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We show that the core of a continuous convex game on a measurable space of
players is a von Neumann�Morgenstern stable set. We also extend the definition of
the Mas�Colell bargaining set to games with a measurable space of players and
show that for continuous convex games the core may be strictly included in the
bargaining set but it coincides with the set of all countably additive payoff measures
in the bargaining set. We provide examples which show that the continuity
assumption is essential to our results. Journal of Economic Literature Classification
Number: C71. � 1997 Academic Press

1. INTRODUCTION

Convex coalitional games were introduced by Shapley [25]. They include in
particular any convex function of a measure and occur in many applications.
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For example, it was shown in [28] that the coalitional game modeling a
producer and a set of potential consumers under decreasing costs is convex.
The airport game [21, Section XI.4] and the bankruptcy game [3] are
also convex. Several examples of convex games which arise from public
good models were given in [7]. The core of a convex game with a finite
set of players was studied in [25] and other solution concepts were
investigated in [19]. In this work we study the equivalence between the
core, von Neumann�Morgenstern stable sets, and the Mas�Colell bargain-
ing set in convex coalitional games over a measurable space of players.

Stable sets for cooperative games were introduced by von Neumann and
Morgenstern in their seminal book [29]. It was shown in [25] that the
core of a finite convex game is a von Neumann�Morgenstern stable set. The
result was extended to cooperative games without side payments in [22].
Stable sets for coalitional games with a finite set of players have been
studied intensively (for a comprehensive survey see [17]). There are a few
works concerning stable sets of games with an infinite set of players.
Results from [4] on stable sets of symmetric simple games were extended
in [5] to games with a continuum of players. Stable sets of market games
with a continuum of players were studied in [15]. It was shown in [9] that
the core of a non-atomic glove market game which is defined as the minimum
of a finite number of non-atomic probability measures is a stable set. Such
a game is usually not convex. The stability of the core in games with a
countable set of players was studied in [10]. The core of games with an
infinite set of players was investigated in many works (for a comprehensive
survey see [16]). In this work we show that the core of a continuous convex
game with a measurable space of players is its unique von Neumann�
Morgenstern stable set.

The first definition of a bargaining set for cooperative games was given
by Aumann and Maschler [2]. Recently, several new concepts of bargaining
sets have been introduced [8, 13, 14 and 20]; for a comprehensive survey
see [18]. All these sets contain the core of the game. However, there are
important cases in which some of these sets coincide with the core. It is
known that for convex coalitional games with a finite set of players these
sets coincide with the core [8, 14, and 19]. The equivalence between bargaining
sets and the core in simple games was studied in [11]. The Mas�Colell
bargaining set was introduced in [20], where it was proved that in an
atomless pure exchange economy it coincides with the set of competitive
equilibria (and hence, by Aumann's [1] equivalence theorem, it also coincides
with the core). It was shown in [26] that for a large class of both finite and
mixed market games the Mas�Colell bargaining set coincides with the core.
In this work we extend the definition of the Mas�Colell bargaining set to
coalitional games with transferable utility which have a measurable space
of players, and prove that for continuous convex games the core coincides
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with the set of countably additive measures in the bargaining set. We give
an example which shows that the continuity assumption is essential. We
also give an example which shows that the bargaining set of an infinite
continuous convex game may contain non-countably additive measures,
and thus may strictly include the core.

The class of games to which our results apply is very general and includes,
in particular, games with a finite set of players, games with countably many
players, non-atomic games, and mixed games. The known proofs of the
corresponding results for finite games do not seem to admit an extension
to games with a measurable space of players. Our approach is different,
and thus in particular provides new proofs in the finite case. Our proofs
employ Delbaen's [6] characterization of convex games, Schmeidler's [24]
characterization of convex games in terms of the Choquet integral, and a
general minmax theorem due to Sion [27].

2. DEFINITIONS AND MAIN RESULTS

Let (T, 7) be a measurable space, i.e., T is a set and 7 is a _-field of
subsets of T. We refer to the members of T as players and to those of 7
as coalitions. A coalitional game, or simply a game on (T, 7), is a function
& : 7 � R+ with &(<)=0. A game & on (T, 7) is continuous at S # 7 if for
all sequences S1 �S2 � } } } of coalitions such that ��

n=1 Sn=S, and all
sequences S1 $S2 $ } } } of coalitions such that ��

n=1 Sn=S, we have
&(Sn) � &(S). The game & is continuous if it is continuous at each S in 7.
Observe that if 7 is finite then continuity is satisfied automatically.

A game & on (T, 7) is superadditive if

&(A _ B)�&(A)+&(B)

whenever A and B are disjoint coalitions in 7. It is convex if

&(A _ B)+&(A & B)�&(A)+&(B)

for every A, B # 7. Clearly, a convex game is superadditive. We note that
by [23, Proposition 3.15] a convex game which is continuous at the grand
coalition is continuous at every coalition.

We denote by ba=ba(T, 7) the Banach space of all bounded finitely
additive measures on (T, 7) with the variation norm. If + is a countably
additive measure on (T, 7) we denote by ba(+)=ba(T, 7, +) the subspace
of ba which consists of all bounded finitely additive measures on (T, 7)
which vanish on the +-measure zero sets in 7. The subspace of ba which

3CORE EQUIVALENCE THEOREMS
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consists of all bounded countably additive measures on (T, 7) is denoted
by ca=ca(T, 7). If + is a measure in ca then ca(+)=ca(T, 7, +) denotes
the set of all members of ca which are absolutely continuous with respect
to +. Finally, for a subset A of an ordered vector space, we denote by A+

the set of all nonnegative members of A.
A payoff measure in a game & on (T, 7) is a member ! of ba (not necessarily

nonnegative) which satisfies !(T )�&(T ). The core of the game &, denoted
by Core(&), is the set of all payoff measures ! such that !(S)�&(S) for all
S # 7. As observed by Schmeidler [23, Theorem 3.2], if & is continuous at T,
then every member of Core(&) is countably additive. It is well known that
the core of a convex game is non-empty (see [25] for finite games and
[23] for games with a measurable space of players).

We proceed with some definitions leading to the concept of von Neumann�
Morgenstern stable sets. In all these definitions, we assume that & is a
superadditive game on (T, 7). For any coalition S # 7, we define

_&(S)=inf :
�

i=1

&(Si)

where the infimum is taken over all countable partitions S1 , S2 , ... of S
such that Si # 7 for all i. It is easy to verify, using superadditivity, that
_& # ca+. Clearly, _&(S)�&(S) for all S # 7. Intuitively, _&(S) is the amount
that the members of S are guaranteed to obtain in & without cooperation.
This permits to extend the notion of individual rationality from finite
games. We say that a member ! of ba is individually rational with respect
to the game & if !(S)�_&(S) for each S # 7. The set of all individually
rational payoff measures in a superadditive game & on (T, 7) is denoted by
I(&), i.e.,

I(&)=[! # ba+ | ! is individually rational and !(T )�&(T)].

A coalition A in 7 is inessential in & if _&(A)=&(A), and for each coalition
B such that A & B=< we have &(A _ B)=&(A)+&(B). A coalition that is
not inessential is called essential.

We now define a dominance relation on I(&). Let !, ' # I(&) and let A # 7
be an essential coalition. Then ' dominates ! via A, denoted by 'oA !, if
'(A)�&(A) and '(B)>!(B) for each B # 7 such that B�A and B is essential.
We say that ' dominates !, denoted by 'o!, if there exists an essential
coalition A # 7 such that 'o A !.

We note a connection between the core concept and the dominance
relation. If ! # Core(&) then there is no ' # I(&) such that 'o! (indeed,
'oA ! implies that !(A)<'(A)�&(A)). On the other hand, if ! # I(&)"
Core(&) then there is ' # I(&) such that 'o!, provided that the game &
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satisfies the following (mild) assumption: there is a member + of ba+ such
that +(B)>0 for every essential B # 7. Indeed, if ! # I(v)"Core(&) then there
is a (necessarily essential) coalition A such that !(A)<&(A). Taking =>0
sufficiently small, we observe that the measure ' defined by '(S)=!(S & A)
+=+(S & A)+_&(S"A) is a member of I(&) and satisfies 'oA !. It follows
that under the above assumptions Core(&) could be alternatively defined as
the set of undominated members of I(&).

We come now to the definition of a von Neumann�Morgenstern stable
set:

Let & be a superadditive game on (T, 7). A set V�I(&) is a von Neumann�
Morgenstern stable set (or simply a stable set) of the game & if:

(1) V is internally stable, i.e., if ! # V then there is no ' # V such that
'o!.

(2) V is externally stable, i.e., if ! # I(&)"V then there is ' # V such
that 'o!.

Our first result is:

Theorem A. Let & be a continuous convex game on (T, 7). Then the
core of & is its unique von Neumann�Morgenstern stable set.

For finite games, this result was proved by Shapley [25]. A version of
this result for games with countably many players was proved by Einy and
Shitovitz [10]. Their assumptions on the field of coalitions 7 were different
from those made here, and hence their result is not implied by Theorem A,
but it also does not imply Theorem A in the countable case.

We now give a definition of the Mas�Colell bargaining set, which
extends the definition given in [20] for finite games. For this definition, the
game & need not be superadditive.

Let & be a game on (T, 7) and ! # ba be a payoff measure in &. An
objection to ! is a pair (A, ') such that A # 7 and ' # ba satisfy '(A)�&(A),
'(A)>!(A) and '(B)�!(B) for all B # 7 with B/A. A counter objection
to the objection (A, ') is a pair (C, `) such that:

(1) C # 7, ` # ba and `(C)�&(C).

(2) If B # 7 satisfies B�A & C then `(B)�'(B), and if D # 7 satisfies
D�C"A then `(D)�!(D).

(3) `(C)>'(A & C)+!(C"A).

An objection to a payoff measure is called justified if there is no counter
objection to it. The Mas�Colell bargaining set of the game &, denoted by

5CORE EQUIVALENCE THEOREMS
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MB(&), is the set of all payoff measures in & which have no justified
objection.

We come now to our second result.

Theorem B. Let & be a continuous convex game on (T, 7). Then

Core(&)=MB(&) & ca.

The following corollary is an immediate consequence of Theorem B.

Corollary B. Let 7 be finite, and let & be a convex game on (T, 7).
Then

Core(&)=MB(&).

Note that if T is finite and 7 is the set of all subsets of T, then this result
was proved by Dutta, Ray, Sengupta and Vohra [8, Proposition 3.3].

The following example shows that the continuity assumption in
Theorems A and B cannot be removed.

Example 2.1. Let T be the set of natural numbers and 7 be the set of
all subsets of T. As was done in [10, Example 3.5], one can show that the
convex game

&(S)={1
0

if T"S is finite
otherwise

does not have a von Neumann�Morgenstern stable set. Therefore the
continuity assumption is needed in Theorem A.

For Theorem B, consider the same game and the measure ! defined by
!(S)=7i # S2&i. Then ! # ca and ! � Core(&). We will show that ! # MB(&).
Let (A, ') be any objection to !. Then T"A is finite. Let i # A. Then '([i])>0.
Now it is easy to construct a counter objection of the form (A"[i], `) to
(A, '), and thus ! # MB(&).

The following example shows that for infinite games the bargaining set
may strictly include the core even when the game is continuous and convex,
and thus the restriction to countably additive measures in Theorem B is
necessary.

Example 2.2. Let T be the set of natural numbers and 7 be the set of
all subsets of T. Define a game & on (T, 7) by &(S)=7i # S 2&i for each
S # 7. It is clear that & is continuous and convex. In fact, & is a countably
additive measure, and hence Core(&)=[&]. Let F=[S # 7 | T"S is finite].

6 EINY ET AL.
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Then F is a filter in 7. Let F0 be a maximal filter which contains F. Define
a measure ! on 7 by !(S)=1 if S # F0 and !(S)=0 otherwise. We show
that ! # MB(&). Let (A, ') be an objection to !. Then A{T. Let i # T"A.
Since !([i])=0 and &([i])>0, ([i], &) is a counter objection to (A, '),
and thus ! # MB(&).

3. PROOFS

Let & be a game on (T, 7). A coalition C is a carrier of & if &(S)=&(S & C)
for all S # 7. A coalition S is null in & if T"S is a carrier of &. Observe that
a null coalition is inessential, but not vice versa.

The following fact is a consequence of [23, Theorem 3.10] and is recorded
here for later use.

Proposition 3.1. Let & be a continuous convex game on (T, 7). Then
there exists a measure + # ca+ such that a coalition S # 7 is null in & iff
+(S)=0. Moreover, Core(&)�ca+(+).

We state and prove now a lemma concerning continuous convex games
which constitutes the main part of the proofs of our equivalence theorems.

Lemma 3.2. Let & be a continuous convex game on (T, 7). Assume
that ! # ca satisfies !(S)<&(S) for some S # 7. Then there exist A # 7 and
' # Core(&) such that

&(A)&!(A)=max[&(C)&!(C) | C # 7]. (3.1)

'(A)=&(A)>!(A) and
(3.2)

'(B)�!(B) for all B # 7 with B/A.

Proof. We need the following notation: If ! # ca and f is a !-integrable
function then the integral �T f d! will be denoted by !( f ).

Let + # ca+ be a measure as guaranteed in Proposition 3.1. Let B be the
unit ball of L�(+)=L�(T, 7, +). The proof proceeds in several steps.

Step 1. We extend & to a function &� defined on B+.

For each f # B+ let &� ( f )=min[`( f ) | ` # Core(&)] (the minimum exists
because Core(&) is a weak*-compact non-empty subset of ba(+), which is
the norm-dual of L�(+)). Since & is convex, by [24, Proposition 3] (see
also [12, Theorem 2.2]), for each f # B+ we have

&� ( f )=|
1

0
&([t # T | f (t)�x], dx,

7CORE EQUIVALENCE THEOREMS
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where the integral is a Riemann integral and is known as the Choquet
integral of f with respect to &. In particular for each S # 7 we have &� (/s)=&(S).

In Steps 2�5 we treat the special case when ! # ca+(+).

Step 2. We prove that &� &! attains a maximum on B+ .

As Core(&)�ca+(+), by the Radon�Nikodym theorem for each ` # Core(&)
the function `( f )=�T f d` is continuous on B+ with respect to the weak*-
topology which is induced by L�(+) on B+. Therefore &� is weak*-upper
semicontinuous on B+ , as it is the minimum of weak*-continuous functions
on B+. As ! # ca+(+), &� &! is a weak*-upper semicontinuous function on
B+ . Now by Alaoglu's theorem B+ is compact in the weak*-topology.
Therefore &� &! attains a maximum on B+.

Step 3. We prove that the maximum in Step 2 is attained at a coalition A.

Let M=maxf # B+
(&� &!)( f ). Let f * # B+ be such that M=(&� &!)( f *).

For each 0�x�1 let Tx=[t # T | f *(t)�x]. Then M=�1
0 (&&!)(Tx) dx

and thus �1
0 [M&(&&!)(Tx)] dx=0. As M�(&&!)(Tx) for each 0�x�1,

there is 0�x0�1 such that M=(&&!)(Tx0
). Let A=Tx0

. Then &(A)&!(A)
�&� ( f )&!( f ) for all f # B+.

It is clear that the coalition A found in Step 3 satisfies (3.1). Moreover,
since &(S)>!(S), we have &(A)>!(A). It remains to find ' # Core(&) which
satisfies (3.2).

Step 4. We prove that for each f # B+ with f �/A there exists
' # Core(&) with '(A)=&(A) such that '( f )�!( f ).

Let f # B+ be such that f �/A . Denote g=/A& f, and for each 0�
x�1 let Ax=[t # A | g(t)�x]. It is clear that if x, y # [0, 1] and x� y
then Ax $Ay . Thus [Ax]0�x�1 is a chain in 7. As & is convex, by [6,
Corollary 3], there exists ' # Core(&) such that '(Ax)=&(Ax) for each
0�x�1. As A0=A, we have '(A)=&(A). Now for each x>0 we have
[t # T | g(t)�x]=Ax , and so

'(g)=|
1

0
'(Ax) dx=|

1

0
&(Ax) dx=&� (g).

Thus '(A)&!(A)=&(A)&!(A)�&� (g)&!(g)='(g)&!(g), and therefore
'(A)&'(g)�!(A)&!(g). Since g=/A& f, we have '( f )�!( f ).

Step 5. We prove that the order of the quantifiers in Step 4 can be
reversed, that is, that there exists a single ' # Core(&) with '(A)=&(A) that
satisfies '( f )�!( f ) for all f # B+ with f �/A .

8 EINY ET AL.
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Denote B+(A)=[ f # B+ | f �/A] and C(A)=[' # Core(&) | '(A)=&(A)].
Then the sets B+(A) and C(A) are weak*-compact and convex in L�(+)
and ba(+) respectively.

Define a real-valued function H on C(A)_B+(A) by H(', f )='( f )&!( f ).
Then H is affine and continuous in each of its variables separately. Thus
the sets C(A), B+(A) and the function H satisfy the assumptions of Sion's
[27] minmax theorem, and therefore

min
f # B+(A)

max
' # C(A)

H(', f )= max
' # C(A)

min
f # B+(A)

H(', f ). (3.3)

Now by Step 4, minf max'H(', f )�0 and thus by (3.3), max' minf

H(', f )�0. Therefore there exists ' # C(A) such that H(', f )�0 for all
f # B+(A). It is clear that ' satisfies (3.2).

Step 6. We now show that if ! is in ca+ but is not absolutely
continuous with respect to +, then there exist A and ' such that (3.1) and
(3.2) are satisfied.

By the Lebesgue decomposition theorem, there exist two measures, !a

and !s , in ca+ such that !=!a+!s , where !a is absolutely continuous with
respect to + and the measures !s and + are mutually singular. As
!(S)<&(S), !a(S)<&(S). As !a # ca+(+), by what we have already shown,
there exist A0 # 7 and ' # Core(&) such that &(A0)&!a(A0)=max[&(C)&
!a(C) | C # 7], '(A0)=&(A0)>!a(A0), and '(B)�!a(B) for all B # 7 with
B/A0 . Let C0 be a carrier of + such that !s(C0)=0, and let A=A0 & C0 .
Since C0 is a carrier of &, for each C # 7 we have

&(A)&!(A)=&(A)&!a(A)=&(A0)&!a(A)

�&(A0)&!a(A0)�&(C)&!a(C)�&(C)&!(C).

Hence &(A)&!(A)=max[&(C)&!(C) | C # 7]. So (3.1) is satisfied by A.
Also, '(A)�'(A0)=&(A0)=&(A), and as ' # Core(&), we have '(A)=&(A).

Finally, if B # 7 and B/A then '(B)�!a(B)=!(B). Thus (3.2) is satisfied
by A and '.

Step 7. We now assume that ! # ca is a signed measure, and show that
there exist A and ' such that (3.1) and (3.2) are satisfied.

By the Jordan decomposition theorem !=!++!& , where !+ and !&

are the positive and the negative parts of ! respectively. Let w=&&!& .
Then w is convex, continuous and !+(S)<w(S). Therefore we can apply
what we have already shown for the game w and the measure !+ , and this
yields the existence of A # 7 and ' # Core(&) such that (3.1) and (3.2) are
satisfied. Q.E.D.

9CORE EQUIVALENCE THEOREMS
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Proof of Theorem A. It suffices to show that Core(&) is externally
stable. Let + # ca+ be a measure as guaranteed in Proposition 3.1. Let
! # I(&)"Core(&). Let S # 7 be such that !(S)<&(S).

We first assume that ! # ca+ . Let =>0 be such that !(S)+=+(S)<&(S).
Then by Lemma 3.2 applied to !+=+ # ca, there exist A # 7 and ' # Core(&)
such that '(A)=&(A)>!(A)+=+(A) and '(B)�!(B)+=+(B) for all B # 7
with B/A. Since _&(A)�!(A)<&(A), A is essential in &. Now if B�A is
an essential coalition in & then +(B)>0, and therefore '(B)>!(B). Hence,
'oA !.

We now assume that ! is in ba+ but is not countably additive. By [30,
Theorem 1.23], ! can be decomposed uniquely into a sum of a nonnegative
countably additive measure !c and a nonnegative purely finitely additive
measure ! p. As + # ca+, by [30, Theorem 1.22], there exists an increasing
sequence of sets Cn # 7 such that !p(Cn)=0 for all n, and limn� � +(T"Cn)=0.
Let C=��

n=1 Cn . Then +(T"C)=0. Therefore C is a carrier of &. For each
n let Sn=S & Cn . As & is continuous, limn � � &(Sn)=&(S & C)=&(S).
Since !(S)<&(S), there exists a natural number k such that !(Sk)<&(Sk).
Let D=Sk and 7D=[A # 7 | A�D]. Let &D be the restriction of & to 7D .
It is clear that &D is a continuous convex game on (D, 7D). As ! p vanishes
on 7D , ! coincides with !c on 7D . Let !c

D be the restriction of !c to 7D .
Then !c

D # ca+(D, 7D) and !c
D(D)=!(D)<&(D). Now we can apply what

we have already shown to the game &D and the measure !c
D , in order to

obtain the existence of an essential coalition A # 7D and a measure
` # Core(&D) such that `(A)=&(A) and `(B)>!(B) for all B # 7 with B�A
and +(B)>0. Since & is convex and ` # Core(&D), by [10, Proposition 3.8],
` can be extended to a measure ' on (T, 7) such that ' # Core(&). Then
'oA ! in & and the proof is completed. Q.E.D.

Proof of Theorem B. From the definition of MB(&) it is clear that Core(&)
�MB(&). As & is continuous Core(&)�ca (see Section 2). Therefore Core(&)�
MB(&) & ca. We will show that MB(&) & ca�Core(&). Assume, on the
contrary, that there is ! # MB(&) & ca such that ! � Core(&). As !(T )�&(T ),
there is S # 7 such that !(S)<&(S). Therefore by Lemma 3.2, there exist
A # 7 and ' # Core(&) such that (3.1) and (3.2) are satisfied. Clearly, (A, ')
is an objection to ! in the game &. We show that (A, ') is a justified objection
and this will contradict the fact that ! # MB(&). Let C be any coalition
in 7. Then by the convexity of & we have

&(C)&!(C)�&(A _ C)&!(A _ C)+&(A & C)&!(A & C)&&(A)+!(A).

By (3.1), &(A_ C)&!(A_ C)�&(A)&!(A). Therefore &(C)&!(C)�&(A& C)
&!(A & C). As ' # Core(&), we have &(A & C)�'(A & C), and thus &(C)�
'(A & C)+!(C"A). Hence there is no counter objection of C to (A, '), and
as C was arbitrary, (A, ') is a justified objection to !. Q.E.D.

10 EINY ET AL.
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