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For a fixed unit vector a = ( a l , . .  ' ,an) C S n - l ,  consider the 2 n sign vectors e = (el , . .  . , e n )  E 
n (• n and the corresponding scalar products e. a = Y~i=l eiai" The question that we address is: 

for how many of the sign vectors must e .  a lie between - 1  and 1. Besides the straightforward 
interpretation in terms of the sums ~ •  this question has appealing reformulations using the 
language of probability theory or of geometry. 

The natural conjectures are that at least �89 the sign vectors yield I e .a [ < 1 and at least ~ of the 
sign vectors yield [e.a]< 1 (the latter excluding the case when [ai[-- 1 for some i). These conjectured 
lower bounds are easily seen to be the best possible. Here we prove a lower bound of ~ for both 
versions of the problem, thus completely solving the version with strict inequality. The main part 
of the proof is cast in a more general probabilistic framework: it establishes a sharp lower bound 
of ~ for the probability that IX-bY[ < 1, where X and Y are independent random variables, each 

having a symmetric distribution with variance �89 
We also consider an asymptotic version of the question, where n --~ cr along a sequence of 

instances of the problem satisfying Ha I[o~--*0. Our result, best expressed in probabilistic terms, is 
that the distribution of e -a converges to the standard normal distribution, and in particular the 
fraction of sign vectors yielding e .a  between - 1  and 1 tends to ~68%. 

1. I n t r o d u c t i o n  

T h e  fo l lowing unso lved  p r o b l e m  was p r e s e n t e d  in [2] a n d  a t t r i b u t e d  to  

�9 ~ i = l  a i  : B. Tomaszewsk i .  C o n s i d e r  n real  n u m b e r s  a l , . .  ,an  sa t i s fy ing  n 2 1. Of  

t h e  2 n s u m s  of  t h e  f o r m  ~ + a i ,  is i t  poss ib le  t h a t  t h e r e  a re  m o r e  w i t h  I ~ + a i [  > 1 

t h a n  t he r e  a re  w i t h  ]y~ +ai[ <_ 1? 

T h e  n a t u r a l  c o n j e c t u r e  is t h a t  i t  is imposs ib le .  Formal ly ,  le t  S n - 1  --- {a = 

2 1} and  let  {=t=l} n { ~ = ( r 1 6 2  o r - l , •  E =la  = = 
1 , . . .  ,n} .  For  c E { :k l}  n a n d  a E S n - l ,  ~ "~ = Y~n= 1 eiai is t he i r  sca la r  p r o d u c t .  

Conjecture 1.1. Vora11 a e S  n - l ,  [{E e {-t-1}n: [ e - a [ < l } l / 2 n >  1 

O n e  c a n  ver i fy  t h e  c o n j e c t u r e  for low va lues  of  n.  In  p a r t i c u l a r ,  for n --  2 a n d  

a l , a 2  > 0 ,  we have  [~'~1-< 1 if  a n d  on ly  if  ~1 ~ 2 ,  so t h e  lower  b o u n d  of  �89 is a t t a i n e d .  
For  la rge  va lues  of  n, i t  is i n s t r u c t i v e  to  t h i n k  a b o u t  t h e  spec ia l  case  w h e n  a l  . . . . .  
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a n -  . Here -al_<l if and only if I~~lei]~v/-n;  by the normal approximation 

to the binomial distribution, the latter holds true for ~ 68% of the sign vectors ~. 
We want to suggest three appealing interpretations of the conjecture: 
(i) Sum partitions. The conjecture asserts that there are many ways to partition 

a sum ~ ai into' two roughly equal partial sums. More explicitly, "many" means 
at least half of all partitions, and "roughly equal" means (under the normalization 

a/2 = 1) differing by at most 1. 
(ii) Chebyshev-type inequality. When {+1} n is viewed as a probability space, 

with all ~ equiprobable, ~ �9 a becomes a random variable. Denoting X = E .a we 
2 1. The conjecture states that X lies within have E ( X ) =  0 and V a r ( X ) =  ~ a  i = 

one standard deviation of its mean with probability > 3" This is not true of a 
general random variable; Chebyshev's ineqtta!ity yields a lower bound of 0 for this 
probability. Yet, according to the conjecture , this is true for X that is a linear 
combination of mutually independent random var{ables each assuming the values 4-1 
with equal probabilities. 

(iii) A ball and a cube. Consider an. n-~timensional ball and a smallest n-dimen- 
sional cube containing it. The conjectur~e asserts, that  for any pair of parallel sup- 
porting hyperplanes of the ball, at least half the. vertices of the cube lie between (or 
on) the two hyperplanes. 

A variant of the problem addressed by Conjecture 1.1 is obtained by insisting 
on [~ .a ] < 1 instead of I*. a I -< 1. To get a meaningful lower bound for this version, 
one must exclude those ~ �9 S n-1  with lail = 1 for some i. Next, consider n =4 i a f l d  
al . . . . .  a4 = 3; in this case just 6 out of 16 sign vectors yield I* .a] < 1. We shall 
prove that this is the lowest possible: 

Theorem 1.2. For all a �9 S n-1 wi th  lail < 1, i =  1 . . . .  ,n, 

3 
l{ e �9 { + l } n :  I~.a I < 1}1/2 n > - .  

- 8  

Our method of proof does not seem to lead to a better lower bound when I~ .a I -< 
1 is under consideration. Thus, for the original problem addressed by Conjecture 1.1 
we only have the following immediate consequence of Theorem 1.2: 

Corollary 1.3. For ali a �9 S n - l ,  I{e �9 {+ l}n :  le.a 1< 1}1/2 n > ~. 

Our strategy for proving Theorem 1.2 grew out of the following idea. Suppose 
that the set [n] = {1, . . . ,n}  is partitioned into two subsets I and 7 so that Y~ieI a~ = 

~ i d a 2 i  = 3" Define two random variables over the probability space {+l}n  (with 
all e equiprobable) by X = ~ i E I  eiai, Y = ~ i e T e i a i  �9 Then X and Y are independent 

and each has a symmetric distribution with variance 3" By Chebyshev's inequality 

P{IXI < 1} > 3, P{IYI  < 1} > 3" It follows by independence and symmetry that  at 
least ~ of the time X and Y are < 1 in absolute value and have opposite signs (or 

1 one of them is 0). Since X + Y = ~ . a  we obtain that P{le.a I<1}_> g. 
There are two aspects of this argument that call for an improvement. First, a 

2 �89 over each part, may not exist. "balanced" partition of In], i.e., one with ~ a  i = 

Second, the lower bound of ~ is considerably lower than we would like, and this is 
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because the argument fails to exploit all combinations of values of X and Y t-hat 
entail I*.a I < 1. 

The structure of our proof is the following. In Section 2 we show that  if a 
balanced partition exists and X and Y are defined as above then P { I X + Y t  < 1} _> 
3 This takes care of the second point made in the last paragraph. With respect g- 
to the first point, we define X and Y in the same manner using any parti t ion of [hi 
into I and 7. For any such parti t ion P { I X + Y ]  < 1} =P{I~ .a I < 1}, and we look for 
partitions that  will enable us to establish a good lower bound for this probability. 
In Section 3 we handle several special cases in which we can show that  P{IX +YI  < 
1} _> ~ using partitions with I I [ <  3. These special cases are characterized, roughly 

speaking, by the concentration of a significant part  of the sum y~ a~ in one, two or 
three of the summands. In Section 4 we show that  if none of the special cases occurs 

2 then for some j with aj < ~ there exists a partition of [nJ\(j} into I and 7 such that  

EiEia2i < �89 and E -a2  < �89 this situation is close enough to the balanced case to 
- -  i E I  i -  

permit us to obtain the lower bound of ~ by  an extension of the same argument. 
A related question that  we also address in this paper is: can we say more about 

the problem if n is assumed to b e  large? The fact that  n is large is not helpful by 
itself, since the distribution of ~.~ remains the same if ~ = (al,...,aT~) is replaced 
by (a l , . . .  , an ,0 , . . .  ~0). On the other ban& we have observed above that  if n is large 
and the ai, i=  1, . . . ,n ,  are equal, then I* "~l ~ 1 holds for ~68% of the sign vectors 
~. The following theorem, which we prove in Section 4; establishes this phenomenon 
under a more general assumption on the behavior of the ai. 

Theorem 1.4. For n = 1,2,. . .  let an = (anl~... ,ann) E S n - 1  and assume that 
maxi=l  ..... n ]anil ~ 0 as n ---* ~c. Over the probability space {• (with all % E 
{+1} n equiprobable) define the random variable Xn = % ' a n .  Then as n ~ :xD 
the distributions of Xn tend to the standard normal distribution function ~. In 
particular, P{IXnl < 1} as well as P{IXnI < 2} tend to ~(1) - ~ ( - 1 ) ~  0.6826. 

2. The  Balanced Case 

In this section we assume that  a = (al . . . . .  an) E S n-1 and [n] is partit ioned into 

I and 7 so that  Y~iEI ai2 = y~i~i -a2i -- �89 For the random variables X=Y~4Eieiai  and 
Y = y~ idc ia i  defined over the probability space {+1} n (with all ~ = (e l , . . . ,~n)  E 

{4-1}n equiprobable), we prove that  P{I x + Y I < 1 } _> ~. The example mentioned in 

the Introduction, with al . . . . .  a4 = �89 indicates that  this lower bound is sharp. 
The first idea in the proof is to forget about the particular way X and Y are 

defined, and maintain only some of their properties. Thus, we shall establish the 
following more general fact. 

Proposit ion 2.1. Let X and Y be independent random variables, each assuming 
finitely many real values and having a symmetric distribution with variance �89 Then 

P { ] X + Y I < I } > _ ~ .  

In anticipation of the need for an extension of this result (that will arise in 
Section 4), we shall actually prove here: 
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Propos i t ion  2.2. Let X and Y be independent random variables, each assuming 
finitely many real values and having a symmetric distribution, with 

1 1 
6 -  4v/2 < Var(X) ~_ ~ and 6 -  4x/'2 <_ Var(Y) ~_ 2" 

a be a real number with ]a[ < 1 - V ~  Then P { - 1  + a < X + Y < 1 + a} > Let 3 

Proof. Let Xl , . . . , x  k be all the distinct values that  [X[ assumes, and let Pi = 
P{]Xt =xi} ,  i --- 1 . . . . .  k. Similarly, let Yl,--.,Y~ be all the distinct values that  IYI 
assumes, and let qj = P { t Y[ = yj }, j = 1, . . . ,  ~. Denote P = P { -  1 + a < X + Y < 1 + a}. 
Then: 

k 
(1) p = c,jp qj, 

i=1 j = l  

where eij is �88 times the number of valid inequalities among 

(a) xi +Yj  < l - a ,  

(t3) xi + Yj < l + a, 

("/) IX i -  Yjl < 1 -  a, 

(5) Ixi--Yj[ < 1 +a.  

Given the x i and the yj, (1) can be regarded as defining a bilinear function P : D 1  x 

D2--*R, where D1 and D2 are polytopes in R k and I~ ~ respectivelydefined by: 

pi > 0, i = l , . . . , k  

P -- (P l , - - . ,Pk )  E D1 r ~ i = l P i  = 1 
Eki= 1 x2iPi = Var(X) 

q j > O ,  j = 1 , . . . , g  

q = ( q l , . . . ,  q/) E D2 r ~ j = l  qj =- 1 

)-~'~=1 Y~qj = Var(Y) 

A minimum of P in D1 • D2 can be found at a point (P,q)EextD1 • extD2, where 
ext Di is the set of extreme points of Di (this is a consequence of the bilinearity of 
P).  If p E ext D 1 then at least k - 2 of the inequalities Pi >_ 0 in the definition of D1 
must be satisfied by p with equality. An analogous statement holds for q E ext D2. 

The upshot of all this is that  we may assume that  k _< 2 and ~ _< 2. In fact, we 
shall assume from now on that  k = ~ -  2 (if for instance k = 1, we add an arbi trary 
x2 with probability 0). Updating our notation, we have now: 

Xl < x2, p =  P{IX[ = x l} ,  1 - p = P { I X l = x 2 } ;  

Yl<Y2,  q = P { l Y l = Y l } ,  1 - q = p { l y l = y 2 } .  

By assumption, 

1 1 
(2) px21+ ( 1 -  p)x 2 <  ~ and qy21 + ( 1 -  q)y2 ~_ _2. 
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(3) X l ~ V ~  and Y l < V ~ .  

Similarly, from the lower bound of 6 - 4 v ~  on the variances we deduce that  

(4) x 2 > 2 - v ~  and y 2 _ ~ 2 - v / 2 .  

We assume w.l.o.g, tha t  a > 0. Thus, the following implications among the inequali- 
ties tha t  determine cij in (1) hold: (c~)==~ (/3) and (?), (~) or (~/)=v (5). We shall use 
these implications in our arguments without  explicit mention. 

From (3) and the assumption tha t  a < 1 - V/�89 it follows tha t  [Xl - Yll < 1 - a, 
which accounts for 

1 
(5) P >_ ~pq. 

From here on the argument  to show tha t  P_> ~ splits into several cases. 
Case I. At least one of the following holds: 

(i) x 2 - Y l  < l - a ,  
(ii) x 2 + y l  < l + a ,  

(iii) Y2 - xl  < 1 - a, 

(iv) Y2 -~ Xl < 1 + a. 

W.l.o.g. we assume tha t  (i) or (ii) holds. In this case (5) can be improved to get 

1 
(6) P >  ~pq + ( 1 - p ) q =  ~q. 

Now, if q _> :~ then (6) implies P _> ~. We assume henceforth that  

3 
( 7 )  q < 

Put t ing  this into (2) yields Y2 < v f~, which in turn  implies, using (4), tha t  

( s )  - < - ( 2  - < 1. 

Our assumption tha t  (i) or (ii) holds implies tha t  

(9) x2 - Y2 < 1 - a. 

Indeed, if (i) holds then x2-Y2 < x 2 - y l  < l - a ;  if (ii) holds then, using (4), x2-Y2 <_ 
x2 + Yl - Y2 < 1 + a - (2 - v/2) < 1 - a. ~ o m  (8) and (9) we deduce tha t  Ix2 - Y21 < 
1 + a, and so (6) can be improved to get 

(10) P > ~ q +  4 ( 1 - p 1 ( 1 -  q). 
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Now, if (iii) or (iv) holds then  we may add � 89  q) to the r ight-hand-side of (10)~.i 
also, from (9) and the fact tha t  Y2 - x2 < 1 - a (which follows f rom (iii) or (iv) in the 
same manner  as (9) follows from (i) or (ii)) we deduce tha t  Ix2-Y21 < 1 -  a, which 
justifies an addi t ional  t e rm of � 8 8  thus P>_ � 8 9 1 8 9 1 8 9  

1 So we assume henceforth tha t  (iii) and (iv) fail, i.e., 

(11) y 2 >  l - a + x l  and y 2 > _ l + a - x l .  

This entails in par t icular  tha t  Y2 > 1, so from (2) we deduce tha t  

1 
(12) q > - .  

- 2  

If  x 1 +Yl :<  1 + a then  (10) can be improved to yield P > �89 �88 - p ) ( 1  - q) + �88 = 
3 � 8 9  q �89 > g + - _ ~ (using (12) for the last inequality).  Thus  w e  ussume th'at ~ 
x l  +Yl  > l + a .  Coupled with the first pa r t  of (11) this implies tha t  

(13) y2 >_ 2 - yl .  

We sta te  and prove n o w  an auxil iary claim whi'ch will be used to complete  the 
a rgument  here and will also serve us later on. 

Claim 2.3. L e t  u sa t i s f y  qy21 + (1 - q)y2 < 1 - u 2, and s u p p o s e  Y2 >- 2 - Yl .  T h e n  q > 

Proof .  P u t  t = 1 - Yl. Then  Y2 >- 1 + t and so 

q ( 1 - t )  2 + ( 1 - q ) ( l + t )  2 < i : u  2. 

From here we obta in  
(1 + t) 2 - 1 + u 2 

q -> 4t 
Thus  it suffices to show tha t  

( l + t )  2 -  l + u  2 l + u  
> - -  

4t - 2 

The  la t ter  is equivalent to 2t + t 2 +  u 2 __> 2t(1 + u), which in tu rn  is equivalent to 
( t -  u) 2 > o. ! 

complete  our a rgument  for Case I, we:use the claim with u = ~ to conclude To 
/ ' 7  

t ha t  q>_ ~ which contradicts  ( 7 ) i  

From now on we assume tha t  Case ! does not occur, i.e., 

(14) x2 >_ l - a + y l  and yz > l - a + x l ,  

(15) x2 >_ 1 + a - Yl 'and Y2 -> 1 + a - x 1. 

This  implies in par t icular  tha t  x2 >_ 1 and Y2 -> 1, so from 1(2) w~ ob ta in  tha t  

1 1 
(16) , p _ > ~  a n d ,  q > ~ .  
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Case I I .  Not Case I and Xl + Yl < 1 - a. 
In this case (5) can be improved to get 

(17) P > pq. 

Now, if ix2 - Y21 < 1 - a then  (17) can be improved to get P > pq + �89 (1 - p) (1 - q) = 
1 + 3r �89  �89 using (16) this implies P >  2'  Thus  we assume tha t  Ix2-y2]  > 3 ~ - 
l - a ,  and actually, w.l.o.g., Y2 -> 1 - a + x 2 .  Wi th  the first pa r t  of (15) this yields Y2 > 

2 - y l ,  and so by Claim 2.3 we have q>- - - -T - - "  Pu t t ing  this and p>_ �89 into (17) we 
f -  

get P > ~ - ~  > 2 '  complet ing the a rgument  for Case II. 

Case I I I .  Not  Case I and Xl +Yl  > 1 + a .  
Pu t  t = 1_~ _ x l .  Then  x l  = 1_~ _ t and,  using the  first pa r t  of (14) and the 

assumpt ion  of this case, x2 > 1 - a + Yl > 2 - Xl = ~ + t. So (2) yields 

( l + a )  2 ( 3 - ~ - - ~ )  2 1 
P 2 t + ( l - p )  + t  < - 7  

From here we obta in  

~-6~+s + ( 3  - a ) t  + t 2 
( i s )  p >_ 

2 - 2a + 4t 

_ _ l+a  __ We also have y l > > l + u - X l = - - 2 - + t  and y 2 > l - a + x l  ~ ;a - - t ,  so (2) yields 

2 - a  - t  < - .  
q + t  + ( i - q )  2 - 2 

From here we obta in  

7-6a+a2 (3 - a)t + t 2 
(19) q > ~I 

- 2 - 2 a  - 4t 

Given (5), (18) and  (19), it suffices to show tha t  

1 + (3 - a)t 7--7-6a (3 - a)t >- .3  
" 2 - 2 a + 4 t  2 - 2 a - 4 t  - 8 

This  is equivalent to ( L ~ ) 2  _ (3 - a)2t 2 > 3[(1 - a) 2 - 4t2], or, af ter  rearranging,  

(L~)2-3(1 -a )2+[12- (3 -a )2] t2  _> 0. Thus,  it suffices to show tha t  ( ~ ) 2 - 3 ( 1 - a )  2 > 
0. But  the  la t ter  is equivalent to 1 +  1 2 a ( 1 - a ) > 0 ,  and the a rgument  for Case I l I  is 
complete.  

Case IV.  Not Case I and 1 - a < Xl + Yl < 1 + a. 
In this case (5) can be improved to get 

3 
(20) P > -~pq. 
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We are going to distinguish three subcases, according to the number of valid inequal- 
ities among 

(v) x 2 - Y l  < l + a ,  
(vi) y 2 - x l  < l + a .  

I+~/~ 
Note that if (vi) fails then Y2 -> l + a + x l  _> 2 - y l ,  so by Claim 2.3 we have q>_ - - - ~ .  

/ 7 ,  

Similarly, the failure of (v) implies p :> 1---,+2 ~-~. 

Subcase 0. None of (v), (vi) holds. 

ThenP>_~pq>_~ >2" 

Subcase 1. Exactly one of (v), (vi) holds. 
We assume w.l.o.g, that x2 - Yl < 1 + a _< Y2 - Xl. Then (20) can be improved 

to o b t a i n P > _ ~ p q + � 8 8 1 8 9 1 8 9  SinceP_>�89 and q_>---T--, we get P_> 

> g .  

Subease 2. Both (v) and (vi) hold. 
Then (20) can be improved to get 

3 1 1 1 1 1 
(21) P > -~pq + -~ (1 - p)q + ~p(1 - q) = ~p + -~q + -~pq. 

1 1 Now, if Ix2-  Y21 < 1 + a then (21) can be improved to obtain P >_ 7iP+ 7Iq + �88 + 
�88 (1 - p)(1 - q) = �88189 using (16) this implies P > 2" Thus we assume that ]x2-y21 > 
l + a ,  and actually, w.l.o.g., x2 _> l + a + y 2 .  With t-l~e second part of (14) this implies 
x2 >_ 2 + Xl _> 2, which in turn implies, via (2), that p > ~. Putting this and q >_ �89 into 
(21) we get P >  29 _ ~ .  | 

Remarks. 
1. If we were interested only in the case a = 0  (as in Proposition 2.1, which suffices 

for the balanced case), then Case IV would not exist and the proof would consist 
of the first three cases, with some obvious simplifications. 

2. The assumption that the variances of X and Y do not exceed �89 is essential for 
the result: it is easy to construct an example where the variances of X and Y 
are �89 +c  and �89 - s  respectively, and P{[X + Y[ < 1} < 2" The other quantitative 
assumptions (the lower bounds on the variances, the upper bound on la[) can 
probably be relaxed at the cost of an increased number of cases in the argument. 

3. Simple examples show that the independence assumption cannot be waived, 
and the symmetry assumption cannot be replaced by the assumption that the 
expectations are 0. The assumption of finitely many values, however, can be 
dispensed with by means of an approximation argument. As the result of 
Proposition 2.1 seems interesting in its own right, we shall state its extension to 
arbitrary random variables (omitting the details of the proof). 
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T h e o r e m  2.4. Let  X and Y be independent  real valued random variables, each having 
a symmetr ic  distribution with variance 3" Then P{ IX + Y[ < 1 } > 3 

3. Three Special Cases 

In the previous section we handled those a = ( a l , . . . , a n ) E  S n-1 t ha t  admi t  a 
- a 2  3" Intuitively, such a par t i t ion  of In] into I and 7 so tha t  ~ ic la2 i  = i~I i = 

par t i t ion  will exist, at  least in an approx imate  sense, if the s u m m a n d s  in ~ a/2 are 

all small. At the other  extreme,  if a l  2, say, is close to 1 then  such a par t i t ion  is 
precluded. In this section we shall handle this and other  cases with a small  number  

2 As before, we shall of s u m m a n d s  accounting for a significant par t  of the sum ~ a i . 
define r andom variables X = ~ i ~ i ~ i a i  and Y = ~ i e i c i a i ,  but  here I will consist 

of those big summands .  The  variances of X and Y will no longer be  3, in general; 
this works to our disadvantage.  On the other  hand,  we shall be able to exploit  some 
addit ional  informat ion derived from the fact tha t  X is a sum of a small number  of 

3 terms.  In each of the three cases considered, we shall prove tha t  P { I X + Y [  < 1} > ~. 

We assume a = ( a l , . . . ,  an)E S n-1  and, for our convenience, 

(22) al >_a2 > _ ' " > _ a n > O .  

CaseA. 3<-al<l" 
We define,two random variables over the probabi l i ty  space {-+-1} n (with all * = 

= = ~-~i=2r . We denote  P = (C l , . . . , en )  E {q-l} n equiprobable):  X Clal  and Y n 

P { ] X + Y I  < 1}, and want  to prove t ha t  P >  2" 

The  r andom variable Y is independent  of X,  it assumes finitely m a n y  values and  
is symmetr ica l ly  d is t r ibuted  with variance 1 - a l  2. As in the proof  of Proposi t ion  2.2, 
we m a y  replace Y by a r andom variable ( that  we continue to denote  by Y) having 
these same proper t ies  and the addi t ional  p roper ty  tha t  [Y[ assumes just  two values. 
Thus,  we have: 

Yl <Y2,  q = P { I Y ] = Y l } ,  1 - q = P { ] Y [ - - y 2 } .  

The  informat ion on the variance yields 

(23) qy21 + (1 - q)y~ = 1 - a21 . 

The  r andom variable X remains  unchanged.  Thus,  it assumes the values :t:al with 
equal probabili t ies.  From (23) and the convention Yl < Y2 it follows tha t  Yl -< 

V/1 - a l  2 < 1. Since, by assumpt ion ,  also a l  < 1, we have lYl - all  < 1, which accounts  

for 
1 

(24) P _> ~q. 

Now, if [Y2 - al l  < 1 then  (24) can be improved to get P > �89 + �89 (1 - q) = 3, so we 
assume tha t  [Y2 - a l ]  _> 1. Since a l  - Y2 < a l  < 1, this means tha t  

(25) Y2 >-- 1 + a l .  
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As a 1 ~_ 3'  putting (25) into (23) yields q > ~. Now, if Yl + al < 1 then (24) can be 

improved to obtain P >  3q+3q=q~ 2, so we assume that al.~_l-yl. Together with 
(25) this implies that  Y2 ~- 2 - Yl. Using Claim 2.3 with u -- al we deduce that q ~ 

> :~ and therefore, by (24), P > 3 

CaseB.  a l < � 8 9  2+a22_>~ a n d a  1 - a  s~�89 
We define the random variables X = ~lal + ~2a2 and Y n = ~-~4=3 giai" We want 

to prove that P = P { I X + Y I  < 1} ~ ~. As before, we maintain X and replace Y to 
obtain the following situation: 

Xl = al -- a2, x2 = al + a2, 

Yl < Y2, q = P{]Y! = Yl}, 

Moreover, with u--  ~ 1  + a22 we have 

(26) qy~ + (1 

1 
P{IX[ = Xl} -- P(IX[ -- x2} -- ~; 

1 - q = P{[Y[ = y2}. 

- q ) y ~  = 1 - u s .  

As a2 _~ al < 3 we have u 2 = a l  2 + a 2 < 3" Thus 

(27) 2 < u2 < 1 
9 -  2 

nora  the inequalities (a1+ 2) and (27) we deduce 

(2S) < zs < < 1 
3 - - 

From (26) and the convention Yl <Y2 it follows that Yl < 1; from (28), also Xl,X2 < 
1. Thus, ]Yl -Xl ]  < 1 and ]Yl -x2 I  < 1, which accounts for 

1 
(29) P > 5q. 

Suppose that Y2-Xl < 1. This implies that also Y s - x s  < 1. Since x l - Y 2  < x 2 - Y 2  < 
x2 < 1, we have then lY2 - X l l  < 1 and lY2 - x s [  < 1, and so (29) can be improved to 
get P_> 3q+ 3 ( i - q ) =  3' Thus we may assume 

(30) Ys _~ 1 + xl .  

Suppose now that  Yl -> 1 -X l .  We shall prove then that q> ~, implying by (29) that 

P >  ~. Indeed, putting our lower bounds on Yl,Y2 and u 2 into (26) yields 

7 
q(1 - Xl) 2 + (1 - q)(1 + Xl) s _~ ~. 

This implies that 
2 + 2 x l  

q_~ 
4Xl 
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Since x 1 = al - a2 < �89 we have x 1 (1 - x 1) -< ~, and so it follows that 

Xl(1 - Xl) + 2Xl + Xl 2 3 
q >  

4x 1 4' 

Thus we may assume that Yl § < 1. Hence (29) can be improved to obtain 

1 1 3 
(31) P _> ~q + ~q = ~q. 

Now, if q _> �89 then P_> 2, so we may assume that q < �89 Using (26) and (27) this 

implies that  Y2 < : ~ .  This, together with (28), implies that lY2- x21 < 1. Hence 
(31) can be improved to get 

3 ~ 1 1 
P>_-~q+ ( 1 - q ) = - ~ + ~ q .  

Then, by (28), Yl -> 1 - x/2u > 0. Since Y2 -> 1 by (30), we 

(32) 

Suppose that  Yl -> 1 -x2 .  
get from (26) that 

This implies that 

q>_ 

q (1 -v /2u )  2 + l - q _ <  l - u  2. 

U 2 1 _ u > - '3-  _ 

Hence by (32) P > 2" Thus we may assume that Yl + x2 < 1. Therefore (32) can be 
improved to obtain 

1 1 1 1 3 
(33) P >  ~ + ~ q + ~ q = ~ + ~ q .  

Since Y2 -> 1, (26) and (27) imply that q _ ~. Thus (33) yields P >_ I~" 

C a s e C 2 2 a l + a 2 < ~ ,  a l 2 + a , 2 + a 2 > � 8 8  
y _  n We define the random variables X =Clal+e2a2+e3a3 and - ~ - ~ i = 4 s  . Again, 

we want to prove that  P = P{ IX + Y] < 1} _> 2" As in the proof of Proposition 2.2, 
an argument based on bilinearity shows that  we can replace X and Y to obtain the 
following situation: 

Xl <x2 ,  p = P{IX[ =Xl},  1 - p = P { I X [  =x2};  

Yl < Y2, q = P{[Y[ = Yl}, 1 - q = P{[Y[ = Y2}. 

The values Xl and x2 are among those numbers of the form -t-a 1 =}=a 2 •  3 which are 

1 these are nonnegative. Since a2 + a3 - al _> - , numbers 

a 2 T a 3 - - a  1 ~ _ a l + a 3 - - a  2 ~ a l + a 2 - - a  3 < a l + a 2 + a 3 ,  

and we have 

(34) xl  > ~ / 6 _  1. 
u  
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Also, since a l + a 2 + a 3 < ~ ( a l + a 2 ) < ~ 2 ( a l T a 2 ) <  ~ we have 

(35) 

Denoting u= ~/a 2 + a 2 4-a 2 we have 

(36) 

and, by assumption, 

(37) 

x 2 < l .  

qy~ + (1 - q)y2 = 1 - u 2, 

1 u ~ > - .  
- 2  

The arguments leading to formulae (29) and (30) in Case B are valid here too. Thus, 
we have 

1 
(38) P _> ~q, 

because lYl -Xl l  < 1 and lYl -x21 < 1, and we may assume 

(39) Y2 ~ l + X l .  

Together with (34) the latter implies that y22 > ~. Using now (36) and (37) it follows 
that 

3 
(40) q > ~. 

If Xl _> 1 -  Yl then, by (39), Y2 >- 2 -  Yl; using Claim 2.3, (36), (37) and (38) this 
implies P k }. Thus we may assume that  Xl + Yl < 1. Hence (38) can be improved 
to obtain 

1 1 
(41) P ~_ -~q + -~pq. 

Now, if x2 + Yl < 1 then (41) can be improved to get P k �89 q + �89 + �89 (1 -p)q  = q k ~. 
So we may assume 

(42) x2 ~ 1 - Yl. 

Similarly, if Y2- x2 < 1 then, since x2 -Y2 < x2 < 1, we have lY2- x21 < 1; therefore 
(41) can be improved to obtain P>_ �89189189189189 � 89  
3 Thus we may assume that Y2 > l+x2 .  Coupled with (42) this implies Y2 > 2 - y l ,  
which implies (as above) P > 3 
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4. P r o o f s  o f  T h e o r e m s  1.2 an d  1.4 

P r o o f  o f  T h e o r e m  1.2. Let a = (a l , . . .  , an )E  S ~-1.  We assume that (22) holds and 
al  < 1. Furthermore, we assume that none of Cases A, 13 or C of Section 3 occurs, 
since in these cases the lower bound of ~ has been established. As Case A does not 
occur, we have 

1 
al < - .  

2 
(43) 

We claim now that  

(44) a 3 < . 

Suppose not, i.e., a3 >_ ~ / ~ .  Then a l -  a2 ~ a l -  a3 < �89 - ~ < �89 and so the failure 

of Case B means that 2 2 ~. 2 2 2 >  2>  _ a14-a2 < Since also a 1 4 - a 2 + a 3 _ 3 a  3 - �88 and a 2 + a 3 - a  1 > 

2 a 3 -  al > 2 r  ~ - _ _  ~/~ > V/~ - 1, the conditions of Case C hold, contradicting our 

assumption. 
We choose now a partition of [n]\{3} = {1,2,4, . . . ,  n} into I and 7 so that 

iel ie7 

is the smallest possible among all such partitions. We claim that 

1 
(45) M < ~. 

- a 2 To show this, assume w.l.o.g, that M -  ~ i ~ I  i ,  and let j E I. By the choice of the 
X-' a 2 ~ 2  > ~Ar 2 2> 2 2 2 _ partition, z-~ie~ i--uj -- ~v~. Therefore, a j - a  3 _ M - ~ i c ?  a i - a  3 = M - ( 1 - ~ i ~ !  a i ) - 

2 M -  1. If aj < a 3 for any j E I, then this implies (45). If, on the other hand, aj > a 3 

for all j e I ,  then IC{1 ,2} ,  and so M<_a24-a2< �89 by (43). 
Using this partition, we define two random variables over the probability space 

{~=1} n (with all ~ = (E1,. . . ,en) e {~=1} n equiprobable): X = ~ i e i e i a i  and Y = 
~ i e i e i a i .  Then 

P{le. a I < 1} ----P{IX + Y + e3a3] < 1} 

= P{~3 = l iP{Ix  + r + ~3azl < i I c3 = i} 

+ P{e 3 ----- -lIP{IX 4- Y 4- ~3a3} < I I e3 • --1} 

1 
= ~ P { - 1 - a  3 < X + r < l - a 3 }  

+ l p ( - 1 4 - a 3  <X4-Y < 14-a3} 
1 

= P { - I + a 3 < X + Y < I + a 3 }  
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(the last equality holding because X + Y is symmetric). It is easy to verify that the 
conditions of Proposition 2.2 are satisfied. In particular, (45) says that the variances 

1 _ 1 =  are at most �89 by (44) and (45) they are at least 1 -  ~ 1-2 ~ > 6 - 4 v ~ ;  by (44) 

we have a 3 < V ~  < 1 -  ~/~. Thus, the above probability must be at least ~. | 

Proof  of Theorem 1.4. The proof is a straightforward application of the central limit 
theorem for triangular arrays (see [1, Theorem 27.2]), which we quote here. 

Theorem. Suppose that for each n the random variables Xnl~.. .  ,xnrn are indepen- 
dent, with E ( X n i ) : O  and s2n rn = ~ i = l  Var(Xni). Suppose further that the Lindeberg 
condition holds: 

~=1 1 X2nidP = 0 

1 ~rin_= 1Xn ~ tend to the standard normal for all e > O. Then the distributions of ~ 
distribution. 

In our application rn = n and Xni = cniani. As an 6 S n-1 we have Sn = 
1. To verify the Lindeberg condition, suppose e > 0 is given. We know that 
maxi=l,...,n ]ani] -* O, so we can find N so that [ani[ < e for all n _> N and all 
i = 1 , . . . ,n .  This implies that the event IXni[ >_ r is null for all n _> N and all 

and therefore E L 1  flxo,,>_ snX ide=O for n>  N Thus the central 
limit theorem applies and tells us that  the distributions of r tend to the standard 
normal distribution. | 
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