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For a fixed unit vector @ =(aq,...,an) € 5"~ consider the 2™ sign vectors € = (¢q,...,en) €
{£1}™ and the corresponding scalar products €-@ = Z?zleiai. The question that we address is:
for how many of the sign vectors must € -¢ lie between —1 and 1. Besides the straightforward
interpretation in terms of the sums 5 =a;, this question has appealing reformulations using the
language of probability theory or of geometry.

The natural conjectures are that at least % the sign vectors yield [€-¢]<1 and at least % of the
sign vectors yield |€-@| <1 (the latter excluding the case when |a;|=1 for some ). These conjectured

lower bounds are easily seen to be the best possible. Here we prove a lower bound of 3 for both
versions of the problem, thus completely solving the version with strict inequality. The main part
of the proof is cast in a more general probabilistic framework: it establishes a sharp lower bound
of g for the probability that |X +Y| <1, where X and Y are independent random variables, each
having a symmetric distribution with variance 11;

We also consider an asymptotic version of the question, where n — oo along a sequence of
instances of the problem satisfying ||@|loc — 0. Our result, best expressed in probabilistic terms, is
that the distribution of € -@ converges to the standard normal distribution, and in particular the
fraction of sign vectors yielding € -@ between —1 and 1 tends to ~68%.

1. Introduction

The following unsolved problem was presented in [2] and attributed to
B. Tomaszewski. Consider n real numbers ay,...,a, satisfying Y i, a? =1 Of
the 2™ sums of the form  +a;, is it possible that there are more with |Y" +a;| > 1

than there are with |} %a;| <17

The natural conjecture is that it is impossible. Formally, let sn—l = {a =
(a1,-..,an) ER™: Y1 a2 =1} and let {1} ={e=(e1,...,én): ;=1 0r =1, i=
1,...,n}. For ee{£1}® and e € "}, c.a=3"7_, ¢;qa; is their scalar product.

Conjecture 1.1. For all s € §"~ 1 [{e € {£1}™:|e-a|<1}|/2" > 5.
One can verify the conjecture for low values of n. In particular, for n =2 and

a1,ag >0, we have |e-e| <1 if and only if €1 #¢2, so the lower bound of % is attained.
For large values of n, it is instructive to think about the special case when a1 =---=
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an= \/% . Here |¢-a| <1 if and only if | Y 1 &;| < v/7; by the normal approximation
to the binomial distribution, the latter holds true for ~68% of the sign vectors e.

We want to suggest three appealing interpretations of the conjecture:

(i) Sum partitions. T he conjecture asserts that there are many ways to partltlon
a sum Y a; into two roughly equal partial sums. More explicitly, “many” means
at least half of all partitions, and “roughly equal” means (under the normalization
Za =1) differing by at most 1.

(11) Chebyshev-type inequality. When {+1}™ is viewed as a probability space,
with all € equiprobable, €-e becomes a random variable. Denoting X =¢.a we
have E(X) =0 and Var(X Za = 1. The conjecture states that X lies within

one standard deviation of 1ts mean with probability > % This is not true of a
general random variable; Chebyshev’s inequality yields a lower bound of 0 for this
probability. Yet, according to the conjecture, this is true for X that is a linear
combination of mutually independent random varlables each assuming the values +1
with equal probabilities.

(iii) A ball and a cube. Consider an, ri-dimensional ball and a smallest n-dimen-
sional cube containing it. The conjecture asserts, that for any pair of parallel sup-
porting hyperplanes of the ball, at least half the, vertices of the cube lie between (or
on) the two hyperplanes.

A variant of the problem addressed by ConJecture 1.1 is obtained by 1ns1st1ng
on je-a| <1 instead of [¢-¢| < 1. To get a meaningful lower bound for this version,
one must exclude those @ € S*~! with |a;| =1 for some i. Next, consider n=4and
ap=--=a4= %; in this case just 6 out of 16 sign vectors yield |¢-a] < 1. We shall
prove that this is the lowest possible:

Theorem 1.2. For all e € S"~! with |a;| <1, i=1,...,n,

{e € {£1}": Je-af <1}|/2" 2 g‘

Our method of proof does not seem to lead to a better lower bound when |e-a|<
1 is under consideration. Thus, for the original problem addressed by Conjecture 1.1
we only have the following immediate consequence of Theorem 1.2:

Corollary 1.3. For all e € S™71, [{e € {£1}": |e-a|<1}|/27> %

Our strategy for proving Theorem 1.2 grew out of the following idea. Suppose
that the set [n]={1,...,n} is partitioned into two subsets I and T so that 3 ;c;a?=
el a? = % Define two random variables over the probability space {£1}" (with
all € equiprobable) by X =3, re;a;, Y :Zi cTEiGi- Then X and Y are independent
and each has a symmetric distribution with variance % By Chebyshev’s inequality
P{|X| <1} >3, P{]Y|<1} > 1. It follows by independence and symmetry that at
least % of the time X and Y are <1 in absolute value and have opposite signs (or

one of them is 0). Since X +Y =¢-a, we obtain that P{|¢-a| <1}2%

There are two aspects of this argument that call for an improvement. First, a
“balanced” partition of [n], i.e., one with Ea? :% over each part, may not exist.
Second, the lower bound of % is considerably lower than we would like, and this is
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because the argument fails to exploit all combinations of values of X and Y that
entail |e-e|<1.

The structure of our proof is the following. In Section 2 we show that if a
balanced partition exists and X and Y are defined as above then P{|X +Y|<1} >
%A This takes care of the second point made in the last paragraph. With respect
to the first point, we define X and Y in the same manner using any partition of [n]
into I and I. For any such partition P{|X +Y|<1}=P{Je-a| <1}, and we look for
partitions that will enable us to establish a good lower bound for this probability.
In Section 3 we handle several special cases in which we can show that P{|X+Y|<
1} > % using partitions with |7| <3. These special cases are characterized, roughly

speaking, by the concentration of a significant part of the sum Zaf in one, two or
three of the summands. In Section 4 we show that if none of the special cases occurs
then for some j with a? < 112 there exists a partition of [n]\{j} into I and I such that

21-61 a? < % and Zief a? < %; this situation is close enough to the balanced case to

permit us to obtain the lower bound of g by an extension of the same argument.

A related question that we also address in this paper is: can we say more about
the problem if n is assumed to be large? The fact that n is large is not helpful by
itself, since the distribution of €-a remains the same if @ = (a;,...,a,) is replaced
by (aj,...,an,0,...,0). On the other hand, we have observed above that if n is large
and the a;, i=1,...,n, are equal, then |¢-a|<1 holds for ~68% of the sign vectors
€. The following theorem, which we prove in Section 4, establishes this phenomenon
under a more general assumption on the behavior of the a;.

Theorem 1.4. For n = 1,2,... let a, = (ani,-...ann) € S ! and assume that
max;—1 _ nlan;] — 0 as n — oc. Over the probability space {+1}" (with all ¢, €
{£1}" equiprobable) define the random variable X, = ¢ -a,. Then as n — ¢
the distributions of X,, tend to the standard normal distribution function ®. In
particular, P{|X,| <1} as well as P{|X,|<1} tend to ®(1)—P(—1)~0.6826.

2. The Balanced Case

In this section we assume that @ =(ay,...,a,)€S™ ! and [n] is partitioned into
I and T so that 3 ;cya? =2 T a?=4. For the random variables X =), &;a; and
Y =3, c7cia; defined over the probability space {£1}"* (with all € = (e1,...,e) €
{£1}™ equiprobable), we prove that P{|X +Y|<1}> g The example mentioned in
the Introduction, with a; =---=a4= %, indicates that this lower bound is sharp.

The first idea in the proof is to forget about the particular way X and Y are
defined, and maintain only some of their properties. Thus, we shall establish the
following more general fact.
Proposition 2.1. Let X and Y be independent random: variables, each assuming
finitely many real values and having a symmetric distribution with variance % Then
P{X+Y]|<1}>}.

In anticipation of the need for an extension of this result (that will arise in
Section 4), we shall actually prove here:
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Proposition 2.2. Let X and Y be independent random variables, each assuming
finitely many real values and having a symmetric distribution, with

1
6 — 4v2 < Var(X) < % and 6 — 4V2 < Var(Y) < 5

Let a be a real number with |al<1——\/g. Then P{—1+a<X+Y<1+a}2g.

Proof. Let z1,...,z; be all the distinct values that |X| assumes, and let p; =
P{|X|=ax;}, i=1,...,k. Similarly, let y;,...,y, be all the distinct values that |Y]|
assumes, and let ¢; =P{|Y|=y;}, j=1,...,L. Denote P=P{-1+a<X+Y <l+a}.
Then:

kot
(1) P=3"%"cijpig;,

i=1j=1
where ¢;; is 21{ times the number of valid inequalities among
(@) z; +y; <1-a,
(B) z; +y; <1+a,
(1) Iz —yil <1—a,
(6) |lz; —yjl <14a.

Given the z; and the y;, (1) can be regarded as defining a bilinear function P: Dy x
Dy —R, where Dy and Ds are polytopes in RF and R? respectively defined by:

p;i 20, i=1,...,k
k
p=(p1,...,px) € Dy &= 2}"::1}%': 1
Yim1 22p; = Var(X)

q_]ZO’ J:].,,e
¢
1=(q1,--.,9) € Dy <= rlqj:l
2j=l y}@ = Var(Y)

A minimum of P in Dj X Dy can be found at a point (p,9) € ext Dy x ext Dy, where
ext D; is the set of extreme points of D; (this is a consequence of the bilinearity of
P). If p €ext Dy then at least k—2 of the inequalities p; >0 in the definition of D;
must be satisfied by » with equality. An analogous statement holds for ¢ € ext Ds.

The upshot of all this is that we may assume that k<2 and £<2. In fact, we
shall assume from now on that k={=2 (if for instance k=1, we add an arbitrary
z9 with probability 0). Updating our notation, we have now:

1 <zp, p=P{X|=2z1}, 1-p=P{X|=2z}
n<y, ¢=P{Y|=y}, 1-g=P{Y|=y}.

By assumption,

[T

and qy? +(1—q)y3 <

N =

(2) pe? + (1 - p)zd <
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It follows that

3) o1 < \/g - s\/g.

Similarly, from the lower bound of 6 —41/2 on the variances we deduce that
(4) 2>2-+v2 and y>2-V2

We assume w.l.o.g. that a>0. Thus, the following implications among the inequali-
ties that determine ¢;; in (1) hold: (a)=(8) and (), (B) or (7)=>(6). We shall use
these implications in our arguments without explicit mention.

From (3) and the assumption that a <1 - \/g it follows that |21 — 3| <1—a,
which accounts for

1
(5) P> 5pg

From here on the argument to show that P> g splits into several cases.
Case I. At least one of the following holds:

(i) g —y1 <1l—a,
(i1) T9+y1 <l+a,
(iii) Yy —11 <1-—a,
(iv) w+r<l+a

W.l.o.g. we assume that (i) or (ii) holds. In this case (5) can be improved to get

11 1
P> pg+=(1-plg=zq.
(6) 2 5pa+5(1=p)g= 39

Now, if qz% then (6) implies P> g We assume henceforth that

(7) g< z

Putting this into (2) yields y9 < /2, which in turn implies, using (4), that
(8) y—za <V2-(2-V2) <1

Our assumption that (i) or (ii) holds implies that

(9) o —y2<1—a.

Indeed, if (i) holds then z9—y9 <z9—y; <1—a; if (ii) holds then, using (4), zo—y2 <
To+y—y2<l+a—(2—+2)<1—-a. From (8) and (9) we deduce that |z —y3| <
1+a, and so (6) can be improved to get

(10) P> g+ z(1-p)(1-0)
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Now, if (iii) or (iv) holds then we may add %p(l —¢) to the right-hand-side of (10);:
also, from (9) and the fact that yo —~x9 <1-—a (which follows from (iii) or (iv) in the
same manner as (9) follows from (i) or (ii)) we deduce that |z —ya| <1~ a, which
justifies an additional term of i(l—p)(l—q); thus P> %q+%(1—p)(1—q)+%p(1—q) =
%. So we assume henceforth that (iii) and (iv) fail, i.e.,

(11) y>l—a+zy and yop>1+a-—21.

This entails in particular that y3>1, so from (2) we deduce that
1

12 > —.

(12) 42 3

If z1 +y1.< 1+a then (10) can be improved to yield P> %q+ %(1 -p)(1—¢)+ ipq:
%-F %(p-l— %)(q— %) > % (using (12) for the last inequality). Thus-we assume thiat’
x1+y1 > 1+a. Coupled with the first part of (11) this implies that

(13) y2 > 2 -y

We state and prove now an auxiliary claim which will be used to complete the
argument here and will also serve us later on.

Claim 2.3. Let u satisfy qy% +(1- q)yg <1-u?, and suppose y2 >2—y;. Then q¢>
e
Proof. Put t=1—1yy. Then 53 >1+¢ and so

q1-t)2+ (1 -1 +t)2 <1=>

From here we obtain
2 __ 2
s L —1+u?
4t

Thus it suffices to show that
(1+w2—1+u2>1+u
41 = 27
The latter is equivalent to 2¢ + t2 + u? > 2t(1 + u), which in turn is equivalent to
(t—u)2>0. ]

To complete our argument for Case I, we:use the claim with u= \/g to conclude

14+4/3
that ¢ > %é, which contradicts (7).

From now on we assume that Case ] does not occur, i.e.,

(14) t221-a+y1 and yy>1-a+zy,

(15) zp2>21l4+a—1n ‘and y2 2 1+a—1x1.

This implies in particular that z9 >1 and y9>1, so from (2) wé obtain that
1 1

(16) ~P2§ and,ng.
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Case II. Not Case I and z1+y; <1—a.
In this case (5) can be improved to get

(17) P > pq.

Now, if g —y2] <1 —a then (17) can be improved to get P> pg+ %(1 —p){l—g)=
:1§+ %(p~ };)(q— :1;); using (16) this implies P > % Thus we assume that |zg —y2| >
1—a, and actually, w.l.o.g., yo > 1—a+x2. With the first part of (15) this yields yp >

1+y/3
2 -y, and so by Claim 2.3 we have ¢> —ﬁ Putting this and pZ% into (17) we

144/4
get P> %é > %, completing the argument for Case II.

Case III. Not Case I and 21 +y1>1+a.
Put ¢t = 1—42“3 — 1. Then 21 = 132 — ¢t and, using the first part of (14) and the
assumption of this case, zo>1—a+y; >2—z1= 3—5—'5 +t. So (2) yields

2 2
1 — 1
p(—%f—t) +(1—p)(32a+t) <.

From here we obtain

_ 2
18) s sl C k) ek
P= 220+ 4t

We also have y121+a—x1=1—“§2+t and y221—a+x1=%ﬂ—t, so (2) yields

2 2
1+a 3—a 1
t 1- —t < -,
(e a0 =)
From here we gbtain
T=6a+a’ _ (3 _ 4)¢ 4 42
(19) g> —3 B9
2 —2a— 4t
Given (5}, (18) and (19), it suffices to show that
1 TR @-ar TR -GB-at 3
2 2—2a+ 4t 2% —4 ~ 8

This is equivalent to (Zif—s‘i)2 — (3-a)%t? > 3[(1— a)% — 4t?], or, after rearranging,
(77?@)2—3(1—a)2+{12—(3—-a)2]t2 >0. Thus, it suffices to show that ( 7—7(69)2—3(1—@)2 >
0. But the latter is equivalent to 14 12a(1—a) >0, and the argument for Case Il is
complete.
Case IV. Not Caseland 1-a<z1+y1 <1l+a.

In this case (5) can be improved to get

3
(20) P> ZP‘Z-
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We are going to distinguish three subcases, according to the number of valid inequal-
ities among

(v) z2—y1 <1l+a,

(vi) ya—z1 <1l+a.

144/ 3
Note that if (vi) fails then y9 > 1+a+x1 >2—y1, so by Claim 2.3 we have ¢ > ~—é£

1+1/%
Similarly, the failure of (v) implies p> —éé
Subcase 0. None of (v), (vi) holds.

3 sa(HVE) s

Subcase 1. Exactly one of (v), (vi) holds.
We assume w.l.o.g. that z9 —~y; <1+4+a <y —z;. Then (20) can be improved
1+4/3
to obtain P > %pq+ 211(1—p)q= %(p+ %)q Since p > % and ¢ > —2\/—;, we get P>
1+4/3
253,
Subcase 2. Both (v) and (vi) hold.
Then (20) can be improved to get

(21) P> %pq+j—1(1~p)Q+%p(l—q)=ip+iq+ipq-

Now, if {z9 —y2| < 1+ a then (21) can be improved to obtain P > %p+ ;11-q+ zlipq-’r-
;11-(1 —p)(l—g)= 1+%pq; using (16) this implies P > % Thus we assume that |zo—y2| >
1+4a, and actually, w.Lo.g., 9 >1+a+yy. With the second part of (14) this implies
x9>2+x1>2, which in turn implies, via (2), that p> g Putting this and qZ% into
(21) we get PZ%% I

Remarks.

1. If we were interested only in the case a=0 (as in Proposition 2.1, which suffices
for the balanced case), then Case IV would not exist and the proof would consist
of the first three cases, with some obvious simplifications.

2. The assumption that the variances of X and Y do not exceed % is essential for
the result: it is easy to construct an example where the variances of X and Y
are %+e and % — ¢ respectively, and P{|{X +Y|<1}< g The other quantitative
assumptions (the lower bounds on the variances, the upper bound on |a|) can
probably be relaxed at the cost of an increased number of cases in the argument.

3. Simple examples show that the independence assumption cannot be waived,
and the symmetry assumption cannot be replaced by the assumption that the
expectations are 0. The assumption of finitely many values, however, can be
dispensed with by means of an approximation argument. As the result of
Proposition 2.1 seems interesting in its own right, we shall state its extension to
arbitrary random variables (omitting the details of the proof).
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Theorem 2.4. Let X and Y be independent real valued random variables, each having
a symmetric distribution with variance % Then P{|X+Y|<1}> %

3. Three Special Cases

In the previous section we handled those @ = (aj,...,an) € S*~! that admit a
partition of [n] into I and T so that 3 ;c7a? = Ziefa? = §. Intuitively, such a
partition will exist, at least in an approximate sense, if the summands in Zaf are
all small. At the other extreme, if a%, say, is close to 1 then such a partition is
precluded. In this section we shall handle this and other cases with a small number

of summands accounting for a significant part of the sum Zalz. As before, we shall
define random variables X =} ,.7€;0; and Y = 21‘6751‘% but here I will consist

of those big summands. The variances of X and ¥ will no longer be %, in general;
this works to our disadvantage. On the other hand, we shall be able to exploit some
additional information derived from the fact that X is a sum of a small number of
terms. In each of the three cases considered, we shall prove that P{|X +Y|<1}> g

We assume @ ={ay,...,a,) €S™ 1 and, for our convenience,

(22) ap > ag > > an > 0.

Case A. %Sal <1

We define two random variables over the probability space {£1}" (with all € =
(€1,...,6n) € {£1}" equiprobable): X =¢ja; and Y =Y} 5¢;0;. We denote P =
P{|X +Y|<1}, and want to prove that P> g

The random variable Y is independent of X, it assumes finitely many values and
is symmetrically distributed with variance 1—a%. As in the proof of Proposition 2.2,
we may replace Y by a random variable (that we continue to denote by Y) having
these same properties and the additional property that |Y'| assumes just two values.
Thus, we have:

1<y, ¢=P{Y|=un}, 1-g=P{Y|=y}

The information on the variance yields

(23) gwi+(1-gu3=1-qi

The random variable X remains unchanged. Thus, it assumes the values +aq with

equal probabilities. From (23) and the convention y; < y2 it follows that y; <
1- a% < 1. Since, by assumption, also aj <1, we have |y; —a1| <1, which accounts

for '

1

Now, if |y2 —a1| <1 then (24) can be improved to get P> %q-%— %(1 —q)= %, S0 we
assume that |yo—aj|>1. Since a; —y2 < a1 <1, this means that

(25) yo > 1+ a;.
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As a1 > %, putting (25) into (23) yields ¢ > 12; Now, if y; + a3 <1 then (24) can be
improved to obtain P > %q«l—%q:qz %, so we assume that a1.>1—y;. Together with
(25) this implies that yp > 2—y;. Using Claim 2.3 with u=a; we deduce that ¢ >

5'2‘11 2% and therefore, by (24), P> g

Case B. a1 < %, a%+a%2 g and a3 —ag9 < :1;

We define the random variables X =¢e1a; +¢€9a92 and ¥ = 2?23 €;a;. We want
to prove that P=P{|X+Y|<1} > g As before, we maintain X and replace Y to
obtain the following situation:

1
Ty =a; —ap, 2 =a1+ay, P{|X|=$1}=P{|X|=12}=§;

n <y ¢=P{lY|=uy}, 1-g=P{Y|=y}

Moreover, with u=4/ a% +a% we have
2

(26) g+ (1 -qys=1-u%

Asao<ay <% we have u2=a%+a%< 312 Thus

2 4, 1
27 - < < -
(27) 9=" %3
From the inequalities a% +a% <(a1+a9)*< 2(0% +a§) and (27) we deduce
2
(28) £5125\/§u<1.

3

From (26) and the convention y; <ys it follows that y; <1; from (28), also z1,72 <
1. Thus, |y; —z1|<1 and |y; — z2| < 1, which accounts for

1

Suppose that o — 1 <1. This implies that also yo —z9< 1. Since | —y3 <z9—ys <
xg <1, we have then |yo —z1| <1 and [yg —z9[ <1, and so (29) can be improved to

get P> %q+ %(1 —q)= % Thus we may assume

(30) y2 > 1+ 2.

Suppose now that y; > 1—x;. We shall prove then that q> %, implying by (29) that
P> g Indeed, putting our lower bounds on y;,y2 and %2 into (26) yields

g1-21)2 +(1- @)1 +21)2 < g

This implies that
2 2
q> §t2mtay
4.21
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Since 1 =a; —ag < é, we have z1(1—z1) < !2;, and so it follows that

S x1(1—31)+2z1+m% 3

= 4z T4
Thus we may assume that y; +z7 <1. Hence (29) can be improved to obtain
1 1 3
31 P>—-q+-¢=-q.
(31) 2 59+ 9= 44

Now, if ¢ > % then P > g, S0 we may assume that ¢ < % Using (26) and (27) this

implies that yp < %E This, together with (28), implies that |y2 — z2| < 1. Hence
(31) can be improved to get

3 1 1 1
2 P>Z¢g+>(1-¢)=-+=q.
(32) _44’ 4( q) i 2‘2

Suppose that y; >1—xz9. Then, by (28), y1 >1—+/2u>0. Since y3 >1 by (30), we
get from (26) that

g1 -vV2u)l+1-g<1-22

u? %: 1

2
2 0o —2u 2(vV2 — u) = Q(ﬂ_%z)zfl'

Hence by (32) P> g Thus we may assume that y; + 29 <1. Therefore (32) can be
improved to obtain

This implies that

1 1 1 1 3
> -4 - -qg=-+ —q.
(33) P_4+2q+4q 4+4q

Since y2 > 1, (26) and (27) imply that ¢> % Thus (33) yields P> 1%

Case C. a%+a%< %, a%+a%+a§2% and ag+a3—ay > g—l.
We define the random variables X =e1a1+¢2a2+€303 and ¥ = 22;4 €;a;. Again,
we want to prove that P=P{|X+Y|<1}> g As in the proof of Proposition 2.2,

an argument based on bilinearity shows that we can replace X and Y to obtain the
following situation:

1<z, p=P{X|=m} 1-p=P{X|=zx}
i<y, ¢=P{Y|=m}, 1-g=P{Y|=y}
The values z; and z5 are among those numbers of the form +ay £ a5 +a3 which are
nonnegative. Since ag+ag—aj > g—- 1, these numbers are
ag+az—a; <a;+az—ag <a;+a—az<a;+az+as,

and we have

(34) ] 2 \/g - 1.
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Also, since a1 +ag+ag< %(al +a2)§%\/2(a%+a%)<% 2%:1, we have

(35) 9 < 1.
Denoting u=1/ a% +a§ +a§ we have
(36) gyt + (1—qpf =1,

and, by assumption,

(37) U >

DO =

The arguments leading to formulae (29) and (30) in Case B are valid here too. Thus,
we have

1
(38) P 2 =49,

2
because |y; — 1| <1 and |y; —z2| <1, and we may assume
(39) Y2 > 14+ 127.

Together with (34) the latter implies that y% > g Using now (36) and (37) it follows
that

(40) q>

|

If £1 > 1—y; then, by (39), y2 > 2 —y;; using Claim 2.3, (36), (37) and (38) this
implies P > g Thus we may assume that 1 +y; <1. Hence (38) can be improved
to obtain

11
> g4 ~pg.
(41) P2ga+35m

Now, if z2+y; <1 then (41) can be improved to get P> %q+ %pq+ %(1 ~p)g=q>3%.
So we may assume

(42) z9 21—y

Similarly, if y9 —x9 <1 then, since z9 —yo <z <1, we have |y2 — z2| < 1; therefore
(41) can be improved to obtain P > %q+ %pq+ %(1 —-p)(1—q)= %+p(q— %) z % -~ %pZ
g. Thus we may assume that yo >1+x9. Coupled with (42) this implies yo >2—1y;,
which implies (as above) P> %
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4. Proofs of Theorems 1.2 and 1.4

Proof of Theorem 1.2. Let @ =(ay,...,an) € S*. We assume that (22) holds and
a1 < 1. Furthermore, we assume that none of Cases A, B or C of Section 3 occurs,

since in these cases the lower bound of % has been established. As Case A does not
occur, we have

1
43 -,
( ) a) < 3

We claim now that

1
44 ag < 4} —.
(44) 3 P

Suppose not, i.e., az3> \/—1% Then a1—an<a) —az< % Tlg < 11;, and so the failure
of Case B means that ‘11 +a2 < g Since also al +a2 +a3 >3a§> 7 and ag+a3z—~ay >

2a3 —ay > 2\f SV \/; \/; ~1, the conditions of Case C hold, contradicting our
assumption. B
We choose now a partition of [n[\{3}={1,2,4,...,n} into I and I so that

M= max{z a?,z a?}
€f  eT
is the smallest possible among all such partitions. We claim that

(45) M< %

To show this, assume w.l.o.g. that M= Zzéla and let j € I By the choice of the
partition, 3. ya 2-{~CLZ>M Therefore, aJ a§>M - 79t —A=M-(1-Y ;0=
2M—1. Ifa;<ag for any j €I, then this implies (45) If, on the other hand, o; >a3
for all €1, then 1C{1,2}, and so M<a1+a,,< 7, by (43).

Using this partition, we define two random variables over the probability space
{£1}" (with all € = (e1,...,en) € {£1}" equiprobable): X =3, rea; and ¥V =
Y ;c7€iai- Then

Plie o] <1} =P{{X + Y +e3a3] < 1}
=Pleg=1P{|X +Y +ezaz| <1jeg=1}
+P{eg = —1}P{|X +Y +e3a3| <1|eg = -1}
1
= —2-P{~1—a3<X+Y<1’~(L3}

1
+§P{v1+a3<X+Y<l+a3}
=P{~1+a3<X+Y <1+a3}
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(the last equality holding because X +Y is symmetric). It is easy to verify that the
conditions of Proposition 2.2 are satisfied. In particular, (45) says that the variances

are at most %; by (44) and (45) they are at least 1— % - 112 = -1% >6—4v/2; by (44)
we have a3 <4/ 112 <1l- \/g . Thus, the above probability must be at least % i

Proof of Theorem 1.4. The proof is a straightforward application of the central limit
theorem for triangular arrays (see [1, Theorem 27.2]), which we quote here.

Theorem. Suppose that for each n the random variables X,1,...,Xnr, are indepen-
dent, with E(X,;)=0 and s2 = >oir, Var(X,;). Suppose further that the Lindeberg

condition holds:
2
lim E / X (zeen X dP =0

for all e > 0. Then the d1str1but1ons of E 1 Xni tend to the standard normal
distribution.

In our application r, = n and X,; = €,;a,;. As ¢y € S§"~1 we have s, =
1. To verify the Lindeberg condition, suppose ¢ > 0 is given. We know that
max;=1,.n|ani| = 0, so we can find N so that |ap;| < € for all n > N and all
it =1,...,n. This implies that the event |X,;| > €35 is null for all n > N and all
i=1,...,n, and therefore 37 ; ;12- lem'IZESn an.dpzo for n> N. Thus the central

limit theorem applies and tells us that the distributions of €,-a,, tend to the standard
normal distribution. ]
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