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ABSTRACT

We present some problems and results about variants of sunflowers in

families of sets. In particular, we improve an upper bound of the first

author, Körner and Monti on the maximum number of binary vectors

of length n so that every four of them are split into two pairs by some

coordinate. We also propose a weaker version of the Erdős–Rado sunflower

conjecture.
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1. Introduction

Introduced by Erdős and Rado [10], sunflowers (also called strong Δ-systems)

have a long history of study and applications in extremal combinatorics and

theoretical computer science. Recall that a family H of r distinct subsets of

[n] = {1, 2, . . . , n} is called a sunflower of size r if every i ∈ [n] belongs to

either 0, 1 or r of the sets in H.

Erdős and Rado famously conjectured that if F is a k-uniform family of sets

(i.e., |A| = k for everyA ∈ F) not containing a sunflower of size r, then |F| ≤ Ck,

where C is a constant depending only on r. For many years, the best known

upper bound was close to k! for any fixed r. A recent breakthrough due to

Alweiss, Lovett, Wu and Zhang [3] improved the bound to (log k)(1+o(1))k for

any fixed r, but the original conjecture is still open even for r = 3.

Seeking a bound that depends on the size n of the ground set rather than

the uniformity k, Erdős and Szemerédi [11] conjectured that if F is a family of

subsets of [n] not containing a sunflower of size r, then |F| ≤ cn, where c < 2

is a constant depending only on r. They showed (implicitly, made explicit

by Deuber et al. [6]) that their conjecture would follow from the Erdős–Rado

conjecture. The recent solution by Ellenberg and Gijswijt [8] of the cap set

problem, confirmed the r = 3 case of the Erdős–Szemerédi conjecture (via a

reduction due to the first author, Shpilka and Umans [2]); see also Naslund and

Sawin [17] and Hegedűs [12] for explicit bounds. But the conjecture is still open

for r ≥ 4.

In this paper we introduce a weaker variant of sunflowers.

Definition 1.1: A familyH of r distinct subsets of [n] is called a near-sunflower

of size r if every i ∈ [n] belongs to either 0, 1, r − 1 or r of the sets in H.

The weakening consists in adding the option of belonging to r − 1 of the

sets (this renders the property interesting only for r ≥ 4). It is natural in

that it makes the property symmetric: if H is a near-sunflower then so is

{[n] \A : A ∈ H}. One may hope that when sunflowers are replaced by

near-sunflowers, the notoriously difficult conjectures of Erdős–Rado and Erdős–

Szemerédi will become easier. We show that this is indeed the case in the

Erdős–Szemerédi setting (bound depending on n), but leave the question in the

Erdős–Rado setting (bound depending on k) open.
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The following variant of near-sunflowers, in which one member of the family

plays a distinguished role, will be of interest. It is convenient to define it for

binary vectors of length n instead of subsets of [n]—henceforth we will pass

freely between these two equivalent formalisms.

Definition 1.2: A family x(0), x(1), . . . , x(r−1) of r distinct vectors in {0, 1}n is

focal with focus x(0) if for every coordinate i ∈ [n] at least r − 2 of the r − 1

entries x
(1)
i , . . . , x

(r−1)
i are equal to x

(0)
i .

Thus, a focal family is a near-sunflower with the additional property that one

of the vectors—the focus—is always in the majority. Unlike near-sunflowers,

focal families are interesting already for r = 3. While sunflowers and focal fam-

ilies are both special kinds of near-sunflowers, they are not logically comparable

to each other.

The two extremal functions corresponding to our definitions are:

gnsr (n) = max{|F| : F ⊆ {0, 1}n contains no near-sunflower of size r},
gffr (n) = max{|F| : F ⊆ {0, 1}n contains no focal family of size r}.

It follows from the definitions that gnsr (n) ≤ gffr (n). Our main result gives

upper and lower bounds for these functions.

Theorem 1.3: For r ≥ 3 we have:

(a) gnsr (n) ≤ gffr (n) ≤ (r − 1)2�
(r−2)n
r−1 �.

(b) There exist positive constants cnsr and cffr so that

gnsr (n) ≥ cnsr

( 2

(r + 1)
1

r−1

)n

,

gffr (n) ≥ cffr

( 2

r
1

r−1

)n

.

In particular, for r = 4, our bounds (ignoring constants) are 2
2n
3 from above

and (85 )
n
3 and 2

n
3 from below, for near-sunflowers and focal families, respectively.

Families without near-sunflowers of size 4 were previously studied (with different

terminology) by the first author, Körner and Monti [1], settling a problem

suggested by Sós in the late 1980’s. While their lower bound was the same

as ours, their upper bound was roughly 20.773n, with a proof based on Sauer’s

lemma. It is remarkable that our short and elementary proof improves their

bound. We note that they also extended their result to r > 4, but with a
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different definition. Whereas our near-sunflowers allow an element to belong

to 0, 1, r − 1 or r of the sets, their definition allows everything except one

forbidden value.

We also remark that a concept analogous to our focal families, where instead

of requiring “at least r−2” in Definition 1.2 one requires “at least 1,” was studied

in coding theory under the names separating codes (Cohen and Schaathun [5])

and frameproof codes (Blackburn [4]). This case is somewhat simpler and the

bounds obtained in those papers coincide with ours for the special case r = 3.

More generally, our paper follows a long line of literature in extremal combi-

natorics, information theory and coding theory. The common thread is bound-

ing the largest possible cardinality of a family of vectors of length n, so that

for any r of them there exist coordinates displaying certain desirable patterns.

For r = 2, Sperner’s [18] classical theorem on antichains is a prime example.

For r = 3 we mention the theorem of Erdős, Frankl and Füredi [9] on families in

which no set is covered by the union of two others; the problem of cancellative

families solved by Tolhuizen [19]; and a variety of related problems described

by Körner [13]. For r = 4 there is Lindström’s [15] theorem on determining

two vectors from their sum modulo 2, and Körner and Simonyi’s [14] bounds

for two-different quadruples. For general r, we refer to the study of disjunctive

codes (Dyachkov and Rykov [7]). In all of these problems, and many others,

the cardinality of the largest family grows exponentially in n, but (with few

exceptions) the asymptotic growth rate is not known. Our problems are no

exception.

The proof of Theorem 1.3 is given in the next section. In Section 3 we adapt

the definition and the bounds for focal families to vectors over larger alphabets,

noting that the upper bound becomes essentially tight when the size of the

alphabet exceeds n. We show in Section 4 that the upper bound in Theorem 1.3

can be improved if the family of vectors is closed under addition modulo 2 (i.e.,

forms a linear code). In Section 5 we consider one-sided focal families, where 0

and 1 entries are treated asymmetrically, and obtain corresponding bounds.

Finally, in Section 6 we discuss the challenge of obtaining an exponential upper

bound in terms of the uniformity k, and prove such a bound under a stronger

condition.
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2. Proof of Theorem 1.3

The upper bound. Let F ⊆ {0, 1}n have cardinality |F| > (r − 1)2�
(r−2)n
r−1 �.

We have to show that F contains a focal family of size r. Fix a partition

A1, . . . , Ar−1 of [n] into r − 1 parts of size |Aj | ≥ � n
r−1� each. For a sub-

set S ⊆ [r − 1] with |S| = r− 2, say that a vector x ∈ F is S-unique if there is

no other vector in F with the same projection on
⋃

j∈S Aj . Since

∣∣∣∣
⋃
j∈S

Aj

∣∣∣∣ ≤
⌈(r − 2)n

r − 1

⌉
,

for a given S the number of S-unique vectors in F is at most 2�
(r−2)n
r−1 �. It

follows from our assumption on |F| that there exists a vector x(0) ∈ F which is

not S-unique for any S ⊆ [r− 1] with |S| = r− 2. This means that we can find

vectors x(1), . . . , x(r−1) ∈ F \ {x(0)} so that each x(j) agrees with x(0) except

possibly on coordinates in Aj . Note that x(1), . . . , x(r−1) are pairwise distinct,

because if two of them were equal they would have to coincide with x(0). By

construction, the subfamily x(0), x(1), . . . , x(r−1) is focal with focus x(0).

The lower bounds. As is common in such problems, we use random choice with

alterations. We describe the argument for near-sunflowers, later pointing out

how to adapt it to focal families.

We start by forming a random family G ⊆ {0, 1}n to which each vector

x ∈ {0, 1}n belongs, independently, with probability p (to be determined later).

Then E(|G|) = 2np. Let NG be a random variable counting the number of near-

sunflowers of size r contained in G. By removing at most NG vectors from G,

we obtain a family F of cardinality at least |G| − NG which contains no near-

sunflower of size r. By linearity of expectation,

E(|F|) ≥ 2np−Nns
r pr,

where Nns
r is the number of near-sunflowers of size r in {0, 1}n.

To estimate Nns
r , note that the number of r × n binary matrices so that the

number of 1 entries in each column is 0, 1, r − 1 or r is (2r + 2)n. Since near-

sunflowers correspond to such matrices with distinct rows, and the order of the

rows is immaterial, it follows that Nns
r ≤ 1

r!(2r + 2)n. Thus,

E(|F|) ≥ 2np− 1

r!
(2r + 2)npr,
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and choosing p = c( 1

(r+1)
1

r−1
)n for a suitable c = c(r) > 0 yields

E(|F|) ≥ cnsr

( 2

(r + 1)
1

r−1

)n

for some cnsr > 0. Hence, there is a realization of F having at least this cardi-

nality.

Moving to focal families, the argument is similar, but now we have to estimate

the number Nff
r of focal families of size r in {0, 1}n. The number of r × n

binary matrices so that in each column the first entry is repeated at least r− 2

times among the other entries is (2r)n. Since focal families correspond to such

matrices with distinct rows, and the order of the last r − 1 rows is immaterial,

it follows that Nff
r ≤ 1

(r−1)! (2r)
n. Thus,

E(|F|) ≥ 2np− 1

(r − 1)!
(2r)npr,

and choosing p = c( 1

r
1

r−1
)n for a suitable c = c(r) > 0 yields E(|F|) ≥ cffr (

2

r
1

r−1
)n

for some cffr > 0, as required.

3. Focal families over larger alphabets

Given any integer q ≥ 2, Definition 1.2 can be applied verbatim to vectors

in [q]n to define q-ary focal families. Let gq-ffr (n) be the corresponding extremal

function. A straightforward adaptation of the proof above yields the following

version of Theorem 1.3 for q-ary focal families.

Theorem 3.1: For q ≥ 2 and r ≥ 3 we have

cq-ffr

(
q

((q − 1)(r − 1) + 1)
1

r−1

)n

≤ gq-ffr (n) ≤ (r − 1)q�
(r−2)n
r−1 �

for some positive constant cq-ffr .

When q ≥ n and q is a prime power, we can replace the probabilistic lower

bound by a constructive one which matches (up to a constant factor depending

on r) the upper bound.

Proposition 3.2: If q ≥ n and q is a prime power then

gq-ffr (n) ≥ q�
(r−2)n
r−1 �.
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Proof. The Reed–Solomon code with suitable parameters gives the desired lower

bound. For completeness, we describe the construction. We identify the ele-

ments of the finite field Fq with the q symbols in our alphabet. We choose

and fix n distinct elements a1, a2, . . . , an ∈ Fq, and identify them with the

coordinates 1, 2, . . . , n. There are q�
(r−2)n
r−1 � polynomials p(x) of degree less

than � (r−2)n
r−1 	 over Fq. With every such polynomial we associate the vec-

tor (p(a1), p(a2), . . . , p(an)), which gives a family F of q-ary vectors of length n,

with |F| = q�
(r−2)n
r−1 �.

We claim that F contains no focal family of size r. Indeed, suppose

that x(0), x(1), . . . , x(r−1) ∈ F form such a family with focus x(0). Then by

the pigeonhole principle, some x(j), j ∈ [r − 1], has to agree with x(0) on at

least � (r−2)n
r−1 	 coordinates. This means that the corresponding polynomials p(j)

and p(0) agree on at least � (r−2)n
r−1 	 elements of Fq. But this is impossible, as

they are distinct polynomials of degree less than � (r−2)n
r−1 	.

4. Improved upper bound in the linear case

While Proposition 3.2 shows that our upper bound is essentially tight

when q ≥ n, we believe that for q = 2 and large n it is not. To support

this belief, we show here that the upper bound can be significantly improved if

we restrict attention to families of binary vectors which are linear codes (i.e.,

closed under addition modulo 2). This can be done for any value of r, but for

simplicity and concreteness of the bound we do it for r = 4.

We are going to use a known bound on the tradeoff between cardinality and

minimum Hamming distance in a family F of binary vectors of length n. Recall

that, by the linear programming bound (McEliece, Rodemich, Rumsey and

Welch [16]), if the Hamming distance between any two distinct vectors in F is

greater than δn, then

|F| ≤ 2(h(
1
2−

√
δ(1−δ))+o(1))n,

where h(x) is the binary entropy function defined by

h(x) = −x log2 x− (1 − x) log2(1− x).

We first prove the following theorem, which does not require linearity.
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Theorem 4.1: Let F be a family of at least 20.44n subsets of [n], where n is

large enough. Then there exist three pairs of distinct sets in F such that their

symmetric differences A�B, C �D and E � F are pairwise disjoint.

Proof. We apply the above-mentioned bound repeatedly. First, a calculation

shows that for δ = 0.213, we have h(12 − √
δ(1− δ)) < 0.44. As |F| ≥ 20.44n

and n is large, the bound implies the existence of distinct sets A,B ∈ F

with |A�B| ≤ 0.213n. Next, by the pigeonhole principle, we can find at

least |F|
2|A�B| sets in F having the same intersection with A � B. Let F′ be

the family obtained by restricting these sets to [n] \ (A � B). A calcula-

tion shows that for δ′ = 0.287, we have h(12 − √
δ′(1− δ′)) < 0.28. As

|F′| ≥ 20.44n−|A�B| > 20.28(n−|A�B|) and n is large, the bound implies the

existence of distinct sets C,D ∈ F such that (C � D) ∩ (A � B) = ∅ and

|C �D| ≤ 0.287(n− |A�B|). Now |A�B|+ |C �D| < 0.44n, and again by

the pigeonhole principle we can find two distinct sets E,F ∈ F having the same

intersection with (A�B) ∪ (C �D), which completes the proof.

Corollary 4.2: Let F be a linear subspace of {0, 1}n of dimension at least

0.44n, where n is large enough. Then F contains a focal family of size 4.

Proof. Viewing F as a family of subsets of [n], it is closed under symmet-

ric difference. Hence the theorem yields three pairwise disjoint non-empty

sets X(1), X(2), X(3) ∈ F. Taking the empty set as the focus X(0), we obtain a

focal family of size 4.

5. One-sided focal families

The requirement defining a focal family may be separated into two one-sided

requirements as follows.

Definition 5.1: Let b ∈ {0, 1}. A family x(0), x(1), . . . , x(r−1) of r distinct vec-

tors in {0, 1}n is b-focal with focus x(0) if for every coordinate i ∈ [n] such

that x
(0)
i = b, at least r − 2 of the r − 1 entries x

(1)
i , . . . , x

(r−1)
i are equal to b.

The corresponding extremal functions for b = 0, 1 are:

gb-ffr (n) = max{|F| : F ⊆ {0, 1}n contains no b-focal family of size r}.
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It will be convenient to study the extremal questions first for k-uniform fam-

ilies. Let
(
[n]
k

)
be the family of all k-element subsets of [n]. For b = 0, 1 let:

gb-ffr (n, k) = max

{
|F| : F ⊆

(
[n]

k

)
contains no b-focal family of size r

}
.

Since H is 0-focal if and only if {[n] \A : A ∈ H} is 1-focal, we have

g0-ffr (n) = g1-ffr (n) and g0-ffr (n, k) = g1-ffr (n, n− k).

So we only need to study these questions for one value of b.

Theorem 5.2: For r ≥ 3 and 0 ≤ k ≤ n we have

g1-ffr (n, k) ≤ (r − 1)

( n
� (r−2)k

r−1 �
)

( k
� (r−2)k

r−1 �
) .

Proof. Let F be a family of k-element subsets of [n] containing no 1-focal family

of size r. For a set A ∈ F, we say that a set S is an own-subset of A if S ⊆ A

and S � B for any B ∈ F \ {A}.
Consider an arbitrary (r − 1)-tuple A1, . . . , Ar−1 of pairwise disjoint � k

r−1�-
element subsets of a set A ∈ F. If for every j ∈ [r − 1] there exists a set

Bj ∈ F \ {A} such that A \ Aj ⊆ Bj , then the sets A,B1, . . . , Br−1 form

a 1-focal family of size r with focus A, contradicting our assumption on the

family F. Hence there exists j ∈ [r − 1] so that A \Aj is an own-subset of A.

We claim that for a fixed set A ∈ F, the probability that a uniformly ran-

dom � (r−2)k
r−1 	-element subset S of A is an own-subset is at least 1

r−1 . Indeed,

consider the following two-step random process. First, choose uniformly at ran-

dom an (r − 1)-tuple A1, . . . , Ar−1 of pairwise disjoint � k
r−1�-element subsets

of A. Second, choose uniformly at random a value j ∈ [r−1] and let S = A\Aj.

Clearly, the resulting S is uniformly distributed over the � (r−2)k
r−1 	-element sub-

sets of A. Conditional on the choice in the first step, the argument in the

previous paragraph implies that the probability that S is an own-subset of A

is at least 1
r−1 . As this holds for any outcome of the first step, it also holds

unconditionally.

Thus, with each A ∈ F we can associate a family of at least 1
r−1

( k
� (r−2)k

r−1 �
)

own-subsets of A of size � (r−2)k
r−1 	. The disjoint union of these families over all

A ∈ F is contained in
( [n]

� (r−2)k
r−1 �

)
, implying that |F| · 1

r−1

( k
� (r−2)k

r−1 �
) ≤ ( n

� (r−2)k
r−1 �

)
.

It follows that |F| ≤ (r − 1)
( n
� (r−2)k

r−1 �
)
/
( k
� (r−2)k

r−1 �
)
, as claimed.
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Corollary 5.3: For r ≥ 3 and b = 0, 1 we have

gb-ffr (n) ≤ (r − 1)

n∑
k=0

( n
� (r−2)k

r−1 �
)

( k
� (r−2)k

r−1 �
) =

(
1 +

r − 2

(r − 1)
r−1
r−2

+ o(1)

)n

.

Proof. As pointed out above, it suffices to treat the case b = 1. Let F be a

family of subsets of [n] containing no 1-focal family of size r. Then

|F| =
n∑

k=0

∣∣∣∣F ∩
(
[n]

k

)∣∣∣∣,

and applying the theorem to the families F ∩ (
[n]
k

)
yields the upper bound in

summation form.

To obtain the asymptotic expression for the sum, we first use Stirling’s for-

mula to approximate
( k
� (r−2)k

r−1 �
)
up to a factor of order

√
k by ( (r−1)r−1

(r−2)r−2 )
k

r−1 .

Plugging this approximation in the sum gives

n∑
k=0

(
n

� (r−2)k
r−1 	

)(
r − 2

(r − 1)
r−1
r−2

) (r−2)k
r−1

which, by the binomial formula, is Θ((1 + r−2

(r−1)
r−1
r−2

)n).

In the case r = 3, a 1-focal family is a triple of distinct sets satisfying

A ⊆ B ∪ C, and Corollary 5.3 reproduces the bound of (54 + o(1))n obtained

by Erdős, Frankl and Füredi [9] for the maximum possible cardinality of fami-

lies not containing such triples. In the case r = 4, a 1-focal family is a 4-tuple

of distinct sets satisfying A ⊆ (B ∩ C) ∪ (B ∩D) ∪ (C ∩D), or equivalently

A ⊆ (B ∪ C) ∩ (B ∪D) ∩ (C ∪D).

We get an upper bound of roughly 20.47n for the corresponding extremal prob-

lem.

Lower bounds on the extremal functions gb-ffr (n, k) and gb-ffr (n) may be ob-

tained, as above, by random choice with alterations. Here, however, one should

start with a random subfamily of
(
[n]
k

)
instead of {0, 1}n. Optimizing the bounds

requires rather messy calculations, which we omit.
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6. Bounds in terms of the set size

We turn our attention now to bounding the cardinality of a family of k-element

sets (on a ground set of any size) not containing any near-sunflower of size r.

Note that this question does not make sense for focal families, because we may

take arbitrarily many pairwise disjoint k-element sets, avoiding focal families

of size 3. With respect to near-sunflowers, however, any upper bound on the

cardinality of a k-uniform family not containing a sunflower of size r automat-

ically applies to our question, too; in particular, the recent bound of Alweiss,

Lovett, Wu and Zhang [3] of order (log k)(1+o(1))k. Can this be improved for

near-sunflowers?

Conjecture 6.1: Let r ≥ 4, and let F be a family of k-element sets which

contains no near-sunflower of size r. Then |F| ≤ Ck, where C is a constant

depending only on r.

This is a weaker version of the Erdős–Rado sunflower conjecture. In view of

the fame and difficulty of the latter, this weakening may turn out to be a more

accessible goal. But we have not been able to make progress, even for r = 4.

We do have an upper bound of the desired exponential form under a stronger

condition. Saying that a 4-tuple of distinct sets A,B,C,D is not a near-

sunflower can be expressed as follows: there is a way to partition {A,B,C,D}
into two pairs with intersecting symmetric differences. A natural strengthening

is to require this for every pairing of A,B,C,D. Let F be a family of sets so

that for any (ordered) four distinct sets A,B,C,D ∈ F we have

(A� B) ∩ (C �D) �= ∅.
Körner and Simonyi [14] proved that if all sets are subsets of an n-element

ground set then |F| ≤ 1.217n for large n. But here we are interested in such

families that are k-uniform on any ground set. Fixing A,B, the condition

implies that any C and D must differ within A � B, which has at most 2k

elements, easily giving |F| ≤ 22k. The following theorem improves this bound.

Theorem 6.2: Let F be a family of k-element sets so that for any (ordered)

four distinct sets A,B,C,D ∈ F we have (A�B) ∩ (C �D) �= ∅. Then
|F| ≤ 2.148k

for large enough k.
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Proof. Fix two sets A,B ∈ F so that |A ∩ B| = t maximizes the intersection

size over all pairs of distinct sets in F.

For any set E, denote by [E]t a set which is E itself if |E| ≤ t, and otherwise

it is an arbitrarily chosen (t+1)-element subset of E. Let
(
A�B
≤t+1

)
be the family

of all subsets of A�B of size at most t+ 1. Define a mapping

f : F \ {A,B} →
(
A�B

≤ t+ 1

)

by

f(C) = [C ∩ (A�B)]t.

We check that f is injective. Let C and D be two distinct sets in F \ {A,B}.
We have to show that [C ∩ (A � B)]t �= [D ∩ (A � B)]t. If the sets on

both sides have size at most t, then C ∩ (A � B) �= D ∩ (A � B) follows

from (A � B) ∩ (C � D) �= ∅. If both [C ∩ (A � B)]t and [D ∩ (A � B)]t

have size t + 1, they cannot be equal since that would imply |C ∩D| ≥ t + 1,

contradicting the maximality of t. Finally, if one of them has size at most t and

the other has size t+ 1, they are obviously not equal. This implies that

|F| − 2 ≤
t+1∑
j=0

(
2(k − t)

j

)
.

For large k, we want to bound the right-hand side from above by Ck for

some C < 2.148. Let us write

x =
t

2(k − t)
.

If x ≥ 1
2 then 2(k− t) ≤ k and the sum is bounded by 2k. Thus we may assume

that x < 1
2 and approximate the sum by 22(k−t)h(x) = 2

2h(x)
1+2x k, where h(x) is the

binary entropy function. Routine calculations show that the maximum of 2
2h(x)
1+2x

is attained when x = (1− x)3 and its value is less than 2.148.

As in all these problems, the probabilistic method can be used to show the

existence of a k-uniform family F with pairwise intersecting symmetric differ-

ences, so that |F| is exponential in k. Our argument gives |F| ≈ 1.25k, we omit

the details.
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