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A mechanism guarantees a certain welfare level to its agents, if each of them can
secure that level against unanimously adversarial others. How high can such a
guarantee be, and what type of mechanism achieves it?

In the n-person probabilistic voting/bargaining model with p deterministic
outcomes a guarantee takes the form of a probability distribution over the ranks
from 1 to p. If n ≥ p, the uniform lottery is shown to be the only maximal (unim-
provable) guarantee. If n < p, combining (variants of) the familiar random dicta-
tor and voting by veto mechanisms yields a large family of maximal guarantees: it
is exhaustive if n = 2 and almost so if p ≤ 2n.

Voting rules à la Condorcet or Borda, even in probabilistic form, are ruled out
by our worst case viewpoint.
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1. Guarantees and mechanisms

Two staples of the collective decision literature, voting by veto and the random dictator
mechanism, are commonly used, informally, to simplify negotiations: the committee
may agree to dismiss first a number of “obviously bad” outcomes, or to resolve disagree-
ments by flipping a coin. We show formally that, when the goal is to offer the best ex
ante protection to individual agents, the two mechanisms and their many combinations
stand out in the worst case analysis.

Fix an arbitrary collective decision problem by its feasible outcomes (allocation of
resources, public decision making, etc.), the domain of individual preferences and the
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number n of relevant agents. We evaluate a mechanism (game form) solving this prob-
lem by the guarantee it offers to the participants: this is the welfare level each one can
secure in the resulting game no matter what other players know or how they will play
their part. The worst case assumption is that their moves are collectively adversarial, so
my guarantee is the value of the two-person zero-sum game where I play first against the
rest of the world. A higher guarantee is a better default option, it encourages acceptance
of and participation in the mechanism.

Question. How high can such a guarantee be, and what type of mechanism achieves
it?

Guarantees test the ex ante fairness of a mechanism, from the viewpoint of an agent
clueless about other participants or unwilling to engage in risky strategic moves. It is also
an ex post test: an agent using a best reply to the other agents’ strategies gets at least her
guaranteed welfare (because she has a safe strategy achieving that level no matter what),
so any Nash equilibrium of the game delivers at least that level of welfare to everyone.

The guarantee approach is far from new to economic theory (Section 2 briefly re-
views the literature), but this paper is the first to use it in the probabilistic voting model,
interpreted equivalently as a bargaining model. There are finitely many pure (deter-
ministic) outcomes and we can choose a convex compromise between these by running
a lottery, or allocating time shares, or dividing a budget; for clarity we use the lottery
interpretation. We also maintain a symmetric treatment of agents (anonymity) and of
outcomes (neutrality). Therefore, it only takes the number n of agents and p of pure
outcomes to define a guarantee: it is a lottery λ over the ranks 1 to p (where rank 1 is
the worst and p the best), which is feasible in the sense that for any profile of utilities
of the agents we can find a lottery over pure outcomes for which every agent’s expected
utility is at least that from the lottery λ.1 An equivalent definition for agents endowed
with purely ordinal preferences plays a key role throughout; see Definitions 1 and 2 in
Section 3.

The worst case viewpoint immediately rules out the usual voting methods à la Con-
dorcet or Borda, whether in deterministic or probabilistic form. When there are three
or more agents, if everyone else reports the preference opposite to mine, my worst out-
come is selected. We show that it is always feasible to offer a much better guarantee
to everyone. As explained below, our approach is relevant for problems involving more
outcomes than agents selecting one of them: this points to small committees and direct
bargaining, emphatically not to political elections.

In our model, a guarantee λ is maximal (unimprovable) if no other guarantee λ′
stochastically dominates λ. Our results are of two types: for some values of (n, p) we de-
scribe completely the set of maximal guarantees and simple mechanisms to implement
them; for the other pairs (n, p) the structure of this set resists a full characterization, so
we only construct and implement a large subset of maximal guarantees. In both cases,
the guarantees at the center of our analysis, and corresponding mechanisms, are built

1That is the utility of her worst outcome with probability λ1, of her next worst outcome with probability
λ2, and so on.
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from the three ingredients voting by veto, random priority rules, and uniformly random
choice.

The simplest guarantee of all is the uniform guarantee, denoted uni(p), choosing
each outcome with probability 1

p . One way to implement it is to run this lottery and ig-
nore individual preferences entirely. A more interesting way uses uni(p) as a canonical
disagreement option: to any given mechanism �, we add a last round where each par-
ticipant can reject the outcome proposed by � and force a uniformly random choice of
the final outcome.

The uniform guarantee uni(p) is maximal for any (n, p). If n ≥ p, and only then, it
is the only maximal guarantee: any other guarantee is weakly worse for everyone in all
problems, and sometimes strictly (the proof is easy; see Section 4).

Problems with two agents, n = 2, are not much harder to crack and the result is
more interesting. A maximal guarantee is any lottery symmetric with respect to the
median rank (Proposition 2, Section 4); these lotteries cover a polytope of which the
vertices are easily described and implemented. To fix ideas suppose p = 6, so the poly-
tope is a triangle with uni(6) = ( 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 ) in its center and the following vertices.

The random dictator guarantee rd(2, 6) = ( 1
2 , 0, 0, 0, 0, 1

2 ) obtains as usual by tossing
a fair coin and letting the winner choose a pure outcome. To implement the guaran-
tee λ = (0, 0, 1

2 , 1
2 , 0, 0), we ask first each agent to veto two outcomes,2 after which the

rule picks uniformly at random a nonvetoed outcome. To implement the third vertex
μ = (0, 1

2 , 0, 0, 1
2 , 0), we give one veto token to one agent and four tokens to the other,

choosing the roles by tossing a fair coin (equivalently each agent gets to veto one out-
come, then a random dictator completes the choice).

Our next example illustrates some of the difficulties in tackling problems with more
than two agents.

Example: Three agents n = 3, six outcomes p = 6 Define the veto guarantee vt(3, 6) =
(0, 1

3 , 1
3 , 1

3 , 0, 0) (recall the first coordinate is the worst rank), implemented by first giving
one veto token to each agent then choosing uniformly at random one of the remaining
outcomes: after the vetoing round, my worst case is that the other agents kill my two
best outcomes and I kill my worst outcome; hence the rank distribution cannot be worse
than vt(3, 6). Note that distributing one veto token followed by a deterministic choice
implements λ = (0, 1, 0, 0, 0, 0), dominated by vt(3, 6).

The “naive” random dictator mechanism implements the guarantee λ1 = ( 2
3 , 0, 0, 0,

0, 1
3 ): my worst case is that the two other agents pick my worst outcome. We can

do better. Let each agent report (one of) his top outcome(s); if they all agree on a

choose a; if they each choose a different outcome, pick one of them with uniform prob-
ability; finally, if the choices are a, a, b, we randomize uniformly between a, b and
an arbitrary third outcome c. This implements the correct random dictator guarantee
rd(3, 6) = ( 1

3 , 1
3 , 0, 0, 0, 1

3 ), that dominates λ1.3

2Whether these choices are simultaneous or sequential has no impact on the implemented guarantee.
3Modify the above mechanism RD as follows: if they all agree on a select the outcome uniformly between

a and two other arbitrary outcomes. We still implement the guarantee rd(3, 6) but the new mechanism itself
is dominated in the obvious sense by RD.
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It is easy to check directly that uni(6), rd(3, 6), and vt(3, 6) are maximal guarantees.
This follows for rd(3, 6) and vt(3, 6) by inspecting respectively the left or right profile of
strict ordinal preferences

≺1 a b x y z c

≺2 b c y z x a

≺3 c a z x y b

≺1 a x y z b c

≺2 b y z x c a

≺3 c z x y a b

(where agent 1’s worst is a and best is c). At the left profile, giving a 1
3 chance of their

best outcome to each agent requires to pick a, b, or c, each with probability 1
3 : then

each agent experiences exactly rd(3, 6) over her ranked outcomes, implying that any
lottery λ dominating rd(3, 6) is not feasible at this profile. Similarly at the right profile,
implementing vt(3, 6) implies zero probability on a, b, c, and at most (hence exactly) 1

3
on each of x, y, and z. The symmetry of these two arguments is not a coincidence: it is
explained by the duality relation connecting vt(3, 6) and rd(3, 6) (Section 5).

What other guarantees are maximal for n = 3, p = 6? Convex combinations
preserve feasibility but not maximality: for instance, an equal chance of the two
mechanisms implementing vt(3, 6) and rd(3, 6), respectively, delivers the guarantee
1
2 vt(3, 6) + 1

2 rd(3, 6) = ( 1
6 , 1

3 , 1
6 , 1

6 , 0, 1
6 ) dominated by uni(6). But lotteries between

uni(6) and vt(3, 6), or between uni(6) and rd(3, 6) are maximal. In fact, the two inter-
vals [uni(6), vt(3, 6)] and [uni(6), rd(3, 6)] capture all maximal lotteries for n = 3, p = 6
(Theorem 1, Section 4.3).

The two intervals in the above example illustrate the typical choices faced by a de-
signer poised to maximize individual welfare guarantees. The veto guarantee is a rea-
sonable option when bargaining is about choosing an expensive infrastructure project,
or a person to hold a position for life; the random dictator approach makes sense if we
are dividing time between several public decisions, like two alternating roman consuls;
the uniform guarantee stands out if we value a disagreement outcome revealing no in-
formation about individual preferences.

The punch lines We can describe the set of maximal guarantees if n = 2 or n ≥ p, as well
as if there are at most two outcomes per person: if 3 ≤ n < p ≤ 2n, just like in the exam-
ple above, the set of maximal guarantees contains the nonconvex union of the two inter-
vals of lotteries from the uniform guarantee uni(p) to either the veto vt(n, p) or random
dictator rd(n, p) and not much more; see Theorem 1 and Proposition 3 in Section 4.

In the remaining cases n ≥ 3, p > 2n, we do not know the full structure of the set
of maximal guarantees but we provide some useful insights. First, this set is a noncon-
vex finite union of polytopes, all sharing the uniform guarantee as a vertex (Proposi-
tion 5). Second, if d is the strict integer part4 of p

n , we can construct 2d such polytopes
by concatenating exactly d elementary rounds of vetoes or random dictator (Theorem 2,
Section 6).

4The largest integer strictly smaller than ...
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We also provide simple mechanisms implementing the maximal guarantees we
identify. Critical to their practical application, these mechanisms rely on ordinal prefer-
ences only, as do the agents’ safe actions when they report which outcome(s) they veto,
or which ones they prefer among those still in play.

2. Related literature

The optimal design of a mechanism under the risk averse assumption that other agents
are adversarial is discussed by the early literature on implementation in several slightly
different formulations: implementation in maximin (Thomson (1978), Dasgupta, Ham-
mond, and Maskin (1979)), prudent (Moulin (1981)) or protective strategies (Barbera
and Dutta (1982)). As explained in Section 1, our guarantees are compatible with a wide
range of strategic behaviors.

Steinhaus’ seminal papers (Steinhaus (1949), see also Dubins and Spanier (1961),
Kuhn (1967)) invented the worst case approach for cutting a cake fairly among any num-
ber of agents. His simple mechanism generalizes Divide and Choose and guarantees to
each agent a fair share: one that is worth at least 1

n of the whole cake. The main focus
of the subsequent literature is envy- free divisions: how to achieve one by simple cuts
and queries (Brams and Taylor (1995), Robertson and Webb (1998), Aziz and McKenzie
(2016)) and proving its existence under preferences more general than additive utilities
(Stromquist (1980), Woodall (1980)). An exception is the recent paper of Bogomolnaia
and Moulin (2020) returning to the worst case approach under very general preferences
and identifying the MinMaxShare (my best share in the worst partition of the cake I can
be offered) as a feasible guarantee, though not a maximal one.

The last decade saw an explosion of research to define and compute a fair alloca-
tion of indivisible items, proposing in particular a new definition of the fair share as the
MaxMinShare (Budish (2011)): my worst share in the best partition of the objects I can
propose. This guarantee may not be feasible (Procaccia and Wang (2014)) but this hap-
pens very rarely (Kurokawa, Procaccia, and Wang (2016)); the real concern is that the
mechanisms approximating this guarantee are all but simple.

Other early instances of the worst case approach are in production economies
(Moulin (1992a, 1992b)) and in the minimal cost spanning tree problem (Hougaard,
Moulin, and Osterda (2010)).

The random dictator mechanism is a staple of probabilistic social choice (Gibbard
(1977), Sen (2011)). In axiomatic bargaining, it inspires the Raiffa solution (Raiffa (1953))
and the mid-point domination axiom (Sobel (1981), Thomson (1981)) satisfied by both
the Nash and Kalai–Smorodinsky solutions.

Voting by veto is another early idea introduced by Mueller (1978) to incentivize
agents toward compromising offers: each agent makes one offer, which together with
the status quo outcome makes p = n + 1 outcomes, after which they take turns to veto
one outcome each (in our model the natural status quo is the uniform lottery over out-
comes). This procedure is generalized in Moulin (1981). The area monotonic bargaining
solution (Anbarci and Bigelow (1994), Anbarci (1993)) is a direct application of voting by
veto between two parties, similar to distributing �p−1

2 � veto tokens to each agent in our
model.
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A handful of recent papers discuss variants of voting by veto in the classic imple-
mentation context; see, for example, De Clippel, Eliaz, and Knight (2014), Barbera and
Coelho (2017), Laslier, Nunez, and Sanver (2020). All three papers implement maximal
guarantees. Closer to home, Section 4 in Kirneva and Nunez (2021) explains the strategic
properties of a veto mechanism implementing arbitrary compositions of our guarantee
vt(n, p).

We mention finally the small literature on bargaining with cash compensations and
quasilinear utilities (Moulin (1985), Chun (1986)) where only the uniform guarantee is
discussed, while our results unveil many more possibilities.

Organization of the paper Basic definitions are in Section 3, including guarantees,
maximal or not, and their implementation in two models: first when preferences over
outcomes are ordinal and agents compare lotteries by stochastic dominance; second,
when they use von Neumann–Morgenstern (vNM) utilities to compare them. The two
definitions are equivalent.

In Section 4, we describe and implement the maximal guarantees in the three special
cases n ≥ p, n = 2, and p ≤ 2n. Section 5 introduces two technical tools critical for the
proof of our two theorems: a duality operation respecting maximality and pairing voting
by veto and random dictator, and the concatenation of fewer than p

n of these building
blocks. We derive in Section 6 the geometric structure of the set of maximal guarantees,
and its subset obtained by the concatenation just mentioned; we also list a handful of
open questions.

Section 7 concludes and the Appendix provides four proofs and illustrates one of our
open questions.

3. Guarantees: Definitions

Anonymity and neutrality (symmetric treatment of agents and outcomes, respectively)
are hard wired in the definition of a guarantee, which only depends upon the number n
of agents and p of deterministic outcomes. It is an element λ of �(p), the simplex of lot-
teries over the ranks in [p] = {1, � � � , p}. Here, λ1 is the probability of the worst rank and
λp that of the best rank. We give two equivalent definitions of guarantees respectively
for the case of agents with ordinal preferences or von Neumann–Morgenstern (vNM)
utilities.

The set of deterministic outcomes is A with generic element a, and �(A), with
generic element �, is the set of lotteries over A. We keep in mind the alternative inter-
pretations of �(A) as time sharing or division of a budget between the “pure” outcomes
in A.

The set of agents is [n], with generic element i. Agent i’s ordinal preference over A (a
complete, reflexive, and transitive relation) is written �i. Agent i’s vNM utility over A is
a vector ui in RA and ui · � = ∑

a∈A uia�a is her utility at lottery �.

Notation. For lotteries λ ∈ �(p), we write [λ]k2
k1

instead of the sum
∑k2

k1
λt . The sym-

metric of λ with respect to the middle rank is λ̃: λ̃k = λp+1−k for all k ∈ [p].
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The rank-ordered rearrangement (aka order statistics) of ui ∈ RA is denoted u∗
i ∈ Rp

and obtained by writing the entries of ui in nondecreasing order:

∀k ∈ [p] :
k∑

t=1

u∗
it = min

{∑
a∈T

uia|T ⊆ A, |T | = k

}

Similarly, given the ordinal preference �i the rank-ordered rearrangement of the lottery
� ∈ �(A) is denoted �∗i ∈ �(p) and defined as

∀k ∈ [p] :
[
�∗i]k

1 = min
{∑
a∈T

�a|T is a k-tail of �i

}

where a k-tail of �i is a set of agent i’s k worst outcomes (not necessarily unique, due to
indifferences): so �∗i

1 is the weight of agent i’s worst outcome (or the smallest weight of
i’s worst outcomes), and so on.

The stochastic dominance relation (dominance for short) in �(p) plays a central role
throughout. We write λ � μ and say that λ dominates μ if we have5

{∀k ∈ [p] : [λ]k1 ≤ [μ]k1
} ⇐⇒ {∀k ∈ [p] : [λ]

p
k ≥ [μ]

p
k

}
Definition 1 (ordinal preferences). Given n and p, the lottery λ ∈ �(p) is a guarantee
at n, p if for any n-profile π of preferences π = (�i )ni=1 on A there exists a lottery � ∈ �(A)
such that �∗i � λ for all i ∈ [n]. Then we say that the lottery � implements λ at profile π.

Definition 2 (vNM utilities). Given n and p, the lottery λ ∈ �(p) is a guarantee at n, p
if for any n-profile of utilities τ = (ui )ni=1 on A there exists a lottery � ∈ �(A) such that
� · ui ≥ λ · u∗

i for all i ∈ [n]. Then we say that the lottery � implements λ at profile τ.

The ordinal definition is agnostic with respect to the risk attitude of the agents. The
cardinal one specifies it completely.

Lemma 1. Definition 1, Definition 2, and the following property are equivalent:

for any vNM profile (ui )
n
i=1 :

n∑
i=1

ui = 0 =⇒
n∑

i=1

λ · u∗
i ≤ 0 (1)

We write G(n, p) for the set of all guarantees at n, p: it is a polytope in �(p).

Property (1) refers to the sum of the agents’ utilities, rather than to each agent’s utility
separately. Thus, it naturally corresponds to a variant of the cardinal definition, where
utilities are transferable among agents and treated quasilinearly. The lemma shows that
a guarantee is feasible if and only if it does not distribute more than the sum of utilities
does.

5We also use the equivalent definition: ∀z ∈ Rp : {z1 ≤ z2 ≤ · · · ≤ zp} =⇒ λ · z ≥ μ · z.
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Proof. Definition 1 =⇒ Definition 2
Fix a lottery � ∈ �(A) and suppose the vNM utility ui ∈RA represents the same pref-

erence on A as �i. Writing u∗
i , �∗i for the corresponding rearrangements, the identity

� · ui = �∗i · u∗
i is easily checked. Fix now λ meeting Definition 1 and an arbitrary profile

(ui )ni=1 of vNM utilities, with associated ordinal preferences (�i )ni=1. If � implements λ

at (�i )ni=1, the relation �∗i � λ and the identity give � · ui ≥ λ · u∗
i as desired.

Definition 2 =⇒ property (1)
Fix (ui )ni=1 such that

∑n
i=1 ui = 0 and choose � implementing λ as in Definition 2: the

inequalities � · ui ≥ λ · u∗
i imply (1).

Property (1) =⇒ Definition 1
We check first that (1) implies, for all (ui )ni=1 ∈ (RA )n, the inequality

n∑
i=1

λ · u∗
i ≤ max

a∈A

n∑
i=1

uia (2)

Fix any (ui )ni=1 and set z = maxa∈A
∑n

i=1 uia. Writing 1 the vector with all coordinates
equal to 1, we pick a profile (vi )ni=1 such that ui ≤ vi for all i and

∑n
i=1 via = z for all a.

Applying now (1) to (wi )ni=1: wi = vi − z
n1, we have

∑n
i=1 λ · u∗

i ≤ ∑n
i=1 λ · v∗

i ≤ z and the
claim.

Fix now λ meeting property (2) and a preference profile (�i )ni=1. Call Si the set of
utilities vi ∈ [0, 1]A representing �i weakly: a �i b =⇒ via ≥ vib for all a, b. Note that Si
is the closure of the set of utilities representing �i exactly. By property (2) for any profile
(vi )ni=1 ∈	n

i=1Si, there exists a ∈ A such that
∑n

i=1 via ≥ ∑n
i=1 λ · v∗

i , which implies

min
(vi )ni=1∈	n

i=1Si
max
a∈A

n∑
i=1

(
via − λ · v∗

i

) ≥ 0

The summation is a linear function of the variable (vi )ni=1 varying in a convex compact,
and of a. By the minimax theorem, there exists � ∈ �(A) such that

∑n
i=1 � · vi ≥ ∑n

i=1 λ ·
v∗
i for all (vi )ni=1 ∈ 	n

i=1Si. Taking vi = 0 for all i ≥ 2 gives � · v1 ≥ λ · v∗
1 for all v1 ∈ S1.

Equivalently, �∗1 · v∗
1 ≥ λ · v∗

1 for any weakly increasing sequence v∗
1 in [0, 1]p: the desired

property �∗1 � λ follows, and the argument is the same for each i ≥ 2:

G(n, p) is a polytope (the bounded intersection of finitely many closed half-spaces)

Fix an ordinal preference profile π. In order for a guarantee λ ∈ �(p) to be implemented
by a lottery � ∈ �(A) as in Definition 1, the lottery � has to satisfy a system of linear
inequalities of the form �a ≥ λp, �b ≥ λp, . . . , �a + �c ≥ λp + λp−1, �b + �d ≥ λp + λp−1,
. . . , etc., �a + �b + · · · + �z = 1, �a ≥ 0, �b ≥ 0, . . . Note that the left-hand side of this linear
system is determined by the profile π, and the right-hand side is an affine function of λ.
By the Farkas lemma, the existence of a solution � to this system is equivalent to λ lying in
the intersection of a finite collection (determined by π) of closed half-spaces. Requiring
that λ satisfy this for each of the finitely many possible ordinal profiles π results in a
polytope, as claimed.
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If n = 2, Lemma 1 gives a simple characterization of guarantees. Check the following
identity (recall λ̃ is the symmetric of λ with respect to the middle rank):

∀u ∈RA : λ · (−u)∗ = −λ̃ · u∗ (3)

and use it to rewrite property (1) in the case n = 2 as λ ·u∗ ≤ λ̃ ·u∗ for all u. By Footnote 5,
the latter is equivalent to λ̃ � λ, and thus

λ ∈ G(2, p) ⇐⇒ [λ]k1 ≥ [λ]
p
p+1−k for all k= 1, � � � ,

⌊
p

2

⌋
(4)

But for n ≥ 3 it is much harder to discover a set of such inequalities representing
G(n, p), or the set of its extreme points.

The implementation of a guarantee by an abstract mechanism follows in the obvious
way from Definitions 1 and 2.

Definition 3. A mechanism � on A= {a1, � � � , ap}, [n] = {1, � � � , n} is defined by a set of
strategies Xi for each i ∈ [n] and a mapping ϕ from X[n], the Cartesian product of the sets
Xi, to �(A). We say that � implements a lottery λ ∈ �(p) if for any i ∈ [n] and �i agent
i has a strategy xi ∈ Xi such that ϕ(xi, x−i ) implements λ (according to Definition 1) for
all x−i ∈X[n]�i.

The existence of this safe strategy ensures that, at any utility profile τ each player
prefers (at least weakly) each Nash equilibrium outcome of the corresponding �-game
to the λ outcome.

It is straightforward to see that a lottery λ ∈ �(p) is implementable at every pref-
erence profile (according to Definition 1) if and only if it is implementable by some
mechanism (according to Definition 3). To check that a certain lottery λ on ranks is a
guarantee in the sense of Definitions 1, 2, it is often convenient to describe a simple
mechanism implementing it. But nonsimple mechanisms routinely deliver better equi-
librium outcomes, from the welfare point of view, than a simple one. For example, the
simplest implementation of the uniform guarantee uni(p) is to pick uniformly at ran-
dom an outcome in A; but if � is any bargaining mechanism, we also implement uni(p)
by (1) playing �, then (2) giving to every agent the option to force a uniform lottery on
A (if she prefers this lottery to the outcome of �).

Note that the guarantee λ is anonymous and neutral by construction, but it can be
implemented by mechanisms which are neither. For instance, if n = 2, p = 5, the guar-
antee λ = (0, 0, 1, 0, 0) is implemented by giving two veto tokens to each agent: this can
happen sequentially or simultaneously.6

From the welfare point of view, the guarantees of interest are those that cannot be
improved, the maximal ones.

6In the simultaneous version, we can add any mechanism to select among the possibly several nonve-
toed outcomes.
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Definition 4. The guarantee λ ∈ G(n, p) is maximal if

∀μ ∈ G(n, p) : μ � λ =⇒ μ= λ

The set of maximal guarantees is M(n, p) ⊂ G(n, p).

4. Maximal guarantees in three special cases

4.1 Case 1: n ≥ p

The uniform lottery uni(p) is always feasible and if n ≥ p it is the best guarantee. We
illustrate the argument for p = 4. Pick a profile where the preferences of a subset of four
agents have the familiar cyclical pattern a ≺ b ≺ c ≺ d, b ≺ c ≺ d ≺ a, c ≺ d ≺ a ≺ b, and
d ≺ a ≺ b ≺ c. Suppose that λ is a guarantee implemented by the lottery � at this profile.
Considering the first two preferences where a is successively the worst and best outcome
gives λ4 ≤ �a ≤ λ1; this is true for all outcomes so by summing up four inequalities we
get λ4 ≤ 1

4 ≤ λ1. Definition 1 again gives [λ]4
3 ≤ �a + �b ≤ [λ]2

1 and the same is true for the
pairs b, c, c, d, and d, a: therefore, [λ]4

3 ≤ 1
2 ≤ [λ]2

1. We conclude uni(p) � λ.

Proposition 1. The uniform guarantee, uni(p)k = 1
p for all k ∈ [p], has the following

properties:

(i) It is maximal for all n, p.

(ii) If n ≥ p it dominates every other feasible guarantee: M(n, p) = {uni(p)}.

(iii) If n≥ 3 it is a vertex of G(n, p), hence of M(n, p), too.

Intuitively, part (i) should be clear: if we start from uni(p) = ( 1
p , � � � , 1

p ) and shift
any probability mass to the right, we end up assigning higher probability to the top k

ranks than to the bottom k ones (for some k). This is not feasible, because one agent’s
top k outcomes may be another agent’s bottom ones. The intuition for part (ii) was
illustrated in the p = 4 example above: when n ≥ p a full cyclical symmetry prevents us
from assigning more than k

p to the top k ranks, for any k. Part (iii) is similar, but a bit
more technical.

Proof. Statement (i). The equality uni(p) · u∗
i = uni(p) · ui for all ui implies for any

profile (ui )ni=1

n∑
i=1

ui = 0 =⇒ uni(p) ·
(

n∑
i=1

u∗
i

)
= 0 (5)

Suppose some μ ∈ G(n, p) dominates uni(p) and consider a profile of the form
(u1, −u1, 0, � � � , 0) where u1 is arbitrary. Summing up the inequalities μ · u∗

1 ≥ uni(p) · u∗
1

and μ · (−u1 )∗ ≥ uni(p) · (−u1 )∗ gives μ · u∗
1 +μ · (−u1 )∗ ≥ 0. Because μ meets property

(1) all three inequalities are equalities, and we conclude μ= uni(p).
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Statement (ii). Assume n ≥ p and pick an arbitrary guarantee λ in G(n, p), and a
cyclical permutation σ of A: the latter maps utility u to uσ : uσa = uσ(a). We pick any u

and consider the profile (
u, uσ , uσ

2
, � � � , uσ

p−1
, 0, � � � , 0

)
with n − p null utilities. Clearly,

∑p−1
k=0 u

σk = γ1 for γ = ∑
a∈A ua, so we can apply

property (1) to the profile (u − γ
p1, uσ − γ

p1, � � � , uσ
p−1 − γ

p1, 0, � � � , 0). Together with

(uσ
k

)∗ = u∗ for all k, this gives

0 ≥
p−1∑
k=0

(
λ · (uσk)∗ − γ

p

)
= p

(
λ · u∗) − γ =⇒ λ · u∗ ≤ γ

p
= uni(p) · u∗

as desired.
Statement (iii). Suppose uni(p) is a convex combination of two distinct λ1, λ2 in

G(n, p). For any profile such that
∑n

i=1 ui = 0, property (1) implies
∑n

i=1 λ
s · u∗

i ≤ 0 for
s = 1, 2. Upon writing uni(p) in (5) as a convex combination of λ1, λ2, we see that the
two inequalities sum to an equality therefore they are both equalities and each λs meets
(5). For n ≥ 3, only uni(p) does.

We check this claim for a generic lottery λ. Define δk = [λ]
p
p+1−k for k ∈ [p] and

δ0 = 0, then pick any three nonnegative integers k, l, m summing to p. Consider a profile
of 0, 1 utilities where u1; u2; u3 are equal to 1 precisely on three sets of respective sizes k,
l, m partitioning A, while other utilities, if any, are identically zero. Applying (5) to this
profile yields δk + δl + δm = 1. It is easy to check that this simple integer version of the
Cauchy equation implies δk = k

p for all k.

4.2 Case 2: n = 2

Assuming p = 6 to fix ideas we show that a maximal lottery must be symmetric. Re-
call from the discussion after Lemma 1 that G(2, p) is defined by the inequalities (4).
We assume that λ is a maximal guarantee, and show that λ1 = λ6, λ2 = λ5 and λ3 =
λ4. Indeed, (4) implies that λ1 ≥ λ6; this inequality cannot be strict, because then
(λ1 −ε, λ2 +ε, λ3, λ4, λ5, λ6 ) still satisfies (4) for small enough ε, contradicting the maxi-
mality of λ. Next, λ1 = λ6 and (4) imply that λ2 ≥ λ5; again, this cannot be strict, because
then (λ1, λ2 − ε, λ3 + ε, λ4, λ5, λ6 ) still satisfies (4). Finally and similarly, we can deduce
the remaining equality λ3 = λ4.

Proposition 2. Maximal guarantees for n= 2.
If n = 2 <p, the lottery λ ∈ �(p) is a maximal guarantee if and only if it is symmetric:

λk = λp+1−k for 1 ≤ k≤
⌊
p

2

⌋
(6)

The extreme points (vertices) of the polytope M(2, p) are the following guarantees λt :

λtt = λtp+1−t = 1
2

for t = 1, � � � ,
⌊
p

2

⌋
; and λ

p+1
2

p+1
2

= 1 if p is odd
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We see that for n = 2 the maximal guarantees are the symmetric ones. Thus, to
choose a maximal guarantee we only need to allocate the total probability mass among
the rank pairs {1, p}, {2, p − 1}, etc. The extreme allocations are those that give the en-
tire mass to one such pair. The center of the polytope M(2, p) is the uniform guarantee
uni(p), contrasting sharply with the case n ≥ 3, p> n where uni(p) is a vertex of M(n, p)
by Proposition 1.

Proof. To prove the if statement, we fix λ ∈ G(2, p) and symmetric. Rewrite (6) as λ ·
u∗ = λ̃ · u∗ for all u∗, which by the identity (3) means λ · u∗ = −λ · (−u)∗ for all u∗. The
latter is property (5) for n= 2, so the maximality of λ follows as in the proof of statement
(i) in Proposition 1.

To prove only if pick λ ∈ G(2, p), which means λ̃ � λ (i.e., (4)). As the dominance
relation is preserved by convex combinations we have 1

2 (λ̃ + λ) � λ where 1
2 (λ̃ + λ) is

symmetric: thus, λ is dominated if it is not symmetric.
We let the reader check that the extreme points of the polytope defined by (6) are

the lotteries with only two ranks in their support (or just the middle rank, when p is
odd).

The mechanisms implementing the vertices of M(2, p) combine in a simple way
the veto and random dictator ideas. Asking one randomly chosen agent to select a pure
outcome implements λ1 = ( 1

2 , 0, � � � , 0, 1
2 ), which we call the random dictator guarantee

and denote rd(2, p) as in Section 1. Giving one veto token to each agent, then select-
ing one of the remaining outcomes with uniform probability implements the guarantee
λ = (0, 1

p−2 , � � � , 1
p−2 , 0), which we write vt(2, p). It is maximal, though not a vertex of

M(2, p) except if p = 3 or 4.
To implement λ2 = (0, 1

2 , 0, � � � , 0, 1
2 , 0), we ask first each agent to veto one outcome,

after which we pick a random dictator between the remaining p − 2 (or possibly p − 1
if the vetoes coincide) outcomes. Similarly, we implement λt by giving t − 1 veto tokens
per person, then choosing a random dictator to pick one of the nonvetoed outcomes.

4.3 Case 3: 3 ≤ n < p≤ 2n

We define first the guarantees vt(n, p) and rd(n, p), already introduced in the three and
two agent cases. First,

vt(n, p) =
(

0,
1

p− n
, � � � ,

1
p− n

,

n−1︷ ︸︸ ︷
0, � � � , 0

)
is implemented by one round of veto (one token per person) followed by the uniformly
random choice of a nonvetoed outcome. Next, for

rd(n, p) =
( n−1︷ ︸︸ ︷

1
n

, � � � ,
1
n

, 0, � � � , 0,
1
n

)
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each agent reports an outcome we deem his best one, then we randomize between n

different outcomes containing all the reported best outcomes of the agents.
Both guarantees are maximal: generalizing the proof in the example of Section 1

for vt(3, 6) and rd(3, 6) is straightforward.7 Moreover, Proposition 4 in the next section
shows that, for any n, p such that n < p, all lotteries in the intervals [uni(p), vt(n, p)] and
[uni(p), rd(n, p)] are maximal as well. The remarkable fact is that if 3 ≤ n < p ≤ 2n these
two intervals capture most maximal guarantees.

Theorem 1. (i) For any n, p such that 3 ≤ n < p, we have[
uni(p), vt(n, p)

] ∪ [
uni(p), rd(n, p)

] ⊂ M(n, p) (7)

(ii) This is an equality if p ≤ 2n− 2 and if p= 2n except when (n, p) = (4, 8) or (5, 10).

The hard proof of part (ii) requires the technical tools developed in the next section,
and is done in the Appendix A.3.

Our next result shows why additional maximal guarantees appear in the cases ex-
cluded by statement (ii) above, and describes the full set M(n, p) in two such cases. As
shown in the proof, the mechanisms used in these cases require different ideas beyond
vetoes and random dictators. Moreover, the case n= 4, p= 7 exhibits extremal maximal
guarantees which (unlike all previous examples) are not uniform on their support.

Proposition 3. (i) If p = 2n−1 and if (n, p) = (4, 8) or (5, 10), the inclusion (7) is strict.

(ii) For n = 3, p = 5, there are two pairs of maximal guarantees on the boundary of
�(5): vt(3, 5), rd(3, 5) and the pair

λ=
(

1
2

, 0, 0,
1
2

, 0
)

; λ� =
(

1
3

, 0,
1
3

,
1
3

, 0
)

The set M(3, 5) is the union of the four intervals joining uni(5) to these guarantees.

(iii) For n = 4, p = 7, there are three pairs of maximal guarantees on the boundary of
�(7): vt(4, 7), rd(4, 7) and the two pairs

λ =
(

1
2

, 0, 0, 0,
1
2

, 0, 0
)

; λ� =
(

1
5

,
1
5

, 0,
1
5

,
1
5

,
1
5

, 0
)

μ =
(

1
3

,
1
9

,
2
9

, 0, 0,
1
3

, 0
)

; μ� =
(

1
4

, 0,
1
4

,
1
4

,
1

12
,

1
6

, 0
)

The set M(4, 7) is the union of the six intervals joining uni(7) to these guarantees.

The duality operator discussed in the next subsection pairs vt(n, p) with rd(n, p) as
well as λ with λ� and μ with μ�.

7For example, for rd(n, p) pick a profile with the preference a1 ≺ · · · ≺ an−1 ≺ B ≺ an and the n− 1 others
obtained by a cyclical permutation of the ai-s leaving the block B fixed.
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Proof. Statement (i). Assume p = 2n − 1. At any profile, we can choose a set of n − 1
outcomes meeting (containing at least one of) the top two outcomes of each agent. A
uniform lottery over these outcomes guarantees to every agent a probability of at least

1
n−1 for his top two outcomes. Hence, there must be a maximal guarantee that does
that, but neither uni(p), vt(n, p) nor rd(n, p) does this, hence neither does a convex
combination of these.

For (4, 8), one checks easily that we can always choose a triple of outcomes meeting
the top three outcomes of each agent in at most one element. A uniform lottery over the
complement of that triple guarantees to every agent at least 2

5 for his top three outcomes,
and the argument is completed as above. For (5, 10), a simple case check shows that we
can choose a triple of outcomes meeting the top three outcomes of each agent. A uni-
form lottery over them guarantees to every agent at least 1

3 for his top three outcomes,
and the argument is completed as above.

Statements (ii) and (iii). The mechanisms implementing λ and λ� in each case fol-
low the same logic as above. For λ, we can always pick two outcomes x, y meeting the
top two (when (n, p) = (3, 5)) or three (when (n, p) = (4, 7)) of any agent, then we draw
x and y each with probability 1

2 . For λ�, we can always pick two outcomes x, y such that
the worst two (when (n, p) = (3, 5)) or three (when (n, p) = (4, 7)) of any agent contain
at least one of them, then we randomize uniformly over the remaining outcomes.

For the rest of the proof, which becomes quite tedious, we give only a brief outline
here (details are available upon request from the authors). The mechanisms implement-
ing μ and μ� when (n, p) = (4, 7) require non-uniform lotteries tailored to the configu-
ration of the top two and the bottom two outcomes of each agent. The maximality of λ
and λ� in each case and of μ and μ� when (n, p) = (4, 7) is shown using suitable prefer-
ence profiles, with a similar argument to that given in Section 1 for rd and vt. These facts,
together with Proposition 4 in the next section, imply that the union of the intervals join-
ing uni(p) to vt(n, p), rd(n, p), λ and λ� (and also to μ and μ� when (n, p) = (4, 7)) is
contained in M(n, p) in each case.

To prove that this containment is actually an equality, one considers an arbitrary
guarantee ν ∈ G(n, p) and shows that it is dominated by a guarantee in one of those
intervals. This part breaks into cases as follows. If [ν]k1 ≥ k

p for k = 1, � � � , p − 1, then ν

is dominated by uni(p). If ν1 < 1
p or νp > 1

p , then the arguments in the corresponding
cases in step 3 of the proof of Theorem 1 show that ν is dominated by a guarantee in
the interval [uni(p), vt(n, p)] or [uni(p), rd(n, p)], respectively. When (n, p) = (3, 5), this
leaves the cases ν1 + ν2 < 2

5 or ν4 + ν5 > 2
5 , where the implementation constraints for

suitable profiles show that ν is dominated by a guarantee in [uni(5), λ�] or [uni(5), λ],
respectively. When (n, p) = (4, 7) four cases remain: ν1 + ν2 < 2

7 , ν1 + ν2 + ν3 < 3
7 , ν5 +

ν6 + ν7 > 3
7 or ν6 + ν7 > 2

7 . They can be handled similarly, showing that ν is dominated
by a guarantee in [uni(7), μ�], [uni(7), λ�], [uni(7), λ] or [uni(7), μ], respectively.

Note that Theorem 1 and Proposition 3 together give a full description of maximal
guarantees whenever 3 ≤ n < p ≤ n+ 3.
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5. Duality and concatenation

The technically more involved results of this section are key to the proof of Theorem 1
and the general results in Section 6.

5.1 A duality operation preserving M(n, p)

Although the results in this subsection apply for all n, p, they are only useful if 3 ≤ n < p:
we maintain this assumption from now on.

The duality operator is easy to explain if it applies to a lottery λ on the boundary
∂�(p) of the simplex �(p) (at least one coordinate of λ is zero): it goes from λ to its sym-
metric lottery λ̃, then from λ̃ to the end point in �(p) of the half-line starting at λ̃ toward
uni(p). For instance, it maps vt(3, 7) = (0, 1

4 , 1
4 , 1

4 , 1
4 , 0, 0) first to μ = (0, 0, 1

4 , 1
4 , 1

4 , 1
4 , 0)

then to the intersection of the half-line {μ + α(uni(p) − μ)|α ≥ 0} with the boundary
∂�(p):

vt(3, 7)� = μ+ 7
3

(
uni(7) −μ

) =
(

1
3

,
1
3

, 0, 0, 0, 0,
1
3

)
= rd(3, 7)

Note that if λ, like vt(3, 7), is uniform on its nonfull support, the same is true of its dual
λ�. Moreover, the support of λ� is obtained from the support of λ by reversing the or-
der on [p], then taking the complement. This explains the intuition behind this duality:
If a uniform lottery on a proper subset S of A implements the guarantee λ at some pref-
erence profile, then the uniform lottery on the complement A�S implements λ� at the
reverse preference profile.

Given a lottery λ in �(p) different from uni(p), the radius to λ is the interval of the
half-line from uni(p) toward λ contained in �(p) (it ends on the boundary ∂�(p)), con-
taining all lotteries of the form uni(p) + δ(λ − uni(p)) for some δ ≥ 0. The antiradius
from λ̃ is the interval in �(p) of the half-line from uni(p) away from λ̃, that is, the set of
all lotteries of the form uni(p) + δ(uni(p) − λ̃) for some δ≥ 0.

If λ is a boundary lottery its dual λ� is the end point of the antiradius from λ̃. Figure 1
illustrates this construction for p = 3.

Write the largest coordinate of a lottery as λ+ = max1≤k≤p λk, and note that λ+ > 1
p

because λ ∈ ∂�(p); recalling λ̃k = λp+1−k, an easy computation gives

λ� = (1 + α) uni(p) − α̃λ

⇐⇒ λ
�
k = α(λ+ − λ̃k ) for 1 ≤ k≤ p, where α = 1

p · λ+ − 1
(8)

Keeping in mind that min1≤k≤p λk = 0 it is easy to check the identity (λ� )� = λ.
For nonboundary lotteries, we extend this definition linearly on the radius to λ{

μ ∈ ∂�(p) and λ = δuni(p) + (1 − δ)μ
} =⇒ λ� = δuni(p) + (1 − δ)μ�, (9)

so that λ→ λ� is a proper duality in �(p). In particular, vt(n, p) and rd(n, p) are dual of
each other, while uni(p) is self-dual.
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Figure 1. The duality operation.

We check that among maximal guarantees, uni(p) is the only self-dual one. By the
discussion in Section 3, a feasible guarantee λ is dominated by λ̃. Fix now λ ∈ G(n, p) ∩
∂�(p) and self-dual: by (8), the interval [λ, λ̃] contains uni(p), implying λ̃ � uni(p) � λ,
a contradiction because uni(p) is maximal. Definition (9) concludes the argument for λ
self-dual but not in ∂�(p).

Proposition 4. (i) If λ �= uni(p) is a maximal guarantee, the radius to λ and the anti-
radius from λ̃ (the symmetric of λ with respect to the middle rank) are contained in
M(n, p).

(ii) The duality operation λ→ λ� in �(p) preserves maximal lotteries:[
M(n, p)

]� = M(n, p)

For the proof, we need a technical result characterizing M(n, p) in G(n, p) by its
position with respect to the polar cone of G(n, p). Notation: we write G� for the polar
cone of G ⊂Rp: G� = {z ∈Rp|∀y ∈ G : z · y ≤ 0}.

Lemma 2. The guarantee λ ∈ G(n, p) is maximal if and only if there exists a vector z ∈
G(n, p)� such that

∑p
k=1 zk = 0, z1 < z2 < · · · < zp and λ · z = 0.

Proof of “if.”. Fix λ in G(n, p) and z in G(n, p)� as in the statement, and suppose λ is
dominated by μ. As the coordinates of z increase strictly, μ � λ and μ �= λ imply λ · z <
μ ·z. Now feasibility of μ and z ∈ G(n, p)� give μ ·z ≤ 0. This contradicts the assumption
λ · z = 0.

Note that the condition
∑p

k=1 zk = 0 was not used therefore Lemma 2 remains valid
without this condition. But the condition makes the “only if” part stronger. The long
proof of this direction is given in Appendix A.1.
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Proof of Proposition 4. Observe first that the statements in Proposition 4 hold if we
replace M(n, p) by G(n, p). This follows easily from the characteristic property (1), the
identity (3), and the definition (8).

Statement (i). We fix λ ∈ M(n, p) and z ∈ G(n, p)� as in Lemma 2. Consider first
a lottery μ = uni(p) + δ(λ − uni(p)) in the radius to λ: it is in G(n, p) as well by the
observation above. For maximality, we use

∑p
k=1 zk = 0 and λ · z = 0 to compute μ · z =

(1 − δ) uni(p) · z + δλ · z = 0 and conclude μ ∈ M(n, p) by Lemma 2 again.
Still fixing λ ∈ M(n, p) and z, we pick a lottery μ = uni(p) + δ(uni(p) − λ̃) in the

antiradius from λ̃; we know that μ is in G(n, p). Now for any ξ ∈ G(n, p) the observation
implies that (1 + δ) uni(p) − δ̃ξ is in G(n, p), in particular,

0 ≥ (
(1 + δ) uni(p) − δ̃ξ

) · z = −δ̃ξ · z
where the equality uses

∑p
k=1 zk = 0. Writing

w = (−zp, −zp−1, � � � , −z1 )

and using the identity (3), we conclude that ξ · w ≤ 0. Thus, w is in G(n, p)�, too, and
it satisfies the requirements in Lemma 2 with respect to μ: μ · w = −δ̃λ · w = δλ · z = 0,
which proves the maximality of μ.

Statement (ii) follows from statement (i) and the definition of the duality operation.

5.2 The operators VT and RD

We construct a rich family of maximal guarantees by successive compositions of two
operators V T and RD mapping a guarantee λ in G(n, p) to one in G(n, p+ n).

Fixing λ ∈ G(n, p), we implement V T ⊗ λ as follows: ask agents to report their worst
outcome, eliminate n outcomes containing all the reported ones, then implement λ over
the remaining p outcomes. The latter are ranked weakly higher than 2, � � � , p + 1 for
each agent, so we see that V T ⊗ λ is a bona fide guarantee; and that V T ⊗ λ obtains by
inserting λ between one zero in rank 1 and n− 1 zeros after rank p+ 1.

The implementation of RD ⊗ λ is similar, but only if λ is a boundary lottery in
G(n, p). Agents report their best outcome, then we pick n outcomes containing all re-
ports; with probability nλ+

nλ++1 , we choose one of those uniformly, and with probability
1

nλ++1 we implement λ among the remaining p outcomes.

Definition 5. Fix a lottery λ ∈ �(p).
We set V T ⊗ λ= (0, λ, 0, � � � , 0) ∈ �(p+ n) with n− 1 zeros after and one before λ.
The lottery RD⊗ λ ∈ �(p+ n) is given by

RD⊗ λ = [
V T ⊗ λ�

]�
(10)

If λ ∈ ∂�(p), we obtain RD⊗ λ by filling uniformly n− 1 ranks before λ and one after as
follows:

RD⊗ λ =
( n−1︷ ︸︸ ︷

λ+
nλ+ + 1

, � � � ,
λ+

nλ+ + 1
,

1
nλ+ + 1

· λ,
λ+

nλ+ + 1

)
(11)
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If λ ∈ ∂�(p), we must check that the two definitions (11) and (10) coincide. Write
μ for the boundary lottery on the right-hand side of equation (11): applying (8) and
μ+ = λ+

nλ++1 we get

μ� = 1

(p+ n)
λ+

nλ+ + 1
− 1

(
λ+

nλ+ + 1
1 − μ̃

)

= 1
pλ+ − 1

(
λ+1 − (λ+, λ̃,

n−1︷ ︸︸ ︷
λ+, � � � , λ+ )

) = V T ⊗ λ�

as desired.
The definition implies V T ⊗uni(p) = vt(n, p+n) and RD⊗uni(p) = rd(n, p+n); we

give many more examples in the next subsection.

Lemma 3. The composition of guarantees by V T and RD respects their feasibility and
maximality. For any λ ∈ �(p),

λ ∈ M(n, p) =⇒ V T ⊗ λ, RD⊗ λ ∈ M(n, p+ n)

and the same statement holds by replacing M(n, p) by G(n, p) and M(n, p + n) by
G(n, p+ n).

For the proof, we need a second characterization of maximal guarantees; the proof,
much easier than that of Lemma 2, is also in the Appendix A.2.

Lemma 4. The guarantee λ ∈ G(n, p) is maximal if and only if for all k ∈ [p − 1] there
exists a preference profile π such that, for any lottery � implementing λ at π (Definition 1)
we have

max
i∈[n]

[
�∗i]k

1 = [λ]k1 (12)

Proof. Proof of Lemma 3 The implementation argument above shows that V T ⊗ λ is
in G(n, p) if λ is. If now λ ∈ M(n, p), we fix an index k ∈ [p − 1] and an (n, p)-profile
π ensuring property (12) as in the premises of Lemma 4. We construct the following
(n, p+ n) profile θ:

≺1 a1

p︷︸︸︷
π a2 · · · an

· · · · · · π · · · · · ·
≺n an π a1 · · · an−1

(13)

where the initial profile π on p outcomes occupies the ranks 2 to p + 1, while the pref-
erences over the n other outcomes are cyclical. If a lottery � implements V T ⊗ λ at θ, it
can put no weight on any ai outcome because (V T ⊗ λ)1 = 0, therefore, the restriction
of � to the outcomes of π implements λ at π, so property (12) holds for ranks 2 to p+ 1
as well as for the first one and the last n− 1 ones.
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That RD⊗λ is in G(n, p) respectively in M(n, p), if λ is follows from the same prop-
erty for V T , using the duality relation (10) and the fact that duality respects feasibility
and maximality (Proposition 4).

5.3 Canonical guarantees

Starting from the uniform guarantee, its composition by an arbitrary sequence of the
operators V T and RD generates a large family of maximal guarantees: we call them
canonical, because the veto and random dictator ideas stand out in the characterization
results for n = 2 and p ≤ 2n (Section 4).

Definition 6 (Canonical guarantees). Fix n, p, 3 ≤ n < p, such that d = �p−1
n � and p =

dn + q for some q = 1, � � � , n. Each sequence � = (�t )ht=1 in {V T , RD} of length h, h ≤ d,
defines a canonical guarantee in M(n, p) by composition of these operators starting
from uni((d − h)n+ q), that is,

� 1 ⊗ � 2 ⊗ · · · ⊗ �h ⊗ uni
(
(d − h)n+ q

) = �1 ⊗ (�2 ⊗ (· · · ⊗ (
�h ⊗ uni

(
(d − h)n+ q

)) · · · )
where �t ⊗ �t+1 ⊗ · · · ⊗ �h ⊗ uni((d − h)n+ q) is in M(n, (d − t + 1)n+ q) for all t ∈ [h].
We write their set as C(n, p), of cardinality 2d+1 − 2.

By Lemma 3, all canonical guarantees are maximal, because the composition by
each �t adds n outcomes to the previous ones, they are in M(n, p). By duality (10),
canonical guarantees come in dual pairs: exchanging V T and RD in each term of the
sequence � produces the dual guarantee.

An important observation is that each λ ∈ C(n, p) is uniform on its support therefore
determined by this nonfull support. This implies that it is a vertex of G(n, p) (the proof
mimics that of statement (iii) in Proposition 1); hence, also a vertex of M(n, p).

If d = 1 (p ≤ 2n) vt(n, p) and rd(n, p) are the only canonical guarantees. We give
some examples where d ≥ 2, writing for brevity a canonical guarantee as �1 ⊗ �2 ⊗ · · · ⊗
�h without the initial uniform lottery.

Constant sequences: the composition of h veto steps, or of h random dictator steps,
gives dual guarantees of a similar shape: their support is at the extreme ranks or in the
center:

h︷ ︸︸ ︷
V T ⊗ · · · ⊗ V T =

( h︷ ︸︸ ︷
0, � � � , 0,

1
p− nh

, � � � ,
1

p− nh
,

(n−1)h︷ ︸︸ ︷
0, � � � , 0

)
h︷ ︸︸ ︷

RD⊗ · · · ⊗RD =
( (n−1)h︷ ︸︸ ︷

1
nh

, � � � ,
1
nh

, 0, � � � , 0,

h︷ ︸︸ ︷
1
nh

, � � � ,
1
nh

)
A simple mechanism for the former gives h veto tokens to each agent, then random-

izes uniformly between the remaining outcomes, even if there are more than p − nh of
those (which will only improve the guaranteed welfare). To implement the latter, we
elicit from each agent her h top outcomes, then randomize uniformly between any nh
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outcomes containing all reported tops, adding arbitrary outcomes if the reported ones
are fewer than nh. The last instruction is important: ignoring it could result in giving too
much weight to someone’s worst outcomes (as illustrated in the example of Section 1).

For d = 2, we have six canonical guarantees, four from the constant sequences and
a dual pair from (V T , RD) and (RD, V T ). For instance, in C(3, 7):

V T ⊗RD=
(

0,
1
3

,
1
3

, 0,
1
3

, 0, 0
)

; RD⊗ V T =
(

1
4

,
1
4

, 0,
1
4

, 0, 0,
1
4

)
The mechanism for RD ⊗ V T selects three outcomes containing the top ones of each
agent; then with probability 3/4 it picks one of those uniformly, and with probability 1/4
plays vt(3, 4) among the remaining outcomes.

Our final example is in C(3, 11) where d = 3 and we have three pairs of nonconstant
sequences of length three, for instance:

(RD, V T , V T ) → λ =
(

1
5

,
1
5

, 0, 0,
1
5

,
1
5

, 0, 0, 0, 0,
1
5

)
(RD, V T , RD) → λ =

(
1
6

,
1
6

, 0,
1
6

,
1
6

, 0, 0,
1
6

, 0, 0,
1
6

)

6. General results and open problems

Theorem 1 in Section 4 tells much about the structure of M(n, p) in the case d = 1.
For general values of d = �p−1

n �, we know only a few general facts. Lemma 2 in Propo-
sition 3 provides our best clue. For any z ∈ G(n, p)� such that G(n, p) intersects the hy-
perplane H = {y|z · y = 0}, the intersection H ∩ G(n, p) is a face of G(n, p), in particular
a polytope. The lemma tells us that such a face defined by a vector z with increasing
coordinates is a subset of M(n, p), and that all maximal guarantees obtain for some z.
This proves the following.

Proposition 5. For 3 ≤ n < p, the set M(n, p) is a finite union of faces of the polytope
G(n, p), each having uni(p) as a vertex.

Our second main result identifies a large subset of M(n, p) constructed from the
canonical guarantees.

Theorem 2. Fix n, p such that 3 ≤ n < p, d = �p−1
n �.

For each sequence � of length d in {V T , RD}, the canonical guarantees from the d

initial subsequences8 of �, plus the uniform guarantee, are the vertices of a simplex of
dimension d contained in M(n, p).

The proof is in the Appendix A.4.
Theorem 2 describes 2d components of M(n, p) (faces of G(n, p)). To see that this

may not exhaust M(n, p), we take the simplest example not covered in Theorem 1:

8That is, the guarantees �1, �1 ⊗ �2, �1 ⊗ �2 ⊗ �3, etc.
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n= 3, p = 7, so d = 2. Theorem 2 describes four triangles of maximal guarantees com-
ing in dual pairs. The uniform lottery is always a vertex and the other two vertices are
canonical guarantees:

sequence vertex 1 vertex 2
V T , V T (0, 1

4 , 1
4 , 1

4 , 1
4 , 0, 0) (0, 0, 1, 0, 0, 0, 0)

RD, RD ( 1
3 , 1

3 , 0, 0, 0, 0, 1
3 ) ( 1

6 , 1
6 , 1

6 , 1
6 , 0, 1

6 , 1
6 )

V T , RD (0, 1
4 , 1

4 , 1
4 , 1

4 , 0, 0) (0, 1
3 , 1

3 , 0, 1
3 , 0, 0)

RD, V T ( 1
3 , 1

3 , 0, 0, 0, 0, 1
3 ) ( 1

4 , 1
4 , 0, 1

4 , 0, 0, 1
4 )

where the dual pairs are the top two and the bottom two rows. In addition to these four
triangles, the maximal set M(3, 7) also contains two intervals, joining uni(7) to each of
the following two dual noncanonical guarantees:

λ =
(

1
3

, 0, 0,
1
3

,
1
3

, 0, 0
)

; λ� =
(

1
4

,
1
4

, 0, 0,
1
4

,
1
4

, 0
)

.

In general, we keep in mind that many more guarantees than the ones described in
Theorem 2 are maximal. Pick any noncanonical guarantee λ in M(n, p) ∩ ∂�(p), for in-
stance, those described in Proposition 3 or in the previous paragraph: by Lemma 3, suc-
cessive compositions of λ with V T and/or RD generate, for any h ≥ 1, 2h noncanonical
maximal guarantees in M(n, p+ hn) ∩ ∂�(p+ hn).

Conjectures and open questions We conjecture that no convex combinations of canon-
ical guarantees other than those described in Theorem 2 (i.e., corresponding to nested
sequences in {V T , RD}) can produce a maximal lottery.

We conjecture that the maximal dimension of a simplicial component of M(n, p) is
d = �p−1

n �.
We do not know how to evaluate the number of such components, which we know

is at least 2d .
Finally, we give an example in Appendix A.5 of a three person mechanism imple-

menting several noncomparable guarantees: it offers a two item menu of guarantees
among which the agents can choose.9 We do not know how long a menu of guarantees
can be, given n and p.

7. Concluding comments

Our results provide a formal vindication of the role of Voting by Veto (Veto) and Random
Dictator (RDict) as ex ante protections of each individual decision-maker’s welfare. But
much depends on the comparison of n (the number of agents) and p (the number of
outcomes).

Our message is especially clear for bargaining situations between only two agents,
n = 2: then the vertices of the set of maximal guarantees simply combine a round of
Veto (possibly with multiple veto tokens) followed by one of RDict (Proposition 2).

9We thank an anonymous referee for suggesting that this may be the case.
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For general problems, the situation is more nuanced. If we need to protect at least as
many individuals as there are outcomes (n ≥ p), the Uniform (Unif) guarantee drawing
blindly an outcome is the only acceptable guarantee (Proposition 1). Veto and RDict
play no role if the electorate is large.

By contrast, if there are at most twice as many outcomes than agents n < p ≤ 2n,
essentially all maximal guarantees obtained by a convex combination of Unif and Veto,
or of Unif and RDict (Theorem 1).

Finally, if we have significantly more outcomes than agents (p > 2n and n ≥ 3) we
produce many more (exponentially more in d = �p−1

n �) maximal guarantees by combin-
ing up to d elementary Veto or RDict blocks; some of their convex combinations are
maximal as well (Theorem 2). But the mechanisms implementing them become in-
creasingly opaque. A practical application of our canonical guarantees would involve
at most one round of Veto with up to d − 1 tokens per person followed by RDict on the
nonvetoed outcomes, or the dual mechanism starting by RDict.

Appendix: Four proofs and one mechanism

A.1 Proof of Lemma 2

We must prove the only if statement: for any λ ∈ M(n, p), we can find a vector z as in
Lemma 2. Consider the following cone W in Rp:

W =
{
z =

n∑
i=1

u∗
i

∣∣∣∣∣ for some U = (ui )
n
i=1 such that

n∑
i=1

ui = 0

}
(14)

By its characteristic property (1), G(n, p) is the intersection of W � with �(p) there-

fore G(n, p)� is the Minkowski sum of
←→
W and R

p
−, where

←→
W is the convex hull of

W . Moreover, the identity
∑

(i,k)∈[n]×[p] u
∗
ik = ∑

(i,a)∈[n]×A uia implies
∑p

k=1 zk = 0 in W

therefore
←→
W = G(n, p)� ∩ {z|

∑p
k=1 zk = 0}.

We fix now a maximal guarantee λ and define the subcone Z of
←→
W :

Z =
{
z ∈ G(n, p)�

∣∣∣∣∣
p∑

k=1

zk = 0 and λ · z = 0

}

This cone is convex, and every element of Z satisfies z1 ≤ z2 ≤ · · · ≤ zp, because these
inequalities hold in W . To prove that Z contains some z such that z1 < z2 < · · · < zp, we
choose in Z one ẑ in which the number of equalities between consecutive coordinates of
ẑ is as small as possible. If there is no equality, we are done. Otherwise, assume that the
first equality is ẑk = ẑk+1. We will show the existence of some z ∈ W such that zk < zk+1

and λ · z = 0; this leads to a contradiction because ẑ + z ∈ Z has fewer equalities than ẑ.
Consider two cases.

Case 1 λk > 0
We proceed by contradiction and assume that if z ∈W and zk < zk+1, then λ · z < 0.
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Call 	 the set of profiles U = (ui )ni=1 such that

n∑
i=1

ui = 0 and u∗
1k = 0, u∗

1,k+1 = 1 (15)

The corresponding vector z = ∑n
i=1 u

∗
i is in W therefore

∑n
i=1 λ · u∗

i < 0 for all U ∈ 	.
We show next, again by contradiction, that the supremum of

∑n
i=1 λ · u∗

i over 	 cannot
be zero.

If it is, there is a sequence Us in 	 such that the sequence
∑n

i=1 λ · us∗i converges to
zero. By taking subsequences, we can make sure that for each i, the way each usi orders
the outcomes in A does not depend on s (but depends on (i)). Then for each i there is a
lottery λi on A, its coordinates a permutation of those of λ, such that λ · us∗i = λi · usi for
all s.

Consider the polyhedron Q of n× p matrices X = [xai ]i∈[n],a∈A defined by three sets
of conditions:

In each row i, the entries are ordered the same way as in every usi∑n
i=1 x

a
i = 0 in each column a,

x1a = 0, x1b = 1 where a and b are the outcomes ranked k and k+ 1 by each us1

Note that Q is nonempty because it contains each matrix Us .
By construction, each X in Q defines a profile in 	 and λ · x∗

i = λi · xi for all i. There-
fore, we have

n∑
i=1

λi · xi < 0 for all X ∈Q

lim
s→∞

n∑
i=1

λi · usi = 0 for the sequence Us in Q

This is impossible: if the closed polyhedron Q is disjoint from the hyperplane H :∑n
i=1 λ

i · xi = 0, it cannot contain points arbitrarily close to H.
Thus, there is some positive ε such that for any profile U in 	 we have

∑n
i=1 λ · u∗

i <

−ε, and we can now conclude the proof in Case 1. These inequalities imply for any
profile U : {

n∑
i=1

ui = 0 and u∗
1k < u∗

1,k+1

}
=⇒

n∑
i=1

λ · u∗
i ≤ −ε

(
u∗

1,k+1 − u∗
1k

)
(16)

Indeed if u∗
1,k+1 −u∗

1k = 1 the profile (u1 −u∗
1k1, u2 +u∗

1k1, u3, � � � , un ) is in 	, and rescal-

ing our profile by 1
u∗

1,k+1−u∗
1k

implies the claim.

Note that in (16) we can replace coordinate 1 by any coordinate i. Therefore, we have

n∑
i=1

ui = 0 =⇒
n∑

i=1

λ · u∗
i ≤ −ε

n

n∑
i=1

(
u∗
i,k+1 − u∗

ik

)
(17)
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Because λk > 0, the lottery μ obtained from λ by shifting ε
n or λk, whichever is less,

from λk to λk+1 dominates λ, and property (17) implies it is feasible.
Case 2 λk = 0
In this case, because ẑ ∈ ←→

W it is a sum of m elements zj ∈W , j ∈ [m], each zj defined
by n utilities (u

j
i )ni=1 as in (14). Note that if k > 1 then u

j0∗
i0,k−1 < u

j0∗
i0,k for some i0, j0.

Pick such i0 and j0 (or arbitrary ones if k = 1). Let a ∈ A be such that uj0∗
i0,k = u

j0
i0,a. For

some small ε > 0, modify (u
j0
i )ni=1 to (ui )ni=1 by letting ui0,a = u

j0
i0,a − ε, ui1,a = u

j0
i1,a + ε

for some i1 �= i0, and leaving all other utilities unchanged. Because λk = 0 and by our
choice of i0, j0, for small enough ε we have

∑n
i=1 λ ·u∗

i ≥ ∑n
i=1 λ ·uj0∗

i = λ · zj0 = 0. As λ is
feasible, this must be an equality and, therefore, z = ∑n

i=1 u
∗
i ∈ Z and satisfies zk < zk+1

by construction.

A.2 Proof of Lemma 4

Statement If. Pick two guarantees λ, μ in G(n, p), such that λ meets the property above
while μ � λ. Pick k ∈ [p − 1] and a profile π as in the statement. Choose a lottery �

implementing μ at π and an agent i reaching the maximum in (12): we have [�∗i]k1 ≤
[μ]k1 ≤ [λ]k1 and [�∗i]k1 = [λ]k1 . As k was arbitrary in [p− 1], we conclude μ= λ therefore λ

is maximal.
Statement Only If. Suppose now that λ ∈ G(n, p) fails the property in the lemma:

there is some k and some ε > 0 such that at any profile π there is some lottery � imple-
menting λ at π and such that

max
i∈[n]

[
�∗i]k

1 = [λ]k1 − ε (18)

We show that λ is not maximal. Suppose first λk > 0 and construct λ′ dominating
λ by shifting a weight δ, smaller than ε and λk, from λk to λk+1 (and no other change).
The lottery λ′ is still in G(n, p): at a profile π the lottery � implementing λ and meeting
(18) implements λ′ as well. Suppose next λk = 0. Then we have for all i,[

�∗i]k−1
1 ≤ [

�∗i]k
1 ≤ [λ]k1 − ε = [λ]k−1

1 − ε

so that if λk−1 is positive we can apply the previous argument. If λk−1 = 0 again, we re-
peat this observation until we find some positive λt , t ≤ k−2, whose existence is assured
by (18).

A.3 Proof of Theorem 1

We prove part (ii): if 3 ≤ n < p and p ≤ 2n− 2, or p = 2n but n �= 4, 5, then any maximal
guarantee lies in one of the intervals [uni(p), vt(n, p)], [uni(p), rd(n, p)].

Step 1. Recall the following notion from the Shapley–Bondareva theorem. A family
S1, � � � , Sm of subsets of [p] is balanced if there exist positive weights γ1, � � � , γm such that∑

i:j∈Si γi = 1 for every j ∈ [p].

Lemma 5. Assume that p ≤ 2n− 2, or p = 2n but n �= 4, 5 and let 2 ≤ k ≤ �p
2 �. Then there

exists a balanced family S1, � � � , Sm of subsets of [p] of size k each, such that m≤ n.
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Assume first that p ≤ 2n − 2 and 2 ≤ k ≤ �p
2 �. If k divides p, the lemma is obvious

(take a partition of [p]). Suppose p = tk + r where 1 ≤ r ≤ k − 1. Let Si = {(i − 1)k +
1, � � � , ik} for i = 1, � � � , t. Also, let Si = Ci ∪ {tk + 1, � � � , p} for i = t + 1, � � � , t + k, where

the sets Ci are of size k− r and form the k cyclic intervals in a cyclic arrangement of St .

Let γ1 = · · · = γt−1 = 1, γt = r
k , γt+1 = · · · = γt+k = 1

k . These weights make S1, � � � , St+k a

balanced family, and it remains to check that t + k≤ n.

We have t +k < p
k +k ≤ max{px +x : x ∈ [2, p

2 ]} = p+4
2 . If p ≤ 2n− 2, this gives t +k <

n+ 1 as desired.

Assume next p = 2n and 2 ≤ k ≤ n. When k divides p a partition works, so we may

assume that 3 ≤ k ≤ n − 1, and thus n ≥ 4. We further exclude the exceptional cases

n = 4, 5 and assume n ≥ 6. If k≤ n− 2, we still have p
k +k ≤ n+ 1 as in the original proof.

Thus, we may assume that k = n− 1. We provide two variants of the construction of the

balanced family, depending on parity.

Case 1. k = n − 1 is even. Partition [p] = [2k + 2] into S, P1, � � � , Pk
2 +1 where |S| = k

and the other sets are pairs. Take S with weight 1, and for each Pi, the union of all Pj ,

j �= i, with weight 2
k . This gives a balanced family of size k

2 + 2 < n.

Case 2. k = n− 1 is odd. Partition [p] = [2k+ 2] into S, T , P1, � � � , Pk−1
2

where |S| = k,

|T | = 3 and the other sets are pairs. Take S with weight 1, for each Pi take the union of T

and all Pj , j �= i, with weight 2
k , and for each element a of T take the union of {a} and all

the Pi with weight 1
k . This gives a balanced family of size k−1

2 + 4 ≤ n.

Step 2. Assume (n, p) are as in Lemma 5 and let 2 ≤ k ≤ p − 2. Then for any λ ∈
G(n, p) we have [λ]k1 ≥ k

p .

By duality, it suffices to show this for 2 ≤ k ≤ �p
2 �. Let S1, � � � , Sm with weights

γ1, � � � , γm be a balanced family as in the lemma. Consider a profile of strict preferences

in which {aj : j ∈ Si} is the set of the k worst outcomes of agent i, i = 1, � � � , m. Let �

be a lottery that implements λ at this profile. Then 1 = ∑
a∈A �a = ∑m

i=1 γi
∑

j∈Si �aj ≤∑m
i=1 γi[λ]k1 = p

k [λ]k1 , implying the desired inequality.

Step 3. For (n, p) as in Lemma 5, we fix λ ∈ G(n, p) and show that it is dominated by

a guarantee in [uni(p), vt(n, p)] ∪ [uni(p), rd(n, p)]. This will establish part (ii) of Theo-

rem 1. We distinguish three cases.

Case 1. λp ≥ 1
p . Set λp = x and keep in mind that feasibility implies x ≤ 1

n . We will

show that λ is dominated (weakly) by the guarantee μ ∈ [uni(p), rd(n, p)] such that μp =
x, that is, μk = x for 1 ≤ k≤ n− 1 and μk = y for n ≤ k≤ p− 1, with nx+ (p− n)y = 1.

Set p = n + q and partition A as {a1, � � � , an} ∪ {b1, � � � , bq} then consider a profile of

preferences where for everyone:

the a-s occupy the ranks 1 to n− 1 and p and each a appears exactly once in rank p;

the b-s occupy the ranks n to p− 1 and the pattern of the b-s is cyclical for the first q

agents.

Pick a lottery � implementing λ at this profile. Then �a ≥ x for each a implying [λ]k1 ≥
kx for 1 ≤ k ≤ n − 1; moreover, λp = x by assumption. It remains to show that [λ]

p
p−r ≤

x+ ry for 1 ≤ r ≤ q − 1. Indeed by summing the implementation constraints for the top
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r + 1 outcomes of the first q agents, we get (denoting the top outcome of agent i by ai):

q[λ]
p
p−r ≤

q∑
i=1

�ai + r

q∑
i=1

�bi =
( q∑

i=1

�ai +
q∑

i=1

�bi

)
+ (r − 1)

q∑
i=1

�bi

≤ (
1 − (n− q)x

) + (r − 1)(1 − nx) = q(x+ ry )

Case 2. λ1 ≤ 1
p . Set λ1 = x and p = n + q. We show similarly that λ is dominated

(weakly) by the guarantee μ ∈ [uni(p), vt(n, p)] such that μ1 = x: that is, μk = x for p −
n+ 2 ≤ k≤ p and μk = y for 2 ≤ k≤ q+ 1, with nx+ qy = 1.

We consider a profile of preferences over the outcomes in {a1, � � � , an} ∪ {b1, � � � , bq}
where:

the a-s occupy the ranks 1 and p − n + 2 to p and each a appears exactly once in
rank 1;

the b-s occupy the ranks 2 to q+ 1 and the pattern of the b-s is cyclical for the first q
agents.

Then the proof mimics that in case 1 by showing first that a lottery implementing λ

at this profile has [λ]
p
p−k+1 ≤ kx for 1 ≤ k ≤ n − 1, then focusing attention on the first

q+ 1 ranks to show [λ]r+1
1 ≥ x+ ry for 1 ≤ r ≤ q− 1. We omit the details.

Case 3. λp < 1
p < λ1. Combining these inequalities with those in step 2 we see that λ

is strictly dominated by uni(p).

A.4 Proof of Theorem 2

We fix 1 ≤ q ≤ n such that p = dn + q and prove the statement by induction on d.
It is clear for d = 1 as {V T } and {RD} are the only two sequences and the intervals
[uni(p), vt(n, p)], [uni(p), rd(n, p)] are in M(n, p).

Fix d ≥ 2 and consider a sequence � ∈ {V T , RD}d starting with �1 = V T . By Defini-
tion 5, the composition by V T commutes with convex combinations of �2, �2 ⊗ �3, � � �.
Using the notation Vex[·] for such combinations, and the simplified notation V T instead
of V T ⊗ uni(p− n), etc., we have

Vex
[
V T , V T ⊗ �2, � � � , V T ⊗ �2 ⊗ · · · ⊗ �d

]
= V T ⊗ Vex

[
uni(p− n), �2, �2 ⊗ �3, � � � , �2 ⊗ · · · ⊗ �d

]
(19)

where by the inductive assumption the second convex combination of canonical guar-
antees in C(n, p − n) and of uni(p − n) is a maximal guarantee. By Lemma 3, so is the
left-hand convex combination, call it λ, and by Proposition 4 so is a convex combination
of uni(p) and λ.

The proof of the inductive step for a sequence starting from RD is more involved,
because RD does not commute with convex combinations, even of boundary lotteries;
therefore, property (19) where RD replaces V T can only be true if the two sides use
different convex combinations.
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Observe first that if the lottery λ is maximal at n, p − n and in ∂�(p − n), then any
μ ∈ Vex[rd(n, p), RD ⊗ λ] is in M(n, p) ∩ ∂�(p) as well. That μ is on the boundary is
clear. By (11), μ takes the form

μ=
( n−1︷ ︸︸ ︷
α

n
, � � � ,

α

n
, (1 − α)λ,

α

n

)
Consider a profile similar to (13) in the proof of Lemma 3, where by maximality of λ we
choose π ensuring property (12) in Lemma 4:

≺1 a1 · · · an−1

p−n︷︸︸︷
π an

· · · · · · · · · π · · ·
≺n an · · · an−2 π an−1

If the lottery � implements μ at this profile, we have �ai = α
n therefore its weight on the

remaining p− n outcomes in π is (1 − α) and the claim follows by Lemma 4 again.
We fix now an arbitrary convex combination

� =
d∑

j=2

αjRD⊗ �2 ⊗ · · · ⊗ �j

in G(n, p) and claim that it takes the form RD⊗ λ where λ is some other convex combi-
nation

λ =
d∑

j=2

βj�
2 ⊗ · · · ⊗ �j .

This claim allows us to complete the induction step as follows. By the induction hypoth-
esis, λ is in M(n, p− n), and it is easy to see (and explained in detail below) that it is on
the boundary. By what we just observed, any Vex[rd(n, p), RD ⊗ λ] is also maximal; by
the claim, this means that any convex combination of the guarantees corresponding to
the initial subsequences of � starting with RD is maximal. Finally, Proposition 4 handles
the addition of the uniform guarantee.

Proof. Proof of the claim Recall that canonical guarantees are uniform on their sup-
port, which we now describe for the canonical guarantees in our sequence. We parti-
tion the ranks 1, � � � , p into subsets S1, � � � , Sd+1 each of size n except for the last one of
size q. The set S1 is the support of rd(n, p) (the ranks 1 to n − 1 and p). If �2 = RD,
then S2 has the ranks n to 2n − 2 and p − 1, and the support of RD ⊗ �2 is S1 ∪ S2. If
�2 = V T , then S2 has the rank n and those from p − n + 1 to p − 1, and the support of
RD⊗ �2 is S1 ∪ S3 ∪ · · · ∪ Sd+1 (the complement of S2). Continuing in this fashion, each
�j defines a new set Sj that is added to its support if �j = RD, while if �j = V T we add
Sj+1 ∪ · · · ∪ Sd+1 to the support. We keep track of this construction by entering a one
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for sets in the support and a zero for those outside it: with the notation ε ∈ {0, 1} and

ε′ = 1 − ε, our sequence in C(n, p) is described by a table as follows:

S1 S2 S3 S4 · · · Sd Sd+1

RD⊗ �2 1 ε2 ε′
2 ε′

2 · · · ε′
2 ε′

2
RD⊗ �2 ⊗ �3 1 ε2 ε3 ε′

3 · · · ε′
3 ε′

3
· · · · · · · · · · · · · · · · · · · · · · · ·

RD⊗ �2 ⊗ · · · ⊗ �d 1 ε2 ε3 ε4 · · · εd ε′
d

where εj = 1 if �j =RD, εj = 0 if �j = V T .

Defining �k = n
∑k

j=2 εj + (p − kn)ε′
k, we see in the table that �k is the size of the

support of �2 ⊗ · · · ⊗ �k, while that of RD ⊗ �2 ⊗ · · · ⊗ �k has cardinality �k + n. On its

support RD⊗ �2 ⊗ · · · ⊗ �k is worth 1
�k+n while �2 ⊗ · · · ⊗ �k is 1

�k
on its own support.

Clearly, but critically, there is a column with only zeroes. This holds if ε2 = 0

(�2 = V T ), or if ε2 = 1 but ε3 = 0, etc., until, if εj = 1 for all j, the last column is null.

A symmetric argument shows that in addition to the first column, there is another col-

umn full of ones. The first remark implies that � and λ are respectively in ∂�(p) and

∂�(p− n); the second that the maximal coordinate of λ is λ+ = ∑d
j=2

βj

�j
. Now we select

the coefficients βj such that

1
nλ+ + 1

βj

�j
= αj

�j + n
for all j = 2, � � � , d, and

d∑
j=2

βj = 1

Check that β is well-defined because summing the first d − 1 equalities above implies

nλ+
nλ+ + 1

=
d∑

j=2

n

�j + n
αj < 1,

which determines λ+. After rearranging the equation above as

1
nλ+ + 1

=
d∑

j=2

�j

�j + n
αj ,

the last equality
∑d

j=2 βj = 1 follows.

We check finally the equality � =RD⊗ λ for this choice of β. Because λ ∈ ∂�(p− n)
the lottery RD ⊗ λ is given by (11); in particular, it is constant on each set Sk, just like

�. We see in the table that RD ⊗ λ equals λ+
nλ++1 in S1, while � is worth

∑d
j=2

αj
�j+n so

they coincide. Each entry in another column Sk at row j adds ε 1
nλ++1

βj

�j
to RD ⊗ λ and

ε
αj

�j+n to �, where ε is the coefficient of that particular entry, so the desired equality

follows.
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A.5 A mechanism implementing several guarantees

Let n = 3, p = 5, and λ = ( 1
2 , 0, 0, 1

2 , 0) and μ = ( 1
4 , 1

4 , 1
2 , 0, 0). Note that λ is maximal

while μ is a guarantee undominated by λ. We construct a mechanism implementing
both λ and μ.

Each agent i can either name a pair Li of outcomes that he likes, or a single outcome
di that he dislikes. Then the mechanism selects a set S of outcomes and performs a
uniform lottery over its members. In cases 1–3 below, |S| = 2, while in case 4, |S| = 4.

Case 1: All three agents name pairs they like. Then we take S to be a pair that meets
each of the three named pairs.

Case 2: All three agents name outcomes they dislike. Then we take S to be a pair
avoiding the three named outcomes.

Case 3: Two agents name pairs they like, say L1 and L2, while the third agent names
an outcome d3 he dislikes. Then we take S to be a pair meeting L1 and L2 while avoid-
ing d3.

Case 4: One agent names a pair he likes, say L1, while the other two agents name
outcomes they dislike. Then we take S to be a set of four outcomes containing L1.

It is easy to check that an agent naming his top two outcomes as the ones he likes
guarantees himself at least λ, while an agent naming his bottom outcome as the one he
dislikes guarantees himself at least μ.
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