements.

The communication problem has motivated researchers in economics and in co
science to examine the properties of simpler auction mechanisms, in which ra
buyers do not fully reveal valuations (see, e.g., Gul and Stacchetti, 2000; Parkes,
Parkes and Ungar, 2000; Wellman et al., 2001; Ausubel and Milgrom, 2001; Bikhcha
et al., 2001). The main goal of the above papers was to characterize models in wh
suggested auctions lead to efficient outcomes. Such models are very rare, and they
various forms of substitution properties (see, e.g., Gul and Stacchetti, 1999).

In this paper we deal with unrestricted valuation functions, and analyze ex
equilibria in the VCG mechanisms. LetΣ be a family of bundles of goods. We character
thoseΣ , for which the strategy of reporting the true valuation over the bundles inΣ is a
player-symmetric ex post equilibrium. An equilibrium that is defined by suchΣ is called a
bundling equilibrium.5 We prove thatΣ induces a bundling equilibrium if and only if it i
a quasi-field6 of bundles. The class of bundling equilibria includes a natural subclas
consists of partition-based equilibria, in which the familyΣ is a field (i.e., it is generate
by a partition).

The main topic we study is the quantitative tradeoff between economic efficienc
communication complexity offered by the class of bundling equilibria.7 In other words,
we address the following question: How much economic efficiency needs to be sac
in order to keep the communication complexity at an acceptable level? The unde
assumption is that a VCG mechanism is used, and the buyers’ strategies form an
equilibrium. We measure the (worst case) economic inefficiency of a given equilib
by the supremum, taken over all profiles of valuations for any number of buyers, o
ratio between the optimal social surplus and the surplus obtained in that equilibrium
measure the communication complexity of a given bundling equilibrium by the numb
bundles inΣ .8 Qualitatively, it is clear that asΣ becomes larger the economic inefficien
is reduced at the expense of higher communication complexity. Our main result

5 It is far from obvious, but true, that every ex post equilibrium in the VCG mechanisms must be o
form, i.e., associated with a family of bundlesΣ in the above sense. In particular, every ex post equilibrium
player-symmetric. This is proved in a subsequent paper (Holzman and Monderer, 2002).

6 A quasi-field is a non-empty set of sets that is closed under complements and under disjoint unions.
7 The same kind of tradeoff is studied in (Nisan and Segal, 2002) for a wider class of mechanism

difference between our approach and that of (Nisan and Segal, 2002) is that we look at equilibrium profil
Another difference, which is important for a comparison of our results and those of (Nisan and Segal, 2
that we view the set of goods as fixed and allow the number of buyers to vary in our worst-case analysis,
in (Nisan and Segal, 2002) the number of buyers is fixed and the bounds obtained are asymptotic as the
of goods becomes large. Communication complexity in equilibrium has been discussed also in (Shoh
Tennenholtz, 2001).

8 In our context, this measure of communication complexity seems very intuitive, and therefore we
delve into formal definitions of communication complexity that apply to more general situations. See (Nis
Segal, 2002) for a discussion of two approaches to this concept: the dimensionality measure, suited for co
settings and common in economics (e.g., Hurwicz, 1977), and the bit-count measure, suited for discrete
and common in computer science (e.g., Kushilevitz and Nisan, 1997).
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quantitative bounds on this tradeoff for partition-based equilibria, which are tig
infinitely many cases.

Thus, we are looking at a full spectrum of equilibria. At one end, we have
truth-telling equilibrium that yields the maximum social surplus but has prohib
communication complexity. At the other end, we have the very simple but poten
highly inefficient equilibrium in which the buyers only bid on the bundle of all goods. A
common in a multiple equilibria setup, we do not know what equilibrium will be reac
However, the buyers will reach an equilibrium,9 which reflects a reasonable comprom
between complexity and efficiency considerations. Note that had the organizer k
the chosen equilibrium (i.e., the familyΣ) she could have restricted the allowed b
(and allocations) to bundles inΣ . In such case, this equilibrium becomes a domina
equilibrium. However, the organizer may not wish to restrict the bids because s
handling many auctions with different types of users, and it is not reasonable for her t
changing the rules of the auction. Alternatively, the organizer can recommend to the
to bid only on bundles in the familyΣ that induces the selected bundling equilibriu
Each buyer is free to accept or reject the recommendation, but in view of the equili
property, it is rational for the buyers to follow the recommendation.

Section 2 provides the reader with a rigorous framework for general analysis of
mechanisms for combinatorial auctions. In Section 3 we introduce bundling equilib
and provide a full characterization of bundling equilibria for VCG mechanisms. T
we discuss bundling equilibrium that is generated by a partition, titled parti
based equilibrium. In Section 4 we deal with the social surplus of VCG mechan
for combinatorial auctions when following partition-based equilibrium, exploring
spectrum between economic efficiency and communication efficiency.

2. Combinatorial auctions

In a combinatorial auction there is a seller, denoted by 0, who wishes to sell
of m itemsA = {a1, . . . , am}, m � 1, that are owned by her. There is a set of buy
N = {1,2, . . . , n}, n � 1. LetΓ be the set of all allocations of the goods. That is, ev
γ ∈ Γ is an ordered partition ofA, γ = (γi)i∈N∪{0}. A valuation functionof buyer i is
a functionvi : 2A → �, where� denotes the set of real numbers, with the normaliza
vi(∅) = 0, which satisfies: IfB ⊆ C, B,C ∈ 2A, thenvi(B) � vi(C).

Let Vi be the set of all possible valuation functions ofi (obviouslyVi = Vj for all
i, j ∈ N ), and letV = ×i∈NVi . We assume each buyer knows his valuation function o

A mechanismM = (X,d, c) for allocating the goods is defined by sets of messa
Xi , one set for each buyeri, and by a pair(d, c) with d :X → Γ , andc :X → �n, where
X = ×i∈NXi . d is called the allocation function andc the transfer function; if the buyer
send the profile of messagesx ∈ X, buyeri receives the set of goodsdi(x) and paysci(x)
to the seller; his utility isui(vi , x) = vi(di(x))− ci(x). In a general model of auctions th

9 For example, the agents may reach the equilibrium by a process of learning (see, e.g., Hon-Snir et a
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seller may set reserve prices (in the form of a valuation function). We assume:No reserve
prices.10

A strategyof i is a functionbi :Vi → Xi . A profile of strategiesb = (b1, . . . , bn) is
player-symmetricif bi = bj for all i, j ∈ N . A profile of strategiesb = (b1, . . . , bn) is an
ex post equilibrium, if for every agenti, for everyvi ∈ Vi , for everyv−i ∈ V−i , and for
everyxi ∈ Xi ,

ui
(
vi, bi(vi), b−i (v−i )

)
� ui

(
vi, xi, b−i (v−i )

)
, (2.1)

whereb−i (v−i ) = (bj (vj ))j 
=i . A strategybi of i is anex post dominant strategyfor i, if
(2.1) holds for everyb−i , for everyvi ∈ Vi , for everyv−i ∈ V−i , and for everyxi ∈ Xi .

Obviously, ifbi is an ex post dominant strategy for everyi, b is an ex post equilibrium
but not necessarily vice versa. An ex post equilibriumb, in which every strategybi is ex
post dominant is called an ex postdomination equilibrium.

A mechanism(X,d, c) is called adirect mechanism ifXi = Vi for everyi ∈ N . That
is, in a direct mechanism a buyer’s message contains a full description of some va
function. A direct mechanism is calledtruth revealingif for every buyeri, telling the truth
(bi(vi) = vi ) is an ex post dominant strategy.

For an allocationγ and a profile of valuationsv, we denote byS(v, γ ) the total social
surplusof the buyers, that is

S(v, γ ) =
∑
i∈N

vi(γi).

We also denote:

Smax(v) = max
γ∈Γ S(v, γ ).

Well-known truth revealing mechanisms are the VC (Vickrey–Clarke) mechanis11

These mechanisms are parametrized by an allocation functiond , that is socially optimal
That is, S(v, d(v)) = Smax(v) for every v ∈ V . The transfer functions are defined
follows:

cdi (v) = max
γ∈Γ

∑
j 
=i

vj (γj )−
∑
j 
=i

vj
(
dj (v)

)
. (2.2)

The mechanisms differ in the allocation they pick in cases in which there exist more
one socially optimal allocation, and therefore in the second term in (2.2). We will re
a VC mechanism by the allocation functiond that determines it. Note that 0� cdi (v) �
vi(di(v)) for every i ∈ N andv ∈ V . This implies that a truth telling buyer always ge
non-negative utility (this is called individual rationality), and the seller’s revenue is alw
non-negative.

More general mechanisms are the VCG mechanisms. Every VCG mechan
obtained from some VC mechanism by changing the transfer functions: A

10 This is not an innocuous assumption. The general case is discussed in Section 3.3. For discussio
importance of reserve prices see, e.g., (Myerson, 1981; Ausubel and Cramton, 1999a).

11 By VC mechanisms we refer here to what is also known as Clarke mechanisms or the pivotal mecha
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mechanism is defined by a socially optimal allocation functiond and by a family of
functionsh = (hi)i∈N . The transfer functions are defined by

cdi (v) = max
γ∈Γ

∑
j 
=i

vj (γj )−
∑
j 
=i

vj
(
dj (v)

) + hi(v−i ).

Observe that a VCG mechanism is strategically equivalent to the VC mechan
is based on, and moreover they require the same communication and result in id
allocations. For our purposes, therefore, we may (and will) restrict attention to
mechanisms without loss of generality. Of course, the individual rationality and rev
non-negativity properties noted above for VC mechanisms do not carry over to g
VCG mechanisms.

It is well known that in any VCG mechanism truth telling is an ex post dominant stra
for every buyer, and hence forms an ex post equilibrium. In the next section we d
other ex post equilibria in the VCG mechanisms.

3. Bundling equilibrium

Let Σ ⊆ 2A be a family of bundles of goods. We deal only with such familiesΣ for
which

• ∅ ∈ Σ .

A valuation functionvi is aΣ-valuation functionif

vi(B) = max
C∈Σ,C⊆B

vi(C), for everyB ∈ 2A.

The set of allΣ-valuation functions inVi is denoted byV Σ
i . We further denote

V Σ = ×i∈NVΣ
i . For every valuation functionvi we denote byvΣi its projection onV Σ

i ,
that is:

vΣi (B) = max
C∈Σ,C⊆B

vi(C), for everyB ∈ 2A.

Obviously vΣi ∈ V Σ
i , and for vi ∈ V Σ

i , vΣi = vi . In particular(vΣi )Σ = vΣi for every
vi ∈ Vi . Let f Σ :Vi → V Σ

i be the projection function defined by

f Σ(vi) = vΣi .

An allocationγ is aΣ-allocation if γi ∈ Σ for every buyeri ∈ N . The set of allΣ-
allocations is denoted byΓ Σ .

The following theorem is proved in (Holzman and Monderer, 2002).

Theorem (Holzman and Monderer).Let N be a set of buyers, with n = |N | � 3. Let
b = (b1, . . . , bn) be a profile of strategies such that for everyN ′ ⊆ N the restriction of
b toN ′ forms an ex post equilibrium in every VCG mechanism with buyer setN ′. Thenb is
player-symmetric, and moreover there exists aΣ ⊆ 2A such thatbi = f Σ for everyi ∈ N .
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Here we are interested in the following question: For whichΣ , do we have tha
(f Σ, . . . , f Σ) is an ex post equilibrium in every VCG mechanism (with any numbe
buyers)? In such a case we callfΣ a bundling equilibriumfor the VCG mechanisms an
say thatΣ induces a bundling equilibrium. The next example shows that not eveΣ

induces a bundling equilibrium.
Before we present the example we need the following notation. LetB ∈ 2A, we denote

by wB the following valuation function:

If B 
= ∅, wB(C) =
{

1 if B ⊆ C,

0 otherwise.12

If B = ∅, wB(C) = 0 for all C ∈ 2A.

Example 1. Let A contain four goodsa, b, c, d . Let

Σ = {a, d, bcd, abc,A,∅}.13

Let v2 = wa,v3 = wd . Consider buyer 1 withv1 = wbc. Note thatvi ∈ V Σ
i for i = 2,3.

If buyer 1 usesf Σ he declaresv′
1(bcd) = v′

1(abc) = v′
1(A) = 1 andv′

1(C) = 0 for all
otherC, and there exists a VC mechanism that allocatesa to 2,d to 3, andbc to the seller.
In this mechanism the utility of 1 from usingf Σ is zero. On the other hand, if agent
reports the truth (wbc), he receives (in every VC mechanism)bc and pays nothing. Hence
his utility would be 1. Thereforef Σ is not in equilibrium in this VC mechanism, and hen
Σ does not induce a bundling equilibrium.

3.1. A characterization of bundling equilibria

Σ ⊆ 2A is called aquasi-fieldif it satisfies the following properties:14

• B ∈ Σ implies thatBc ∈ Σ , whereBc = A \ B.
• B,C ∈ Σ andB ∩C = ∅ imply thatB ∪C ∈ Σ .15

Theorem 1. Σ induces a bundling equilibrium if and only if it is a quasi-field.

Proof. SupposeΣ is a quasi-field. Consider a VC mechanism with an allocation funct
d . We show that(f Σ, . . . , f Σ) is an ex post equilibrium in this VC mechanism.

Assume that every buyerj , j 
= i, uses the strategybj = fΣ . Let v−i ∈ V−i . We have
to show that for buyeri with valuationvi , vΣi is a best reply tovΣ−i . As truth revealing is
a dominant strategy in every VC mechanism, it suffices to show that buyeri ’s utility when
submittingvΣi is the same as when submittingvi . That is, we need to show that

S
((
vi, v

Σ−i

)
, γ

) − α = Smax
(
vi, v

Σ−i

) − α,

12 ForB 
= ∅, a valuation function of the formwB is called a unanimity TU game in cooperative game the
An agent with such a valuation function (up to scaling) is called by Lehmann et al. (1999) a single-minded

13 We omit braces and commas when writing subsets ofA.
14 Recall our assumption that we deal only withΣ such that∅ ∈Σ .
15 Equivalently, the union of any number of pairwise disjoint sets inΣ is also inΣ .
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whereγ = d(vΣi , vΣ−i ), andα is the first term in (2.2) which depends only onvΣ−i .
Hence, we have to show that

S
((
vi, v

Σ−i

)
, γ

) = Smax
(
vi, v

Σ−i

)
. (3.1)

Obviously,

S
((
vi, v

Σ−i

)
, γ

)
� Smax

(
vi, v

Σ−i

)
. (3.2)

As vi(B) � vΣi (B) for everyB ∈ 2A,

S
((
vi, v

Σ−i

)
, γ

)
� S

((
vΣi , vΣ−i

)
, γ

) = Smax
(
vΣi , vΣ−i

)
. (3.3)

Let ξ = d(vi, v
Σ−i ). For j 
= i and j 
= 0, let ξΣj ∈ Σ be such thatξΣj ⊆ ξj and

vΣj (ξΣj ) = vΣj (ξj ). Let ξΣi = (∪j 
=0,iξ
Σ
j )c, and letξΣ0 = ∅.

BecauseΣ is a quasi-field,ξΣi ∈ Σ , and henceξΣ ∈ Γ Σ . As ξi ⊆ ξΣi , ξΣ is also
optimal for(vi , vΣ−i ). Hence

Smax
(
vi, v

Σ−i

) = S
((
vi, v

Σ−i

)
, ξΣ

) = S
((
vΣi , vΣ−i

)
, ξΣ

)
� Smax

(
vΣi , vΣ−i

)
. (3.4)

Combining (3.2), (3.3), and (3.4) yields (3.1).

SupposeΣ induces a bundling equilibrium. We first show that ifB ∈ Σ , thenBc ∈ Σ .
If B = A then by definitionBc = ∅ ∈ Σ . LetB ⊂ A. Assume, for the sake of contradictio
thatBc 
∈ Σ . Let v2 = wB andv1 = wBc . Note thatvΣ2 = v2. Thus, if buyer 2 usesf Σ , he
declaresv2. If buyer 1 usesf Σ , he declaresvΣ1 , wherevΣ1 (Bc) = 0. Hence, there exist
a VC mechanismd , that allocatesB to agent 2 andBc to the seller. However, if buyer
deviates and declares his true valuation, then this VC mechanism allocatesBc to him, and
he pays nothing. Hence, there is a profitable deviation fromfΣ , a contradiction.

Next, we show that ifB,C ∈ Σ are disjoint thenB ∪ C ∈ Σ . By the first part of the
proof, it suffices to show that(B ∪ C)c ∈ Σ . Clearly, we may assume that the setsB, C,
and(B ∪C)c are all non-empty. Assume, for the sake of contradiction, that(B ∪C)c /∈ Σ .
Consider three buyers with valuationsv1 = w(B∪C)c , v2 = wB , v3 = wC . Proceeding as in
the first part of the current part of the proof yields a similar contradiction.✷

It may be useful to note that iff Σ is a buyer-symmetric equilibrium for a fixed set
buyers, thenΣ is not necessarily a quasi-field. For example, if there is only one b
everyΣ such thatA ∈ Σ induces an equilibrium. In the case of two buyers, being clo
under complements is necessary and sufficient forΣ to induce an equilibrium. Howeve
it can be deduced from the proof of the only if part of Theorem 1, that for a fixed s
buyersN , if n = |N | � 3, thenΣ must be a quasi-field if it induces an equilibrium for t
set of buyersN .

3.2. Partition-based equilibrium

Letπ = {A1, . . . ,Ak} be a partition ofA into non-empty parts. That is,Ai 
= ∅ for every
Ai ∈ π , ∪k

i=1Ai = A, andAi ∩Aj = ∅ for everyi 
= j . LetΣπ be the field generated byπ .
That is,Σπ contains all the sets of goods of the form∪i∈IAi , whereI ⊆ {1, . . . , k}. To
avoid confusion:∅ ∈ Σπ . For convenience, we will usef π to denotefΣπ . A corollary of
Theorem 1 is
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Corollary 1. f π is a bundling equilibrium.

Proof. As Σπ is a field it is in particular a quasi-field. Hence, the proof follows fr
Theorem 1. ✷

A bundling equilibrium of the formf π , whereπ is a partition, will be called apartition-
based equilibrium. Thus, a partition-based equilibrium is a bundling equilibriumf Σ that is
based on a fieldΣ = Σπ . It is important to note that there exist quasi-fields, which are
fields. For example, letA = {a, b, c, d}. Σ = {ab, cd, ac, bd,A,∅} is a quasi-field, which
is not a field. We note, however, that whenm = |A| � 3, the notions of quasi-field and fie
coincide.

3.3. Reserve prices

The seller may wish to prevent the sale of goods at a price that she considers to
This is modeled by assuming that the seller has a valuation functionv0. There are two
common methods to modify the VCG auction’s rules in order to allow the seller to ex
her preferences.16 In one of them, the seller submits a bidvr , which is not known to the
buyers. Of course, the buyers must believe that the seller cannot change her bid af
make their bids. This is the case when the seller and the organizer are not the sam
or if the auction is controlled by a trusty third party. In such a case, the seller is ju
additional player in the auction game. However, in the associated(n+1)-person game, th
payoff of the additional player is not determined by the VCG scheme, and our resu
not hold for such games.

In the second approach the seller announcesvr as part of the auction’s rules. In such
case our results are easily generalized as follows:

Theorem 1r. Σ induces a bundling equilibrium if and only if it is a quasi-field a
vr = vΣr .

Hence, the seller may keep all bundling equilibria alive by introducing a reserve
which is a{∅,A}-valuation function, and she can kill all bundling equilibria except for
domination equilibrium by submitting an arbitrary valuation function with a positive p
for each good. We do not attempt in this paper to analyze the design stage, in wh
seller decides strategically whichvr to announce.

4. Economic efficiency and communication complexity

Let Σ ⊆ 2A. If every buyer usesfΣ , then in every VCG mechanism, the total surp
generated when the valuations of the buyers are given byv ∈ V is Smax(v

Σ).

16 Both methods appear in eBay auctions.
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We denote

SΣ-max(v) = max
γ∈ΓΣ

S(v, γ ).

Obviously,

SΣ-max(v) = SΣ-max(v
Σ) = Smax(v

Σ), for everyv ∈ V.

For convenience we denoteSΣ-max by SΣ , and we callSΣ the Σ-optimal surplus
function(note thatS2A = Smax). WhenΣ is a field generated by a partitionπ we write
Sπ for SΣπ .

If Σ is a quasi-field we say that thecommunication complexityof the equilibriumf Σ

is the number of bundles inΣ , that is|Σ|. Notice that this is a natural definition becaus
buyer who is usingf Σ has to submit a vector of|Σ| numbers to the seller.17 Thus, ifπ is
a partition, the communication complexity is 2|π |. If Σ1 ⊆ Σ2, thenSΣ1(v) � SΣ2(v) for
everyv ∈ V . So,Σ2 induces more surplus (a proxy for economic efficiency) thanΣ1, but
Σ2 also induces higher communication complexity.18 Hence, there is a tradeoff betwe
economic efficiency and computational complexity.

For every family of bundlesΣ with A ∈ Σ we define

rnΣ = sup
v∈V,v 
=0

Smax(v)

SΣ(v)
, (4.1)

whereV = V1 × · · · × Vn. Thus,rnΣ is a worst-case measure of the economic inefficie
that may result from using the strategyfΣ when there aren buyers. ObviouslyrnΣ � 1,
and equality holds forΣ = 2A. A standard argument using homogeneity and continuit
Smax/SΣ shows that the supremum in (4.1) is attained, i.e., it is a maximum.

The following remark gives a simple upper bound on the inefficiency associated
Σ .

Remark 1. For everyΣ ⊆ 2A with A ∈ Σ , and for everyv ∈ V ,

Smax(v) � nSΣ(v),

wheren is the number of buyers. Consequently,

rnΣ � n.

Proof. Let γ = d(v), whered is any VC mechanism.

Smax(v) = S(v, γ ) =
∑
i∈N

vi(γi) �
∑
i∈N

vi(A) =
∑
i∈N

vΣi (A)� nSΣ(v). ✷

17 A discussion of the way this can be extended to deal with the introduction of concise bidding lang
(Nisan, 2000; Boutilier and Hoos, 2001) is beyond the scope of this paper.

18 Incidentally, unlike social surplus, the revenue of the seller is not a monotone function of the quasi-fiΣ ,
as can be seen from simple examples. Yet, it is commonly believed that social optimality is a good pr
revenue. This was proved to be asymptotically correct when the number of buyers is large, and the organ
a Bayesian belief over the distribution of valuation functions, which assumes independence across buy
Monderer and Tennenholtz, 2000). It was also proved to be correct in models that assume the possib
resale (Ausubel and Cramton, 1999).
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However, we are interested mainly in upper bounds on the economic inefficienc
are independent of the number of buyers. For every family of bundlesΣ with A ∈ Σ we
define

rΣ = sup
n�1

rnΣ. (4.2)

It is easy to see that, since any allocation assigns non-empty bundles to at mostm = |A|
buyers, the supremum in (4.2) is attained for somen � m. WhenΣ = Σπ for a partitionπ ,
we writerπ instead ofrΣπ .

In the following subsection we characterize and estimaterπ , thereby obtaining a
quantitative form of the tradeoff between communication and economic efficien
partition-based equilibria.

4.1. Communication efficiency vs. economic efficiency in partition-based equilibria

We first expressrπ in terms of the partitionπ = {A1, . . . ,Ak} only. A feasiblefamily
for π is a family∆ = (Hi)

s
i=1 of (not necessarily distinct) subsets of{1, . . . , k} satisfying

the following two conditions:

• Hi ∩Hj 
= ∅ for every 1� i, j � s.
• |{i : l ∈ Hi}| � |Al| for every 1� l � k.

We writes = s(∆) for the number of sets in the family∆ (counted with repetitions).

Theorem 2. For every partitionπ ,

rπ = maxs(∆),

where the maximum is taken over all families∆ that are feasible forπ .

Proof. We first prove thatrπ � maxs(∆). It suffices to show that for everyv ∈ V there
exists a feasible family∆ for π such that

Smax(v) � s(∆) · Sπ(v).
Let v ∈ V . Let γ be a socially optimal allocation. That is,

Smax(v) =
∑
i∈N

vi(γi).

For everyγi let γ π
i be the minimal set inΣπ that containsγi . That isγ π

i = ∪l∈JiAl where
Ji = {l ∈ {1, . . . , k}: Al ∩ γi 
= ∅}.

Let ξ be a partition ofN to r subsets, such that for everyi, j ∈ I ∈ ξ , i 
= j ,
γ π
i ∩ γ π

j = ∅. Assumer is theminimalcardinality of such a partition. For everyI ∈ ξ let
HI = ⋃

i∈I Ji . That is, eachHI is a set of indices of partsAl in π that should be allocate
to the buyers inI in order for each of them to get the goods they received in the opt
allocationγ . Note that ifI 
= J , HI ∩ HJ 
= ∅, otherwise we can joinI andJ together
in contradiction to the minimality of the cardinality ofξ . Hence,∆ = (HI )I∈ξ is a family
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of subsets of{1, . . . , k} that satisfies that any two subsets in∆ intersect. Furthermore, th
second condition for feasibility is also satisfied, because for any givenl ∈ {1, . . . , k} there
are at most|Al| buyersi with γi ∩ Al 
= ∅, and hence at most|Al| partsI ∈ ξ such that
l ∈ HI . Thus,∆ is a feasible family forπ with s(∆) = r.

EveryHI , I ∈ ξ defines aΣπ -allocation. In this allocation everyi ∈ I receivesγ π
i , and

the seller receives all other goods. Therefore
∑

i∈I vi(γ π
i ) � Sπ (v) for everyI ∈ ξ . Hence,

Smax(v) �
∑
i∈N

vi
(
γ π
i

) =
∑
I∈ξ

∑
i∈I

vi
(
γ π
i

)
�

∑
I∈ξ

Sπ (v) = rSπ(v).

Next, we prove thatrπ � maxs(∆). It suffices to show that for every feasible family∆
for π there exists a profile of valuationsv = (v1, . . . , vn) 
= 0 for some numbern of buyers
satisfying

Smax(v) � s(∆) · Sπ(v).
Let ∆ = (Hi)

s
i=1 be a feasible family forπ . By the second condition of feasibility

we can associate with eachHi a set of goodsBi containing one good from eachAl such
that l ∈ Hi , in such a way that the setsBi are pairwise disjoint. By the first condition o
feasibility, for every 1� i, j � s there can be no two disjoint setsCi,Cj ∈ Σπ such that
Bi ⊆ Ci , Bj ⊆ Cj .

Now, we taken = s buyers, and let buyeri have the valuationvi = wBi . Then
Smax(v) = s whereasSπ (v) = 1. ✷

Theorem 2 reduces the determination of the economic inefficiency measurerπ to a
purely combinatorial problem. However, this combinatorial problem does not adm
easy solution.19 Nevertheless, we will use Theorem 2 to calculaterπ in some special case
and to obtain a general upper bound for it which is tight in infinitely many cases.

The following proposition determinesrπ for partitionsπ with a small number of parts
We use the notations�·� and �·� for the lower and upper integer rounding functio
respectively.

Proposition 1. Let |A| = m, and letπ = {A1, . . . ,Ak} be a partition ofA into k non-empty
sets.

• If k = 1 thenrπ = m.
• If k = 2 then rπ = max{|A1|, |A2|}. Consequently, the minimum ofrπ over all

partitions ofA into 2 parts is�m/2�.
• If k = 3 then rπ = max{|A1|, |A2|, |A3|, �m/2�}. Consequently, the minimum ofrπ

over all partitions ofA into 3 parts is�m/2�.

Proof. In each case, we determine the maximum ofs(∆) over all families∆ that are
feasible forπ .

19 The special case of this problem, in which|Ai | = |Aj | for all Ai,Aj ∈ π , has been treated in th
combinatorial literature using a different but equivalent terminology (see, e.g. Füredi, 1990). But even
case, a precise formula for maxs(∆) seems out of reach.
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For k = 1, a feasible family consists of at most|A1| = m copies of{1}, and therefore
maxs(∆) = m.

A feasible family fork = 2 cannot contain two sets,Hi andHj , such that 1/∈ Hi and
2 /∈ Hj , because such sets would be disjoint. Hence, for any feasible family∆, either all
sets contain 1 or all of them contain 2. Therefore,s(∆) � max{|A1|, |A2|}. On the other
hand, feasible families of size|A1|, |A2| trivially exist.

Supposek = 3, and denote

βl = |Al| for l = 1,2,3.

We first show thats(∆) � max{β1, β2, β3, �m/2�} for every feasible family∆. If ∆

contains some singleton{l}, then all sets in∆ must containl, and hences(∆) � βl .
Otherwise,∆ consists ofs12 copies of{1,2}, s13 copies of{1,3}, s23 copies of{2,3},
ands123 copies of{1,2,3}, for some non-negative integerss12, s13, s23, s123. We have the
following inequalities:

s12 + s13 + s123� β1, s12 + s23 + s123� β2, s13 + s23 + s123� β3.

Upon adding these inequalities we obtain

2(s12 + s13 + s23)+ 3s123� m,

which implies

s(∆) = s12 + s13 + s23 + s123� �m/2�.
We show next that there exists a feasible family∆ with s(∆) = max{β1, β2, β3, �m/2�}. If
this maximum is one of theβl ’s, this is trivial. So assume thatβl < �m/2� for l = 1,2,3.
If m is even then the family∆ that consists of

s12 = β1 + β2 − β3

2
copies of{1,2}, s13 = β1 + β3 − β2

2
copies of{1,3},

s23 = β2 + β3 − β1

2
copies of{2,3},

is feasible (note that the prescribed numbers are non-negative becauseβl < �m/2� for
l = 1,2,3, and they are integers becauseβ1 +β2 +β3 = m is even). The size of this famil
is s(∆) = s12 + s13 + s23 = m/2. If m is odd, we make slight changes in the values
s12, s13, s23: we add 1/2 to one of them and subtract 1/2 from the other two. In this wa
we get a family∆ with s(∆) = �m/2�. ✷

We see from Proposition 1 that if we use partitions into two parts (entailin
communication complexity of 4), the best we can do in terms of economic effici
is rπ = �m/2�, and this is achieved by partitioningA into equal or nearly equal part
Allowing for three parts (and therefore a communication complexity of 8) permits o
small gain inrπ (in fact, no gain at all whenm is even).

We will now state the two parts of our main result.

Theorem 3. Let π = {A1, . . . ,Ak} be a partition ofA into k non-empty sets of maximu
sizeβ(π). (That is,β(π) = max{|A1|, . . . , |Ak|}.) Then

rπ � β(π) · ϕ(k), whereϕ(k) = max
j=1,...,k

min{j, k/j }.
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The proof of Theorem 3 is given in the following subsection.
Note that

ϕ(k) �
√
k.

In particular, if all sets inπ have equal sizem/k, we obtain the upper bound

rπ � m√
k
.

Now, consider the case when, for some non-negative integerq , we have

k = q2 + q + 1, (4.3)

|Ai | = q + 1 for i = 1, . . . , k. (4.4)

In this case

ϕ(k) = q2 + q + 1

q + 1
,

and hence the upper bound of Theorem 3 takes the form

rπ � k.

The second part of our main result implies that in infinitely many of these cases this
bound is tight.

Theorem 4. Let π = {A1, . . . ,Ak} be a partition that satisfies(4.3)and (4.4) for someq
which is either0 or 1 or of the formpl wherep is a prime number andl is a positive
integer. Then

rπ = k.

We prove Theorems 3 and 4 in the following subsection.

4.2. Proofs of Theorems 3 and 4

We begin with some preparations. Let∆ = (Hi)
s
i=1 be a family of (not necessaril

distinct) subsets of{1, . . . , k}. A vector of non-negative numbersδ = (δi)
s
i=1 is called a

semi balanced20 vector for∆ if for every l ∈ {1, . . . , k},
∑

i: l∈Hi

δi � 1.

20 This concept is equivalent to what is called a fractional matching in combinatorics. We chose th
semi balanced, because balanced vectors, defined by requiring equality instead of weak inequality, are a
concept in game theory (see, e.g., Shapley, 1967).
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Proposition 2. Let ∆ = (Hi)
s
i=1 be a family of (not necessarily distinct) subsets o

{1, . . . , k} such thatHi ∩Hj 
= ∅ for every1 � i, j � s. Letδ = (δi)
s
i=1 be a semi balance

vector for∆. Then

s∑
i=1

δi � ϕ(k), whereϕ(k) = max
j=1,...,k

min{j, k/j }.

Proof. Assume without loss of generality thath = |H1| is the minimal number of elemen
in a member of∆. The proposition will be proved if we prove the following two claims

Claim 1.
∑s

i=1 δi � h.

Claim 2.
∑s

i=1 δi � k/h.

Proof of Claim 1. Let z = ∑
l∈H1

∑
i:l∈Hi

δi . As everyHi intersectsH1, everyδi appears
in z at least once. Therefore,z �

∑s
i=1 δi . Becauseδ is semi balanced,

∑
i: l∈Hi

δi � 1 for
everyl, and in particular forl ∈ H1. Hence,z �

∑
l∈H1

1 = h. ✷
Proof of Claim 2. Let w = ∑k

l=1
∑

i: l∈Hi
δi . Everyδi appears inw exactly |Hi| times.

Since|Hi| � h for everyi, we havew � h
∑s

i=1 δi . On the other hand, as in the proof
Claim 1, we obtainw �

∑k
l=1 1 = k. Combining the two inequalities, we get

∑s
i=1 δi �

k/h. ✷
Therefore,

s∑
i=1

δi � min{h, k/h} � ϕ(k). ✷

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. Let π = {A1, . . . ,Ak} be a partition ofA into k non-empty sets o
maximum sizeβ(π). We have to prove thatrπ � β(π) · ϕ(k). By Theorem 2, it suffices to
show that for every feasible family∆ for π , we have

s(∆) � β(π) · ϕ(k).
Let ∆ = (Hi)

s
i=1 be such a family. Consider the vectorδ = (δi)

s
i=1 with

δi = 1

β(π)
, i = 1, . . . , s.

By the second condition of feasibility, this vector is semi balanced. Hence we may
Proposition 2 and conclude that

s∑
δi � ϕ(k), or equivalently,

s

β(π)
� ϕ(k),
i=1
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as required. ✷
In order to prove Theorem 4 we invoke a result about finite geometries (see

Dembowski, 1968). Afinite projective planeof orderq is a system consisting of a s
Π of points and a setΛ of lines (in this abstract setting, a line is just a set of points,
L ⊆ Π for everyL ∈ Λ), satisfying the following conditions:

• |Π | = |Λ| = q2 + q + 1.
• Every point is incident toq + 1 lines and every line containsq + 1 points.
• There is exactly one line containing any two points, and there is exactly one

common to any two lines.

Such a system does not exist for everyq . However, it trivially exists forq = 0 (a single
point) and forq = 1 (a triangle) and it is known to exist for everyq of the formq = pl ,
wherep is a prime number andl is a positive integer. The first non-trivial examp
corresponding toq = 2, is called theFano plane:

Π = {1,2,3,4,5,6,7}, Λ = {124,235,346,457,561,672,713}.

Proof of Theorem 4. Let π = {A1, . . . ,Ak} be a partition that satisfies (4.3) and (4
for someq which is either 0 or 1 or of the formpl wherep is a prime number andl is
a positive integer. Asrπ � k follows from Theorem 3 (see the discussion preceding
statement of Theorem 4), we need to prove only thatrπ � k. By Theorem 2, it suffices to
show that there exists a family∆ with s(∆) = k which is feasible forπ . Such a family is
given by the system of lines of a projective plane of orderq , when the points are identifie
with 1, . . . , k. ✷
4.3. More on the ranking of equilibria

The tradeoff between communication complexity and economic efficiency, as
eated above, may be made concrete by the following scenario. Suppose that a setA of m
goods is given, and we are in a position to recommend to the buyers an equilibrium st
Assume further that a certain levelM of communication complexity is considered the ma
imum acceptable level. If we are going to recommend a partition-based equilibriumf π ,
then the number of parts inπ should be at mostk = �log2M�. From the viewpoint of eco
nomic efficiency, we would like to choose such a partitionπ with rπ as low as possible
Which partition should it be?

According to Theorem 3, we obtain the lowest guarantee onrπ by making the maximum
size of a part inπ as small as possible, which means splittingA into k equal (or nearly
equal, depending on divisibility) parts. This leads to the question whether, for givm

andk, the lowest value ofrπ itself (not of our upper bound) over all partitionsπ of A
into k parts is achieved at an equipartition, i.e., a partitionπ = {A1, . . . ,Ak} such that
�m/k� � |Ai | � �m/k�, i = 1, . . . , k.

While Proposition 1 gives an affirmative answer fork = 1,2,3, it turns out, somewha
surprisingly, that this is not always the case. This is shown in the following example.
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Example 2. Let m = 21 andk = 7. If π is an equipartition of the 21 goods into 7 tripl
then, by Theorem 4,rπ = 7. Consider now a partitionπ ′ = {A1, . . . ,A7} in which

|A1| = 2, |A2| = 4, |A3| = · · · = |A7| = 3.

We claim thatrπ ′ � 6.
In order to prove this, it suffices to show that there exists no feasible family of 7

for π ′. Suppose, for the sake of contradiction, that∆ = (Hi)
7
i=1 is such a family. LetHi be

an arbitrary set in∆. It follows from the second condition of feasibility that ifHi contains
the element 1 then it shares it with at most one other set in∆. Similarly, if Hi contains
the element 2 then it shares it with at most three other sets in∆. For l = 3, . . . ,7, if Hi

contains the elementl then it shares it with at most two other sets in∆. This implies that
Hi must contain at least three elements (because it must share an element with eve
set, and 3+ 2< 6). Moreover, ifHi contains exactly three elements and one of them
then it also contains 2 (since 1+ 2+ 2< 6). On the other hand, we have

7∑
i=1

|Hi | =
7∑

i=1

∑
l∈Hi

1 =
7∑

l=1

∑
i: l∈Hi

1 =
7∑

l=1

∣∣{i: l ∈ Hi}
∣∣ �

7∑
l=1

|Al| = 21.

Since everyHi has at least three elements, it follows that everyHi has exactly three
elements, and all the weak inequalities|{i: l ∈ Hi}| � |Al | must in fact hold as equalitie
In particular, there exist two sets in∆, sayHi andHj , that contain the element 1. B
the above, they both contain 2 as well. Letl be the third element ofHi . Then among the
remaining five sets in∆, the setHi shares the element 1 with none of them, it shares
element 2 with two of them, and the elementl with at most two of them. This contradic
the fact thatHi intersects every other set in∆.

It can be checked that in factrπ ′ = 6 and this is the lowest achievable value among
partitions of 21 goods into 7 sets. We omit the detailed verification of this.

The tradeoff between communication complexity and economic efficiency was q
tatively analyzed above only for partition-based equilibria. It is natural to ask whethe
possible to beat this tradeoff using the more general bundling equilibria. The answe
a sense made precise below: sometimes yes, but not by much.

Example 3. Assume that the number of goodsm is even, and let the set of goodsA be
partitioned into two equal partsB andC. ConsiderΣ ⊆ 2A defined by

Σ = {
D ⊆ A: |D ∩B| = |D ∩C|}.

It is easy to check thatΣ is a quasi-field, and hence it induces a bundling equilibrium.
communication complexity is

|Σ| =
m/2∑(

m/2

j

)2

=
m/2∑(

m/2

j

)(
m/2

m/2− j

)
=

(
m

m/2

)
.

j=0 j=0
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We claim thatrΣ = 2. ThatrΣ � 2 can be seen by taking two buyers with valuatio
wB andwC , respectively. To see thatrΣ � 2, suppose thatv is a profile of valuations for a
set of buyersN , and letγ be an optimal allocation. Split the setN into two sets:

NB = {
i ∈ N : |γi ∩B| � |γi ∩C|}, NC = {

i ∈ N : |γi ∩B| < |γi ∩C|}.
Note that the sets of goodsγi, i ∈ NB , can be expanded to pairwise disjoint sets of go
that belong toΣ . In other words, there exists aΣ-allocationξ such thatγi ⊆ ξi for every
i ∈ NB . Similarly, there exists aΣ-allocationη such thatγi ⊆ ηi for everyi ∈ NC . Hence

Smax(v) =
∑
i∈N

vi(γi) =
∑
i∈NB

vi(γi)+
∑
i∈NC

vi(γi) �
∑
i∈N

vi(ξi) +
∑
i∈N

vi(ηi) � 2SΣ(v).

Thus,rΣ � 2.
We claim further that if a partitionπ of A satisfiesrπ � 2 then|Σπ | � 2m−2. Indeed,

supposeπ = {A1, . . . ,Ak}. It is easy to find a feasible family of 3 sets forπ if one of the
Al ’s has three or more elements, or if three of theAl ’s have two elements each. Therefo
rπ � 2 implies that at most two of the setsA1, . . . ,Ak have two elements and the rest a
singletons. Thusk � m− 2 and|Σπ | � 2m−2.

Since
(

m
m/2

)
< 2m−2 for all evenm � 10, we have the following conclusion: Ifm � 10

then every partition-based equilibrium that matches the economic efficiency off Σ has
a higher communication complexity thanf Σ . In other words, the quasi-fieldΣ offers
an efficiency–complexity combination that cannot be achieved or improved upon (
Pareto sense) by any field.

The above example notwithstanding, the efficiency–complexity combinations w
arise from arbitrary quasi-fields are still subject to a tradeoff that is not much bette
for fields. This is the content of our final remark.

Remark 2. Let m = |A| and letk be a positive integer. Any quasi-fieldΣ ⊆ 2A with
rΣ � m/k must contain a partition ofA into k non-empty parts, and therefore must sati
|Σ| � 2k .

Proof. Let there bem buyers, each with valuationwa for a distincta ∈ A. For thisv
we haveSmax(v) = m. If rΣ � m/k then we must haveSΣ(v) � k. Hence an optima
Σ-allocation has to assign non-empty bundles of goods to at leastk buyers. ThusΣ
containsk pairwise disjoint non-empty sets of goods, and therefore, being a quasi
also a partition ofA into k non-empty parts. ✷
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