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Abstract
We extend the classical theory of PAC learning in a way which allows to model a rich variety of
practical learning tasks where the data satisfy special properties that ease the learning process. For
example, tasks where the distance of the data from the decision boundary is bounded away from
zero, or tasks where the data lie on a lower dimensional surface. The basic and simple idea is to
consider partial concepts: these are functions that can be undefined on certain parts of the space.
When learning a partial concept, we assume that the source distribution is supported only on points
where the partial concept is defined.

This way, one can naturally express assumptions on the data such as lying on a lower dimen-
sional surface, or that it satisfies margin conditions. In contrast, it is not at all clear that such
assumptions can be expressed by the traditional PAC theory using learnable total concept classes,
and in fact we exhibit easy-to-learn partial concept classes which provably cannot be captured by
the traditional PAC theory. This also resolves, in a strong negative sense, a question posed by Attias,
Kontorovich, and Mansour (2019).

We characterize PAC learnability of partial concept classes and reveal an algorithmic landscape
which is fundamentally different than the classical one. For example, in the classical PAC model,
learning boils down to Empirical Risk Minimization (ERM). This basic principle follows from
Uniform Convergence and the Fundamental Theorem of PAC Learning (Vapnik and Chervonenkis,
1971, 1974a; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989).

In stark contrast, we show that the ERM principle fails spectacularly in explaining learnability
of partial concept classes. In fact, we demonstrate classes that are incredibly easy to learn, but such
that any algorithm that learns them must use an hypothesis space with unbounded VC dimension.
We also find that the sample compression conjecture of Littlestone and Warmuth fails in this set-
ting. Our impossibility results hinge on the recent breakthroughs in communication complexity
and graph theory by Göös (2015); Ben-David, Hatami, and Tal (2017); Balodis, Ben-David, Göös,
Jain, and Kothari (2021).

Thus, this theory features problems that cannot be represented in the traditional way and can-
not be solved in the traditional way. We view this as evidence that it might provide insights on
the nature of learnability in realistic scenarios which the classical theory fails to explain. We in-
clude in the paper suggestions for future research and open problems in several contexts, including
combinatorics, geometry, and learning theory.
Keywords: PAC Learning, Learnability, VC Dimension, Margin, Online Learning, Empirical Risk
Minimization
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1. Introduction

In many practical learning problems the data satisfy special properties that ease the learning process.
For example, imagine a learning task where the distance of the data from the decision boundary is
bounded below by some margin > 0, or learning tasks where the data lie on a low-dimensional
surface. (E.g. consider the task of classifying photographs of animals by whether the animal is a
cat; arguably, the representations of such images lie on a low-dimensional subset of the space of all
possible representations, most of which do not even represent a possible photograph.)

Common approaches for modelling such tasks often use data-dependent assumptions which
are not captured by the traditional theory of PAC learning: namely, they are not expressed by a
PAC learnable concept class. A classical example is the task of learning a high dimensional linear
classifier with margin. Standard learning algorithms for this task, such as the classical Perceptron
algorithm (Rosenblatt, 1958), use hypothesis classes which are not PAC learnable. Indeed, the
Perceptron uses the hypothesis class of all linear classifiers, whose VC dimension scales linearly
with the Euclidean dimension, and is therefore not PAC learnable when the dimension is unbounded.
To the best of our knowledge, the same applies to all learning algorithms in this context.1 Thus,
learnability of large-margin linear classifiers is not expressed as the PAC learnability of a natural
concept class.

Consequently, the general framework for data dependent analysis deviated from the traditional
PAC setting while relying on additional modeling assumptions (Shawe-Taylor, Bartlett, Williamson,
and Anthony, 1998; Herbrich and Williamson, 2002). Technically, this is done by introducing
a data-dependent “luckiness” function which induces a (data-dependent) hierarchy of hypotheses
(luckier hypotheses precede less lucky ones, as we discuss in more detail in Section 4.1). For
example, in the case of large margin linear classifiers, the luckiness of each linear separator is
its margin with respect to the input sample. While this framework has been successfully applied
in various contexts, it does not yield a crisp notion of learnability in the spirit of PAC learning.
Moreover, the general results in this framework assume rather arcane technical conditions and,
while these conditions suffice for proving bounds on a case-by-case basis in various situations, it is
not clear whether they are necessary in general.

To address the above shortcomings, we aim to develop a mathematical theory that is able to
capture some of the above features of practical learning systems, yet admits a complete character-
ization of learnability in the spirit of the PAC theory. Towards this end, we take a complementary
approach for modeling data-dependent assumptions: instead of modeling the algorithm’s bias using
a luckiness function, we extend the type of learning tasks and the notion of learnability. As will
be discussed below, this provides a natural generalization of the traditional learning theory, which
allows a unified treatment of data-dependent bounds and model-dependent bounds.

Partial Concepts. The basic idea is simple: rather than learning a class of concepts H ⊆ {0, 1}X ,
where each concept c ∈ H is a total function c : X → {0, 1}, we consider partial concept classes
H ⊆ {0, 1, ?}X , where each concept c is a partial function; specifically, if x is such that c(x) = ?
then c is undefined at x. The support of a partial concept c : X → {0, 1, ?} is the set supp(c) :=
c−1({0, 1}) = {x ∈ X : c(x) 6= ?}.

We then note that all the classical parameters such as VC dimension, Littlestone dimension,
etc., naturally extend to partial concept classes without modification. In particular, a key quantity of

1. In fact, in Section 3.1 we conjecture that any algorithm that learns this task satisfies that its image, i.e. the set of
hypotheses it can output, has an unbounded VC dimension.
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interest in this work is the VC dimension of a partial concept class H, denoted by VC(H), which is
defined as the maximum size of a shattered set U ⊆ X , where U is shattered if every binary pattern
u ∈ {0, 1}U is realized by some h ∈ H (i.e. h|U = u). This allows us to express formal connections
between these parameters and learnability in a unified way that also applies to partial concept classes
and covers various data-dependent assumptions. For instance, the learnability of linear separators
with margin then reduces to merely noting that the VC dimension of the corresponding partial
concept class is bounded by a function of the margin. We note, however, that the algorithmic
approach to establishing this connection is necessarily quite different from the algorithms typically
used in the analysis of total concept classes, as we discuss at length below.

2. Results

In the next sections we give an overview of the main contributions in this work. Some of the formal
statements rely on standard terminology (such as VC dimension, PAC learnability, etc) which is
formally defined in the later technical sections.

2.1. Expressivity

Allowing for partial concepts enables modelling data-dependent assumptions in a natural way: in-
deed, given any such assumption, consider all legal samples S which satisfy the assumption and
define the corresponding partial class of all (partial) concepts such that every sample realizable by
them is legal.

For example, consider again the task of learning a γ-margin linear separator in RN . A sample
S ∈

(
RN ×{0, 1}

)n here is legal if the zero- and one-labelled examples are linearly separable with
margin γ, and the corresponding partial class H consists of all partial concepts h : RN → {0, 1, ?}
such that h−1(0) and h−1(1) are linearly separable with margin at least γ. (See Section 3.1 for
a more elaborate discussion of this partial class.) Similarly, one can easily model tasks in which
the data lie on a low-dimensional subspace/manifold; such assumptions are naturally captured by
partial concepts which are undefined outside some such low-dimensional subset.

In contrast, it is not at all clear that these learning tasks can be expressed in the traditional PAC
model using a class of total concepts. In fact, our first result demonstrates an incredibly easy-to-
learn class of partial concepts that cannot be represented by any learnable class of total concepts.
To state this result we need to formally define when a total concept class H̄ represents a partial
concept class H: intuitively, we want that every learning task definable by H is also definable by H̄.
Formally, let us say that a total class H̄ ⊆ {0, 1}X strongly2 disambiguates a partial class H ⊆
{0, 1, ?}X if every partial concept h ∈ H is extended by some total concept h̄ ∈ H̄. Namely:

(∀h ∈ H)(∃h̄ ∈ H̄) : h̄(x) = h(x) for all x ∈ supp(h).

Theorem 1 (Partial Concepts Are More Expressive Than Total Concepts) There exists a par-
tial concept class H ⊆ {0, 1, ?}N whose VC dimension is 1 such that every total class H̄ ⊆ {0, 1}N
which strongly disambiguates H must have an infinite VC dimension, i.e. VC(H̄) =∞.

2. We will later define a weaker notion.
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As we will discuss below, the above partial class H is easy to learn: since its VC dimension is one,
we show there is an algorithm that PAC learns whenever the examples have distribution with support
contained in the support of a partial concept from H, and the sample complexity is O(log(1/δ)/ε),
where ε, δ are the standard accuracy and confidence parameters. However, the above theorem im-
plies that if one tries to extend each partial concept in H by a total concept by disambiguating the ?’s
in it, then one must end up with a class whose VC dimension is unbounded, and hence is not PAC
learnable.

Theorem 1 answers an open question posed by Attias, Kontorovich, and Mansour (2019). It
might be interesting to note that our proof of it exploits a surprising connection with the theory
of communication complexity. In particular, it hinges on the recent breakthroughs concerning the
clique vs. independent set problem by Göös (2015); Ben-David, Hatami, and Tal (2017); Balodis,
Ben-David, Göös, Jain, and Kothari (2021). We discuss this further in Section 2.4.3 below.

2.2. PAC Learnability

We next present a characterization of the PAC learnable partial concept classes. But first, we should
clarify the definition of PAC learning in this context. Let us begin with the noiseless and realizable
setting: intuitively, we want realizability to express the premise that the data drawn from the source
distribution satisfy the data-dependent assumptions captured by the partial concept class H. This
gives rise to the following definition: a distribution P on X × {0, 1} is realizable by H if almost
surely (i.e., with probability 1), a sample S = ((xi, yi))

n
i=1 ∼ Pn (for any n) is realizable by some

partial concept h ∈ H: that is, {xi}ni=1 ⊆ supp(h), and h(xi) = yi for all i ≤ n. The connection
between this definition of a realizable distribution and the one used in the classical PAC model is
clarified in Lemma 33. For a partial concept h and a distribution P on X × {0, 1}, we define the
prediction error: erP (h) := P ({(x, y) : h(x) 6= y}). To be clear, this means we always count the
case h(x) = ? as a prediction mistake.

Definition 2 (PAC Learnability) A partial concept class H is PAC learnable if, for every ε, δ ∈
(0, 1), there exists a finiteM(ε, δ) ∈ N and a learning algorithm A such that, for every distribution
P on X × {0, 1} realizable w.r.t. H, for S ∼ PM(ε,δ), with probability at least 1− δ,

erP (A(S)) ≤ ε.

The valueM(ε, δ) is called the sample complexity of A, and the optimal sample complexity is the
minimum achievable value ofM(ε, δ) for every given ε, δ.

In Section C.2 we define learnability in the agnostic case in a similar manner, using the convention
that ?’s are always treated as errors.

We begin by addressing the following fundamental question:

Which Partial Concept Classes Are PAC Learnable and How?

The Fundamental Theorem of PAC Learning asserts that a total concept class H is PAC learnable
if and only if its VC dimension is finite (Vapnik and Chervonenkis, 1974a; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989; Shalev-Shwartz and Ben-David, 2014). This theorem also yields
the celebrated Empirical Risk Minimization principle: any algorithm which outputs an hypothesis
h ∈ H which minimizes the empirical error learns H. Such algorithms are called Empirical Risk
Minimizers (ERMs). In the following theorem we show that the characterization of PAC learnability
in terms of the VC dimension extends to partial concept classes:
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Theorem 3 (A Characterization of PAC Learnability.) The following statements are equivalent
for any partial concept class H ⊆ {0, 1, ?}X .

• VC(H) <∞.

• H is PAC learnable.

• H is agnostically PAC learnable.

It is important to note that our proof of Theorem 3 is fundamentally different from the classical
uniform-convergence-based argument, and it does not yield any version of the ERM principle. (We
discuss this in more detail below.) Instead, our proof hinges on a combination of sample compres-
sion and a variant of the 1-Inclusion-Graph Algorithm due to Haussler, Littlestone, and Warmuth
(1994). The obtained algorithm is transductive, in the sense that its output hypothesis is not com-
puted explicitly: rather, given any test point, it uses the entire training set to compute its label (as is
the case, e.g., for the k-Nearest Neighbor Algorithm). An interesting property of our algorithm (as
well as other transductive algorithms) is that the complexity of the model (hypothesis) it outputs can
increase with the size of the input sample. Below we show that in general, this property is inevitable:
there exist partial classes H with VC(H) = 1 such that any algorithm which PAC learns them must
satisfy that its range (i.e. the set of hypotheses it can output) has an unbounded VC dimension.

2.3. Failure of Traditional Learning Principles

One of the conceptual contributions of the traditional PAC learning theory is the ERM principle:
any learnable class H is learned by any algorithm which outputs a concept h ∈ H that minimizes
the empirical error on the training set. Moreover, any ERM algorithm achieves the optimal sam-
ple complexity, up to lower order factors (Vapnik and Chervonenkis, 1974a; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989). This simple principle is attractive from an algorithmic perspective
as it reduces a learning problem (in which the goal is to minimize an unknown function erP ), to an
optimization problem (in which the goal is to minimize the known empirical loss).

However, recent machine learning breakthroughs demonstrate important phenomena that lack
explanations, and sometimes even contradict conventional wisdom (see e.g. (Zhang et al., 2017;
Nagarajan and Kolter, 2019; Maennel et al., 2020; Unterthiner et al., 2020; Feldman, 2020; Brown
et al., 2020)). For example, consider the modern approach of training very rich models to (and often
beyond) the point of complete interpolation of the training-set. In the lens of traditional learning the-
ory, this would constitute a clear example of overfitting; however, this approach achieves excellent
results in practice when implemented in deep neural networks, as well as in other hypothesis spaces
such as ensembles of decision trees, kernel machines, and minimum norm linear regressors (Belkin
et al., 2019; Nakkiran et al., 2020).

One reason for the incapacity of traditional generalization theory to model modern machine
learning is because the traditional theory reduces learning to an empirical risk minimization task
over not-too-large hypothesis spaces. In contrast, modern algorithms typically train hypotheses
with a huge number of parameters.

Thus, it is interesting to seek extensions of the classical PAC theory which necessitate alterna-
tive principles beyond ERM. Theorem 3 implies that the equivalence between finite VC dimension
and PAC learnability extends to partial concept classes. However, we next demonstrate that the
ERM principle has no useful analogue here. In order to address this, we first need to specify what
empirical risk minimization even means in this context.
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Naive ERM Fails. One natural option is to define an empirical risk minimizer to be any algorithm
which outputs a partial concept h ∈ H that minimizes the empirical loss (i.e., that interpolates the
input data in the realizable case). However, it is easy to see that such algorithms fail to learn even
very simple classes:

Proposition 4 There exists a partial concept class H with VC(H) = 0 such that any proper algo-
rithm (i.e., which outputs a partial concept from H) fails to PAC learn H.

Proof Sketch Let n ∈ N be even and consider the class H ⊆ {0, 1, ?}[n] defined by

H = {hA : A ⊆ [n], |A| = n/2}, wherehA(x) =

{
0 x ∈ A,
? x ∈ [n] \A.

Note that H has VC dimension 0 and that it is trivially PAC learnable by the algorithm which al-
ways outputs the all-zero function h0 ≡ 0 (which is not in H). However, any algorithm which is
restricted to outputting partial concepts from H (and in particular any such ERM) will fail to learn
this class unless it gets at least Ω(n) examples; indeed, this follows by a similar argument as in the
standard no-free-lunch argument for VC classes: let the target concept c ∈ H be drawn uniformly
at random and let the marginal distribution be uniform over supp(c); if the learner observes fewer
than n/4 examples, and must output a hypothesis ĥn ∈ H, it must guess the locations of at least n/4
elements of supp(c) not observed in the data, and very likely will guess incorrectly for a constant
fraction of them. An infinite variant of this construction yields a 0-dimensional class that cannot
be PAC learned by any ERM: namely, on X = N, let H be all {0, ?}-valued functions h with,
∀t ≥ 2, exactly 2t−2 points x ∈ [2t] \ [2t−1] with h(x) = 0; then the above argument can be ap-
plied in any region [2t]\ [2t−1] to show 2t−3 examples do not suffice for proper learners, for any t.

General ERM fails. A stronger (and natural) family of empirical risk minimization algorithms
in this context are algorithms which learn H by performing empirical risk minimization over an
appropriate class H′ ⊆ {0, 1}X . For example, for the class H discussed above, we can pick H′ =
{h0} to be the class consisting only of the all-zero function. Observe that indeed any ERM for H′
successfully learns H. The existence of such an H′ yields a reduction from PAC learning H to PAC
learning H′. Does the ERM principle apply in this sense? That is:

Given a partial concept class H, does there always exist a class H′ such that
any ERM w.r.t H′ learns H?

Can the task of learning a given partial class H be reduced to the task of empirical risk minimization
over some total class H′? The following theorem provides a negative answer (Proof in Section D):

Theorem 5 (Failure of Empirical Risk Minimization) There exists a partial concept class H
with VC(H) = 1 such that, for any total concept class H̄, there exists an ERM algorithm for H̄
that is not a PAC learning algorithm for H.

The next theorem (also proved in Section D) shows that regardless of ERM, a partial concept
class may require that any learning algorithm that outputs total concepts must have a large image
(in the sense of VC dimension).

Theorem 6 There exists a partial concept class H with VC(H) = 1 such that any learning algo-
rithm A that only outputs total concepts must have image with infinite VC dimension.
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Algorithmic Principles That Complement ERM? Let us conclude this section with a suggestion
for future work: Explore for general algorithmic principles that apply in this more general setting
and complement the traditional ERM Principle. As noted above, while Theorem 3 asserts that
indeed every partial VC class is PAC learnable, our proof of it does not seem to give rise to a
general principle in the spirit of ERM.

2.4. The Landscape of Partial VC Classes

In this section we investigate basic properties of partial VC classes and their relationship with to-
tal classes. We begin by exhibiting two learning-theoretical differences between partial and total
classes: in the contexts of sample compression (Section 2.4.1) and differentially private learning
(Section 2.4.2). Then, in Section 2.4.3 we investigate the following question which is central to
this work: given a partial class H with VC dimension d, can one find a “small” class H̄ which
disambiguates H? We provide negative as well as positive results in this context.

2.4.1. SAMPLE COMPRESSION SCHEMES

Sample compression is a fundamental technique for proving generalization bounds. Littlestone and
Warmuth (1986b) proposed it as an intuitive, algorithm-dependent, technique for establishing PAC
learnability of concept classes of interest. Later works have demonstrated its usefulness in vari-
ous statistical learning settings, including semi-supervised and even unsupervised learning (Grae-
pel, Herbrich, and Shawe-Taylor, 2005; Wiener, Hanneke, and El-Yaniv, 2015; David, Moran, and
Yehudayoff, 2016; Kontorovich, Sabato, and Weiss, 2017; Gottlieb, Kontorovich, and Nisnevitch,
2018; Hanneke, Kontorovich, and Sadigurschi, 2019; Ashtiani, Ben-David, Harvey, Liaw, Mehra-
bian, and Plan, 2020). In fact, David, Moran, and Yehudayoff (2016) established that this technique
is in a sense universal by proving that learnability is equivalent to compressibility in a general and
abstract learning setting.

A sample compression scheme can be seen as a protocol between a compressor κ and a recon-
structor ρ (see Figure 1): the compressor gets the input sample S, from which she picks a small
subsample S′. The compressor sends to the reconstructor the subsample S′, along with a short bi-
nary string B of additional information: i.e., (S′, B) = κ(S). The reconstructor then, based on S′

and B, outputs a concept h = ρ(S′, B). For a given partial concept class H, we say (κ, ρ) is a com-
pression scheme for H if, for all finite data sequences S realizable w.r.t. H, the above h = ρ(κ(S))
returned by the reconstructor is correct on the entire sample S (including the examples in S that
were not sent to the reconstructor). The size of the compression scheme on S is defined to be
|B| + |S′|; the size of the compression scheme for a given sample size m is the maximum size
|B|+ |S′| over all S ∈ (X ×{0, 1})m. The formal definition is given in Section A in Definition 29.

A classical example of an algorithm that can be presented as a compression scheme is the Sup-
port Vector Machine algorithm in Rd. Here, the compressor sends to the reconstructor the d + 1
support vectors which determine the maximum margin separating hyperplane (see Figure 2).

Warmuth’s $600 Sample Compression Question. Sample compression is the topic of one of the
longest-standing and most well-studied open problems in learning theory:

Does every concept class H have a compression scheme of size O(VC(H))?
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A pictorial definition of a sample compression scheme

ReconstructorCompressor S′, B

S

input sample
h

output hypothesis

Figure 1: S′ is a subsample of S and B is a binary string of additional information.

Support Vector Machine as a sample compression

Figure 2: The input sample S consists of all red and blue points; the separating hyperplane with maximum
margin is determined by the subsample of the d+1 support points. Thus, the compression scheme
uses only these points.



2 RESULTS 8

This question has been studied since the pioneering work by Littlestone and Warmuth (1986b), and
later Warmuth (2003) even announced a $600 reward for solving it! For a discussion of this question
in a broader context, we refer the reader to the book by Wigderson (2019).

It is therefore interesting to explore sample compression schemes in the setting of partial concept
classes. Perhaps surprisingly, it turns out that in this context the answer to the sample compression
question is negative (in a strong sense). On the positive side, we show that every partial VC class
has a compression scheme whose size scales logarithmically with the input sample size:

Theorem 7 (Sample Compression for Partial Concept Classes)

1. Let H be a partial concept class. Then, there exists a sample compression scheme for H of
size Õ(VC(H) log(m)), where m is the size of the input sample.

2. There exists a partial concept class H with VC(H) = 1 such that any sample compression
scheme for H must have size Ω((log(m))1−o(1)), where m is the size of the input sample,
and the o(1) term vanishes as m → ∞. In particular, the bounded-size sample compression
conjecture is false for partial concept classes.

The proof of this result is in Section D. Theorem 7 demonstrates a stark difference between total
and partial VC classes: Moran and Yehudayoff (2016) proved that every total VC class has a sample
compression scheme whose size is bounded by a function of the VC dimension. By Item 2 above,
this result does not extend to partial VC classes, even with VC dimension one.

2.4.2. LITTLESTONE DIMENSION VS PRIVATE LEARNING

Differentially private PAC learning is an additional setting which demonstrates a curious difference
between partial classes and total classes.

Differential privacy (DP) (Dwork, McSherry, Nissim, and Smith, 2006) is a sound theoretical
approach to reason about privacy in a precise and quantifiable fashion. It has become the gold
standard of statistical data privacy (Dwork and Roth, 2014) and been implemented in practice, no-
tably by Google (Erlingsson, Pihur, and Korolova, 2014), Apple (app, 2016a,b), and in the 2020 US
census (Dajani, Lauger, Singer, Kifer, Reiter, Machanava-jjhala, Garfinkel, Dahl, Graham, Karwa,
Kim, Lelerc, Schmutte, Sexton, Vilhuber, and Abowd).

A recent line of work revealed a qualitative characterization of DP-learnability in the PAC
model: A total concept class H can be PAC learned by a DP-algorithm if and only if its Littlestone
dimension LD(H) is finite (Alon, Livni, Malliaris, and Moran, 2019; Gonen, Hazan, and Moran,
2019; Bun, Livni, and Moran, 2020; Ghazi, Golowich, Kumar, and Manurangsi, 2020). (The Lit-
tlestone dimension is a combinatorial parameter which arises in the context of online learning, see
Section A for a formal definition.) It is therefore natural to ask whether this characterization extends
to partial concept classes:

Open Question 1 (Private PAC Learnability) Does the characterization of differentially private
PAC learning extend to partial classes?: Let H be a partial class. Is it the case that H is PAC
learnable by a differentially private algorithm if and only if it has a finite Littlestone dimension?

Despite the fact that natural partial classes with finite Littlestone dimension are known to be DP
learnable (e.g. halfspaces with margin (Nguyen, Ullman, and Zakynthinou, 2020)), it is not clear
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how to generally prove either of the implications “LD(H) < ∞ =⇒ H is DP-learnable” or “H is
DP-learnable =⇒ LD(H) <∞”.

The known proofs of the direction “LD(H) < ∞ =⇒ H is DP-learnable” for total concept
classes (Bun, Livni, and Moran, 2020; Ghazi, Golowich, Kumar, and Manurangsi, 2020) utilize
(among other things) the ERM principle and uniform convergence which, as discussed earlier, is
not satisfied by partial concept classes.

As for the direction “LD(H) =∞ =⇒ H is not DP-learnable ”, the very first step of the proof
by Alon, Livni, Malliaris, and Moran (2019) fails for partial classes: the proof proceeds by first
reducing an arbitrary class with an unbounded Littlestone dimension to the class of one-dimensional
thresholds, and then proving that one-dimensional thresholds are not privately PAC learnable.

The reduction to one-dimensional thresholds boils down to a combinatorial parameter called the
threshold dimension: the threshold dimension of a class H, denoted by TD(H), is the maximum
integer d for which there exist x1, . . . , xd ∈ X and h1, . . . hd ∈ H such that hi(xj) = 1[i ≤ j].
For total concept classes H it is known3 TD(H) ≥ blog(LD(H))c; this essentially implies that any
class with a large Littlestone dimension contains a large subclass of thresholds. Interestingly, this
relation fails to extend to partial classes, as shown in the next theorem (proved in Section D):

Theorem 8 There exists a partial concept class H with TD(H) ≤ 2 but LD(H) =∞.

2.4.3. DISAMBIGUATIONS

We next present one of the main focuses of this work which concerns the following questions: Can
partial VC classes be represented by total VC classes? Relatedly, can one reduce the task of learning
a given partial VC class to the task of learning a total VC class? We begin with the following central
definition of disambiguation:

Definition 9 (Disambiguation) A total concept class H̄ is a special type of partial concept class
such that every h ∈ H̄ has range {0, 1}: i.e., is a total concept. A total concept class H̄ ⊆ {0, 1}X
is said to disambiguate a partial concept class H if every finite data sequence S ∈ (X × {0, 1})∗
realizable w.r.t. H is also realizable w.r.t. H̄. In this case, H̄ is called a disambiguation of H.

Note the difference between Definition 9 and the definition used in Theorem 1: the latter poses
a stricter requirement, namely that each partial concept in H is extended by some total concept in H̄.
We note that the two definitions are equivalent when X is finite (more generally, when supp(h) is
finite for every h ∈ H), and are essentially equivalent when X is countable.4

Definition 9 is more suitable in the context of learning because it suffices to guarantee that every
PAC learner for H̄ is a PAC learner for H, and hence reduces the task of PAC learning the partial
class H to PAC learning the total class H̄. One could further relax Definition 9 by allowing errors
and by only requiring to disambiguate short samples, in a way that implies that a learner for H̄ is
a weak learner for H. However, the next proposition implies that such relaxations are essentially
equivalent to Definition 9.

3. It is also known that LD(H) ≥ blog(TD(H))c, but this inequality extends also to partial classes with the same proof
(see Alon, Livni, Malliaris, and Moran (2019)).

4. In the sense that whenever H can be disambiguated according to the weaker definition by H̄ then it can also be
disambiguated according to the stronger definition by H̄′ such that VC(H̄) = VC(H̄′).



2 RESULTS 10

Proposition 10 (Approximate Disambiguation =⇒ Disambiguation) Let H be a partial class
and let γ > 0. Assume that there exists a total class H̄ with VC(H̄) = d that “weakly disam-
biguates” H in the following sense: for every sample S = {(xi, yi)}ni=1 realizable by H of size
|S| = n = O( d

γ2
) there exists h̄ ∈ H̄ such that

êrS(h̄) :=
1

n

n∑
i=1

1[h̄(xi) 6= yi] ≤
1− γ

2
.

Then, H can be disambiguated (in the sense of Definition 9) by a total class whose VC-dimension is
at most Õ(d·d

?

γ2
), where d? ≤ 2d+1 is the dual VC dimension of H̄.

Proposition 10 might be viewed as a kind of compactness theorem; for example, it implies that in
order to disambiguate H it suffices to represent only the samples realizable by H of size at most
100d by a total class H̄ with VC(H̄) = d. The proofs of all the results in this subsection appear in
Section B.

The following result demonstrates a one-dimensional class which cannot be disambiguated
while retaining a bounded VC dimension.

Theorem 11 (A VC Class Which Cannot be Disambiguated) For any n ∈ N there exists a par-
tial concept class Hn ⊆ {0, 1, ?}[n] with VC(Hn) = 1 and TD(Hn) ≤ 2 such that any disam-
biguation H̄ of Hn has size at least n(log(n))1−o(1)

, where the o(1) term tends to 0 as n → ∞. In
particular, this implies LD(H̄) ≥ VC(H̄) ≥ (log(n))1−o(1), and shows that for infinite X there
exists H∞ ⊆ {0, 1, ?}X with VC(H∞) = 1 and TD(H∞) ≤ 2, while LD(H̄) = VC(H̄) = ∞ for
every disambiguation H̄ of H∞.

Below, in Theorem 12 we show that the bound in Theorem 11 is nearly tight. Theorem 11 resolves,
in a strong negative sense, an open problem presented by Attias, Kontorovich, and Mansour (2019),
which sought a disambiguation whose VC dimension is bounded by a (linear) function of VC(H).
Further, Theorem 11 is our workhorse for proving the impossibility results discussed in the previous
sections regarding expressivity (Theorem 1) the failure of the ERM principle (Theorem 5), the image
of any learning algorithm (Theorem 6), sample compression schemes (Theorem 7), and private PAC
learning (Theorem 8).

Interestingly, its proof hinges on a recent breakthrough in communication complexity and its
implications in graph theory: Göös (2015); Ben-David, Hatami, and Tal (2017); Balodis, Ben-
David, Göös, Jain, and Kothari (2021). Despite the advantage that our proof of Theorem 11 is short
and simple, it unfortunately provides only little insight on the structure of the concluded class H.
In part, this is due to the complexity of the relevant result in graph theory, which is obtained by a
series of reductions, some of which are unintuitive. It will be interesting to exhibit a natural partial
VC class which demonstrates this separation. Towards this end, we propose a geometric candidate
in Section 3.1.

A Sauer-Shelah-Perles Lemma for Partial VC Classes? So far we discussed several differences
between partial and total VC classes. All of these differences boil down to Theorem 11. We next
investigate which properties of total VC classes are retained by partial classes.

Arguably the most basic property of VC classes is manifested by the Sauer-Shelah-Perles Lemma
(SSP) (Sauer, 1972). This lemma bounds the cardinality of a class H ⊆ {0, 1}n with VC(H) = d
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by

|H| ≤
(
n

≤ d

)
.

Is there an analogue of the SSP Lemma for partial classes? An immediate and direct generalization
of it to partial classes would be that |H| ≤

(
n

≤VC(H)

)
for every partial class H ⊆ {0, 1, ?}X . However

it is easy to see that this is false, as witnessed e.g. by the class H = {0, ?}n which satisfies VC(H) =
0 and |H| = 2n. A more mature candidate for extending the SSP Lemma to partial classes is via
disambiguations:

Can every H ⊆ {0, 1, ?}n be disambiguated by a total class H̄ ⊆ {0, 1}n such that
|H̄| ≤

(
n

≤VC(H)

)
?

Indeed, the above class H = {0, ?}n is disambiguated by H̄ = {0n} which satisfies this inequality.
Unfortunately, Theorem 11 also refutes this version: it demonstrates a one-dimensional class such
that every disambiguating class has size which is at least a quasipolynomial in n. On the positive
side, it turns out that Theorem 11 is the only obstacle for this version in the sense that relaxing the
polynomial bound to a quasipolynomial one works:

Theorem 12 (Quasipolynomial Sauer-Shelah-Perles Lemma) Let H be a partial concept class
on a finite X with VC(H) = d. Then there exists a disambiguation H̄ of H of size

|H̄| = |X |O(d log(|X |)).

Like the SSP Lemma, also Theorem 12 yields a dichotomy for partial classes: for every partial
class H ⊆ {0, 1, ?}X , either there are arbitrarily large finite X ′ ⊆ X of size n such that any
disambiguation H̄ of H|X ′ has size

|H̄| = 2n,

or there exists a polynomial poly such that for every finite X ′ ⊆ X of size n there exists a disam-
biguation H̄ of H|X ′ whose size

|H̄| ≤ poly(nlog(n)).

Note that in the latter case, the disambiguation H̄ depends on X ′. Further, Theorem 11 implies that
such dependence is, in general, necessary; that is, there cannot be a single universal disambiguation
H̄ of H satisfying |H̄|X ′ | = o(2n) for all finite X ′ ⊆ X , where n = |X ′|. Indeed, such an H̄ would
have a finite VC dimension, which would contradict Theorem 11. Nevertheless, the next result (of
which Theorem 12 is a corollary) shows that it is possible to (strongly) disambiguate any partial VC
class H while maintaining a quasipolynomial bound on the growth function for initial finite subsets
X ′ ⊆ X :

Theorem 13 Let X = N = {1, 2, . . .} and let H be a partial concept class on X with VC(H) =
d <∞. Then there exists a strong disambiguation H̄ of H, so that for every finite m, the projection
of H̄ on [m] has size at most (m+ 1)(d+1) log2(m)+2 = mO(d log(m)).

This result is new; however, after expressing it to others in personal communications, it has
recently been applied in the work of Attias, Kontorovich, and Mansour (2021) in order to prove a
bound on the fat-shattering dimension of k-fold maxima of real valued function classes.

Let us conclude this discussion about disambiguations and the SSP Lemma with a question:
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Open Question 2 (Polynomial Growth =⇒ Disambiguation?) Let H ⊆ {0, 1, ?}X and assume
there exists a polynomial poly such that for every finite X ′ ⊆ X there exists a disambiguation H̄ of
H|X ′ of size |H̄| ≤ poly(n), where n = |X ′|. Does there exist a disambiguation H̄ of H such that
VC(H̄) <∞?

We next discuss two techniques for disambiguating which will be useful in our proofs.

Disambiguating by Sample-Compression. Sample compression schemes naturally imply dis-
ambiguations: indeed, consider a partial concept class H ⊆ {0, 1, ?}X over a finite domain of size
|X | = n, and assume we are given a sample compression scheme for H of size k. Therefore, for
any partial concept h ∈ H there exist x1, . . . , xk ∈ supp(h) such that h is extended by the total
concept

h̄ = ρ
(

(xi, h(xi))
k
i=1, B

)
,

where ρ is the reconstruction function of the compression scheme, and B is a bit-string of side
information of length at most k. In particular, by applying ρ on all such sequences of length at most
k and all such bit-strings B, we obtain a disambiguation of H of size nO(k). This is summarized in
the following proposition:

Proposition 14 For any finite X and any partial concept class H, if H has a compression scheme
of size k, there exists a disambiguation H̄ of H of size at most (c|X |/k)k for a numerical constant c.

Disambiguating by Majority-Votes. We conclude this section with highlighting one idea which
is used in the proofs of Theorems 12 and 13. Let H ⊆ {0, 1, ?}n be a partial class. Consider an
online learning setting in which an adversary picks a target partial concept h ∈ H, and then in each
round i = 1, . . . , n, the learner first guesses a label ŷi. Then, if i ∈ supp(h) and ŷi 6= h(i) then
the learner is given the correct value h(i). (Otherwise, if i /∈ supp(h) or ŷi = h(i) then the learner
gets no feedback.) Notice that a learner which makes at most k mistakes, in the worst case over all
h ∈ H, defines a disambiguation H̄ of H whose size |H̄| is at most

(
n
≤k
)
.

Our proofs follow by exhibiting a learner which makes at most O(VC(H) log(n)) mistakes.
This is done by considering a kind of majority-vote using the family of sets which are shattered by
H. We refer the reader to Section B for more details.

2.5. Online Learning

We conclude Section 2 with a characterization of online learnability. The following theorem shows
that the Littlestone dimension retains its role of characterzing online learnability. See Section E
for a precise definition of the online learning setting, in both the realizable (mistake-bound) case
and the agnostic (regret-bound) case, along with the formal proof, and more-detailed quantitative
results.

Theorem 15 The following statements are equivalent for a partial concept class H ⊆ {0, 1, ?}X .

• LD(H) <∞.

• H is online learnable in the realizable (mistake-bound) setting.

• H is online learnable in the agnostic (regret-bound) setting.
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Like partial VC classes, also partial classes with finite Littlestone dimension (= Littlestone
classes) exhibit different behaviour from their total counterparts. One such example was discussed
in Section 2.4.2. However, our understanding of partial Littlestone classes is more limited. In
particular, we conclude with the following basic question:

Open Question 3 Let H be a partial class with LD(H) < ∞. Does there exist a disambiguation
of H by a total class H̄ such that LD(H̄) <∞? Is there one with VC(H̄) <∞?

We remark that if the answer to Open Question 2 is affirmative, then so is the answer to the
second part (about VC dimension) of Open Question 3. This follows because Littlestone classes
can be disambiguated using the SOA algorithm (see Appendix E).

3. Three Examples and Two Open Questions

We next present three examples of partial concept classes which capture the well-studied learning
tasks corresponding to linear classification with margin guarantees, boosting, and general classifiers
with margin. We also pose two open problems regarding disambiguating these classes.

3.1. Geometric Margin

We next demonstrate the expressivity of partial concepts by presenting the classical results regarding
learnability of linear classifiers with margin as the PAC learnability of a partial concept class. Since
this basic result cannot be expressed as the PAC learnability of a natural (total) concept class, its
presentation in introductory classes to machine learning usually deviates from the classical PAC
learning theory. Thus, this demonstrates a possible didactic value of the theory of partial concept
classes.

Let V be a (possibly infinite dimensional) real Hilbert space, and let R, γ > 0 be the margin
parameters.

Definition 16 (Separability with Margin) A sample (x1, y1), . . . , (xn, yn) ∈ V ×{0, 1} is (R, γ)-
separable if:

1. there exists a ball B ⊆ V of radius R such that x1, . . . , xn ∈ B, and

2. the distance between the convex hull of {xi : yi = 1} and the convex hull of {xi : yi = 0} is
at least 2γ.

In other words, a sample is (R, γ)-separable, if the 0-labelled examples and 1-labelled examples
can be separated by a linear classifier with margin γ and all examples lie in a ball of radius R.

Let HR,γ denote the class

HR,γ :=
{
h ∈ {0, 1, ?}V :

(
∀x1, . . . , xn ∈ supp(h)

)
:

(x1, h(x1)), . . . , (xn, h(xn)) is (R, γ)-separable
}
.

The following proposition provides tight bounds on the VC dimension and the Littlestone di-
mension of HR,γ (in order to focus on the parameters R, γ and not on the dimension of V , we
assume that the latter is large, specifically dim(V ) ≥ R2/γ2). It is based on classical results con-
cerning linear classifiers with margin, dating back to Rosenblatt (1958).
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Proposition 17 For all γ,R > 0: VC(HR,γ) = Θ
(
R2

γ2

)
and LD(HR,γ) = Θ

(
R2

γ2

)
.

Proof Since VC ≤ LD, it suffices to show that

VC(HR,γ) = Ω

(
R2

γ2

)
and LD(HR,γ) = O

(
R2

γ2

)
.

The upper bound on LD(HR,γ) follows by the classical mistake-bound analysis of the Perceptron
algorithm (Rosenblatt, 1958), which implies that HR,γ is online learnable in the realizable setting

with at most O
(
R2

γ2

)
mistakes, and therefore LD(HR,γ) = O

(
R2

γ2

)
.

To obtain a lower bound on VC(HR,γ), let e1, e2, . . . be an orthonormal basis for V , and consider
the set

C =

{
Rei : i ≤ R2

γ2

}
.

Note that C is shattered: indeed, C is contained in the ball of radius R centered at the origin, and
for every partition of {i : i ≤ R2/γ2} into two sets A,B, let w denote the vector

w =
γ

R

(∑
i∈A

ei −
∑
i∈B

ei

)
.

Note that ‖w‖2 = γ2

R2 (|A|+ |B|) ≤ 1 and that w ·Rei = γ for i ∈ A and w ·Rei = −γ for i ∈ B.
Thus, w witnesses that the distance between the convex-hull of {Rei : i ∈ A} and the convex-hull
of {Rei : i ∈ B} is ≥ 2γ.

We conclude this example with an open question: Can learnability of linear classifiers under
margin assumptions be modeled by the PAC learnability of a total concept class?

Open Question 4 Does there exist a disambiguation of HR,γ by a total class H̄ ⊆ {0, 1}V whose
VC/Littlestone dimensions are bounded by a function of R, γ?

It seems plausible that the answer to this question is no: in particular, our attempts to find “natural”
(geometrically defined) disambiguations resulted with classes whose VC dimension depends on the
dimension of the underlying Hilbert space. Note that if the answer here is indeed negative, then so
is the answer to Open Questions 2 and 3.

3.2. Boosting

Boosting is a celebrated machine learning approach which is based on the idea of combining weak
and moderately inaccurate hypotheses to a strong and accurate one. The following example concerns
boosting under the assumption that the weak hypotheses belong to a class of bounded capacity. This
setting was explored in detail by Alon, Gonen, Hazan, and Moran (2020), and is inspired by the
common understanding that weak hypotheses are “rules-of-thumbs” from an “easy-to-learn class”.
(Schapire and Freund ’12, Shalev-Shwartz and Ben-David ’14.) Formally, it is assumed the class of
weak hypotheses has a bounded VC dimension.

One of the main goals addressed by Alon, Gonen, Hazan, and Moran (2020) is to characterize
which target concepts can be learned by boosting weak hypotheses from a given base-class B. As
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we will now demonstrate, the setting introduced by Alon, Gonen, Hazan, and Moran (2020) can be
naturally expressed by partial concept classes.

The starting point of Alon, Gonen, Hazan, and Moran (2020) is a reformulation of the weak
learnability assumption: Recall that the γ-weak learnability assumption asserts that if c : X →
{0, 1} is the target concept then, if the weak learner is given enough c-labeled examples drawn from
any input distribution over X , it will return an hypothesis which is γ-correlated with c. One can
rephrase the weak learnability assumption only in terms of B using the following notion:5

Definition 18 (γ-realizable samples (Alon, Gonen, Hazan, and Moran (2020))) LetB⊆{0,1}X
be the base-class and let γ ∈ (0, 1]. A sample S = ((x1, y1), . . . , (xn, yn)) is γ-realizable with re-
spect to B if for any probability distribution D over S there exists b ∈ B such that

Pr
(x,y)∼D

[b(x) 6= y] ≤ 1− γ
2

.

Note that for γ = 1 the notion of γ-realizability specializes to the classical notion of realizability
(i.e., consistency with the class). Also note that as γ → 0, the set of γ-realizable samples becomes
larger.

Using this notion one can describe the (partial) class of concepts which can be learned by boost-
ing γ-accurate hypotheses from B. We denote this class by Hγ and it is defined as follows:

Hγ =
{
h ∈ {0, 1, ?}X :

(
∀x1, . . . , xn ∈ supp(h)

)
:

(x1, h(x1)), . . . , (xn, h(xn)) is γ-realizable by B
}
.

Although Alon, Gonen, Hazan, and Moran (2020) lacked the terminology of partial concept
classes, they explicitly studied bounds on the VC dimension of Hγ (which they denoted by γ-VC
dimension). They provided the following upper bounds:

Theorem 19 (Alon, Gonen, Hazan, and Moran (2020)) Let B be a class with VC dimension d,
and let γ > 0. Then, the following upper bounds on VC(Hγ) hold:

VC(Hγ) = O

(
d

γ2
log(d/γ)

)
= Õ

( d
γ2

)
,

and

VC(Hγ) = Od

(
1

γ
2d
d+1

)
,

where Od(·) conceals a multiplicative constant that depends only on d.

Alon, Gonen, Hazan, and Moran (2020) further demonstrated base-classes B which imply tightness
in some ranges of the parameters γ, d. However, in general it remains open to establish tight bounds
on VC(Hγ) in both γ, d.

5. In fact, γ-realizability corresponds to the empirical weak learning assumption by Schapire and Freund (2012)[Chap-
ter 2.3.3]. The latter is a weakening of the standard weak PAC learning assumption which suffices to guarantee
generalization.
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A Disambiguation. In contrast with the previous example of linear classifiers, here we can prove
that there exists a disambiguation with a bounded VC dimension:

Theorem 20 (A Disambiguation) Let B be a class with VC dimension d, and let γ > 0. Then,
there exists a disambiguation of Hγ by a total concept class H̄γ , such that

VC
(
H̄γ

)
= Õ

(
d · d?

γ2

)
,

where d? ≤ 2d+1 is the dual VC dimension of B.

Proof Let k = O( d
?

γ2
). Define H̄γ to be the class of all majority-votes of k hypotheses from B. By

standard bounds on the VC dimension of composed classes we have VC(H̄γ) = Õ
(
d·d?
γ2

)
.

It remains to show that H̄γ disambiguates Hγ . This follows by a standard combination of a
Minimax argument and uniform convergence (a.k.a ε-approximation): let (x1, y1), . . . , (xn, yn) be
a sample realizable by Hγ . Thus, for every distribution D over {(xi, yi)}ni=1 there exists a weak-
hypothesis b ∈ B such that

Pr
(x,y)∼D

[b(x) 6= y] ≤ 1− γ
2

.

By the Minimax Theorem (von Neumann and Morgenstern, 1944), there exists a distribution P over
B such that (

∀(xi, yi)
)

: Pr
b∼P

[b(xi) 6= yi] ≤
1− γ

2
.

Thus, by the uniform convergence theorem (Vapnik and Chervonenkis, 1968) applied to the dual
class B?, it follows that with positive probability, the majority vote of a sequence of independently
drawn b1, . . . , bk ∼ P (where k = O( d

?

γ2
)) satisfies:(

∀(xi, yi)
)

:
(
Majority(b1, . . . , bk)

)
(xi) = yi,

as required.

Note that the dual VC dimension d? can be exponential in the VC dimension. Thus, the follow-
ing question remains:

Open Question 5 Let B be a class with VC dimension d, and let γ > 0. Does there exist a disam-
biguation of Hγ by a total class H̄ ⊆ {0, 1}X whose VC dimension is bounded by a polynomial in
d, γ−1?

3.3. General Separators with Margin

As a final example, we present an example of a partial concept class that can be disambiguated
without significantly increasing the VC dimension. Specifically, consider the case X = {x ∈ Rd :
‖x‖ ≤ 1} for d ∈ N, and for γ > 0 let Gd,γ be the set of all partial functions h : X → {0, 1, ?} with
min({‖x0 − x1‖ : x0, x1 ∈ X , h(x0) = 0, h(x1) = 1} ∪ {∞}) ≥ γ: that is, Gd,γ is the set of all
partial functions having a margin γ separation between all points labeled 0 and all points labeled 1.
This class effectively arises in many works (e.g., von Luxburg and Bousquet, 2004; Gottlieb, Kon-
torovich, and Nisnevitch, 2018), where it is typically expressed as a margin condition on a data set



3 THREE EXAMPLES AND TWO OPEN QUESTIONS 17

(or, equivalently, a Lipschitz constant for the smoothest real-valued function that fits the data). For
distributions P producing data sets satisfying this separation, there are immediate implications for
prediction error bounds for various simple neighborhood-based prediction algorithms such as the
nearest neighbor algorithm (e.g., Cover and Hart, 1967; Chaudhuri and Dasgupta, 2014; Urner and
Ben-David, 2013).

For this class Gd,γ , we first observe that its VC dimension is roughly γ−d. Specifically, let
Md(γ) be the γ-packing number of X : that is, the largest number m s.t there exist x1, . . . , xm ∈ X
with mini 6=j ‖xi − xj‖ ≥ γ. Then we have the following proposition.

Proposition 21 VC(Gd,γ) = Md(γ). In particular, there exist numerical constants c, C ∈ (0,∞)

such that
(
c
γ

)d
≤ VC(Gd,γ) ≤

(
C
γ

)d
.

Proof Let m = Md(γ). To show a lower bound on VC(Gd,γ), let x1, . . . , xm be any γ-packing
of X . Since any classification of these points has its closest 1 and 0 -labeled points at distance
≥ γ, it follows that x1, . . . , xm is shattered by Gd,γ ; indeed, Gd,γ contains 2m functions h with
supp(h) = {x1, . . . , xm} which witness the shattering. Thus, VC(Gd,γ) ≥ m. To show an up-
per bound, for n ∈ N and a sequence x1, . . . , xn, for (i∗, j∗) = argmin(i,j):i 6=j ‖xi − xj‖, if
‖xi∗ − xj∗‖ < γ, then for any y1, . . . , yn ∈ {0, 1} such that (x1, y1), . . . , (xn, yn) is realizable
w.r.t. Gd,γ , it must be that yi∗ = yj∗ , and hence x1, . . . , xn is not shattered by Gd,γ . Thus, ev-
ery shattered set is γ-separated. Since m is the maximum size of a γ-separated set, it follows that
VC(Gd,γ) ≤ m. The claimed inequalities in terms of c, C then follow from the well-known bounds
on Md(γ) (e.g., Szarek, 1998).

Next, we argue that, unlike the other two examples above, which seem unlikely to have disam-
biguations of similar VC dimension, the class Gd,γ does have a (strong) disambiguation with VC
dimension of comparable size.

Proposition 22 Gd,γ has a strong disambiguation Ḡd,γ with VC(Ḡd,γ) = Md(γ/2) ≤
(

2C
γ

)d
.

Proof Fix a maximum-size (γ/2)-packing S = {x1, . . . , xm} ofX , wherem = Md(γ/2). Let V =
{V1, . . . , Vm} be the Voronoi partition induced by S: that is, Vi = {x∈X : i = argmini′ ‖x− xi′‖}
(breaking ties in the argmin to favor smaller i′, so that V is indeed a partition of X ). Since S is of
maximum size, any x ∈ X has mini ‖x− xi‖ < γ/2. Thus, each Vi has diameter strictly less than
γ by the triangle inequality. For each y = (y1, . . . , ym) ∈ {0, 1}m, let h̄y(x) =

∑m
i=1 yi1[x ∈ Vi].

Finally, define Ḡd,γ = {h̄y : y ∈ {0, 1}m}.
To see that VC(Ḡd,γ) = Md(γ/2), note that the sequence x1, . . . , xm is shattered by Ḡd,γ ,

since each xi is the unique closest point to itself (as the other xi′ points are all γ/2-far); thus,
VC(Ḡd,γ) ≥ m. Moreover, since |Ḡd,γ | = 2m, it necessarily has VC(Ḡd,γ) ≤ m. The inequality,
upper bounding Md(γ/2), follows from the well-known bounds on packing numbers in bounded
subsets of a Euclidean space (e.g., Szarek, 1998).

To complete the proof, we argue that Ḡd,γ strongly disambiguates Gd,γ . Let h ∈ Gd,γ . Since
each Vi has diameter strictly less than γ, h can assume only one value on Vi ∩ supp(h). Choosing
that value as yi (or an arbitrary value if Vi ∩ supp(h) = ∅), we get a y = (y1, . . . , ym) such that
h̄y ∈ Ḡd,γ agrees with h on its support.
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4. Connections to Other Notions in the Literature

4.1. Data-Dependent Generalization Guarantees

In this section we describe how one can view data-dependent generalization bounds as Structural
Risk Minimization over partial concept classes.

Already in 1974, Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1974a) showed that
standard VC-dimension-based bounds can be significantly improved in the case of linear classifiers
that correctly classify the data with a large margin. More generally, data-dependent guarantees pro-
vide bounds on the generalization error of a classifier that can be computed using the same data that
was used to train the classifier (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998; Herbrich
and Williamson, 2002). This makes such bounds particularly appealing in the context of model
selection.6 Recently, data-dependent bounds have been used to study generalization in deep neu-
ral networks; see e.g. (Bartlett, Foster, and Telgarsky, 2017; Dziugaite and Roy, 2017; Neyshabur,
Bhojanapalli, McAllester, and Srebro, 2017; Dziugaite, Drouin, Neal, Rajkumar, Caballero, Wang,
Mitliagkas, and Roy, 2020a; Dziugaite, Hsu, Gharbieh, and Roy, 2020b).

Data-dependent analysis is often based on assumptions which cannot be modeled in the tra-
ditional PAC learning setting: namely, it cannot be expressed as the PAC learnability of a given
concept class. Consider for example the task of learning a high-dimensional linear classifier with
γ-margin on the unit ball; the distribution-free sample complexity of this task is proportional to
1/γ2, as witnessed e.g. by the classical Perceptron algorithm (Rosenblatt, 1958). However, note
that the hypotheses outputted by the Perceptron — namely the class of linear classifiers — has PAC
sample complexity (or VC dimension) that scales linearly with the Euclidean dimension, and can
therefore be arbitrarily larger than 1/γ2 and even infinite. To the best of our knowledge, the same
applies to all learning algorithms in this context. Thus, it seems that learnability of large-margin
linear classifiers cannot be expressed as the PAC learnability of a concept class. In any case, there is
certainly no simple and natural VC class of total concepts which disambiguates large-margin linear
classifiers.

Consequently, the general framework for data-dependent analysis deviated from the traditional
PAC setting (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998; Herbrich and Williamson,
2002). Technically, this is done by introducing a data-dependent “luckiness” function which in-
duces a (data-dependent) hierarchy of hypotheses (luckier hypotheses precede less lucky ones, as
we discuss in more detail below). For example, in the case of large margin linear classifiers, the
luckiness of each linear separator is its margin with respect to the input sample.

While the luckiness framework has been successfully applied in various contexts, it does not
yield a crisp notion of learnability in the spirit of PAC learning. Moreover, the general results in
this context require the luckiness function to satisfy rather arcane technical conditions and, while
these conditions suffice for proving bounds on a case-by-case basis in various situations, it is not
clear whether they are necessary in general.

Data-Dependent Generalization Guarantees via Partial Concept Classes. An attractive fea-
ture of partial concept classes is that they allow to express a variety of learning guarantees for
specific types of data as “standard” learning guarantees with respect to a partial concept class: for
example, the study of learning guarantees for linear classifiers with margin reduces to the PAC learn-
ability of the partial concept class HR,γ defined in Section 3.1. Furthermore, this framework leads

6. Namely, given two competing classifiers, prioritize the one for which the data-dependent bound is better.
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to a natural approach for proving data-dependent learning guarantees: i.e., bounds on erP (ĥn) that
do not require assumptions on P , but rather are expressed in terms of properties of the data set. This
can be achieved via a standard application of the principle of Structural Risk Minimization (SRM):
that is, rather than constructing a data-dependent hierarchy of total concept classes as considered
by (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998), we can establish data-dependent error
bounds based on a fixed and data-independent sequence of partial concept classes, so that we can
apply standard SRM arguments as in (Vapnik and Chervonenkis, 1974a,b; Vapnik, 1998).

Specifically, consider any sequence H1,H2, . . . of partial concept classes, and for each i let Ai
be a learning algorithm designed for the class Hi. For any data sequence S = {(xi, yi)}ni=1 in
X ×{0, 1}, define êrS(Hi) := minh∈Hi

1
|S|
∑

i 1[h(xi) 6= yi]. First we describe a realizable version
of SRM. For each i, suppose there is a bound Bi(n, δ) such that, for any P , for S ∼ Pn, with
probability at least 1− δ, if êrS(Hi) = 0, then erP (Ai(S)) ≤ Bi(n, δ). Then we can easily produce
a method with a corresponding data-dependent error bound: choose î of minimal Bî(n, δ/̂i(̂i+ 1))

subject to êrS(Hî) = 0 (if it exists), and output ĥ = Aî(S). The corresponding guarantee is that,
with probability at least 1− δ, if î exists, then

erP (ĥ) ≤ Bî(n, δ/̂i(̂i+ 1)).

This holds by a simple union bound, so that the Bi(n, δ/i(i + 1)) guarantees hold simultaneously
for all i with probability at least 1−

∑
i δ/i(i+ 1) = 1− δ. In Section C.2 (Lemma 43), we give a

general algorithm that can always achieve the type of guarantee for Ai required above, specifically
with

Bi(n, δ) = O

(
VC(Hi)

n
log2(n) +

1

n
log

(
1

δ

))
.

For instance, for the margin example in Section 3.1, since VC(HR,γ) = Θ
(
R2

γ2

)
(from Proposi-

tion 17), we can recover the data-dependent margin bounds of (Shawe-Taylor, Bartlett, Williamson,
and Anthony, 1998) by taking the classes Hi in the hierarchy as the partial concept classes HRi,γi for
an appropriate sequence of (Ri, γi): for instance, it suffices to define Ri = ji and γi = 1/ki, where
(ji, ki) is an enumeration of N2 satisfying i ≤ (ji+1)2(ki+1)2. Thus, with probability at least 1−δ,
if the data set S has x’s contained in a ball of radius R̂ and S is linearly separable with margin γ̂, then
we may choose the class HdR̂e,1/d1/γ̂e to recover the bound erP (ĥ) = O

(
R̂2

γ̂2
1
n log2(n) + 1

n log
(

1
δ

))
from (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998).

We can similarly derive a bound that does not require êrS(Hî) = 0, recovering the full spirit
of the SRM principle. Specifically, suppose that for each Hi, the learning algorithm Ai guarantees
that, for any P , for S ∼ Pn, with probability at least 1 − δ, erP (Ai(S)) ≤ êrS(Hi) + Bi(n, δ).
Then let us choose î to minimize êrS(Hî) + Bî(n, δ/̂i(̂i + 1)), and output ĥ = Aî(S). As above,
by the union bound, we have that with probability at least 1− δ,

erP (ĥ) ≤ êrS(Hî) +Bî(n, δ/̂i(̂i+ 1)).

Again, in Section C.2 (Lemma 43), we propose a general algorithm Ai that can provide guarantees
as required above with

Bi(n, δ) = O

(√
VC(Hi)

n
log2(n) +

1

n
log

(
1

δ

))
.
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We can also extend this to capture both cases, by supposing Ai has the guarantee that, for
any P , for S ∼ Pn, with probability at least 1 − δ, erP (Ai(S)) ≤ êrS(Hi) + Bi(êrS(Hi), n, δ).
Choosing î to minimize êrS(Hî) + Bî(êrS(Hî), n, δ/̂i(̂i + 1)) and outputting ĥ = Aî(S), we get
that with probability at least 1 − δ, erP (ĥ) ≤ êrS(Hî) + Bî(êrS(Hî), n, δ/̂i(̂i + 1)). In particular,
in Section C.2 (Lemma 43), we propose a general algorithm Ai that provides a guarantee Bi as
required above, with

Bi(ε̂, n, δ) = O

(√
ε̂

(
VC(Hi)

n
log2(n) +

1

n
log

(
1

δ

))
+

VC(Hi)

n
log2(n) +

1

n
log

(
1

δ

))
.

Comparison to SRM with Data-dependent Hierarchies. The SRM framework by Shawe-Taylor,
Bartlett, Williamson, and Anthony (1998) is based on a data-dependent regularization function
which they call luckiness: let H be a total concept class, and let m denote any input-sample
size. A luckiness function is a mapping L : Xm × H → R+ which, given an input sample S =
{(xi, yi)}i≤m, assigns to each hypothesis h ∈ H a real number L(x1, . . . , xm;h) which measures
its “luckiness”. The intuition is that when choosing between two competing concepts with equal
empirical error rate on the data, we should prefer the one with a larger value of L(x1, . . . , xm; ·).
For example, in the context of linear classification with margin (on a bounded space), the luckiness
function L(x1, . . . , xm;h) assigns to each linear classifier its margin with respect to x1, . . . , xm.

While a complete formal comparison of the two frameworks is beyond the scope of this work,
we note that nearly all of the essential features of the data-dependent SRM framework of (Shawe-
Taylor, Bartlett, Williamson, and Anthony, 1998) can be captured and generalized by the present
framework of SRM with data-independent hierarchies of partial concept classes.

Let us call a luckiness function L projective if, for any x1, . . . , xn and h ∈ H, every m ∈ N
and i1, . . . , im ∈ [n] satisfy L(xi1 , . . . , xim , h) ≥ L(x1, . . . , xn, h). All of the examples of luck-
iness functions given by (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998) are projective
(including the margin example), and it is not hard to see that one can convert any luckiness func-
tion into a projective one by defining L′(x1, . . . , xn, h) = minm mini1,...,im L(xi1 , . . . , xim , h).
Given any projective luckiness function L, we can construct a hierarchy of partial concept classes
H1 ⊆ H2 ⊆ · · · as follows. For r > 0, we say that a partial concept h : X → {0, 1, ?} is r-lucky
if there exists a total concept h′ ∈ H such that h(x) = h′(x) for all x ∈ supp(h) (i.e., h′ extends
h), and L(x;h′) ≥ r for every x ∈ (supp(h))∗. Let H̃r denote the class of all r-lucky partial
concepts.7 Note that H̃r : r ∈ R+ is a hierarchy of partial concept classes (i.e., H̃r ⊇ H̃s for r ≤ s).
Moreover, for any given r and data sequence S = {(x1, y1), . . . , (xm, ym)} ∈ (X × {0, 1})m, S
is realizable w.r.t. the data-dependent total concept class {h ∈ H : L(x1, . . . , xm;h) ≥ r} if and
only if S is realizable w.r.t. the partial concept class H̃r. Thus, the data-independent hierarchy H̃r

captures the essential information given by the luckiness function. Moreover, the rather-complex
technical requirements on L imposed by (Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998)
imply, in particular, a bound on the VC dimension of the partial concept classes H̃r.8 Thus, we can
recover the types of data-dependent error bounds provided by (Shawe-Taylor, Bartlett, Williamson,

7. For measurability, it may be desirable to restrict to only those h with finite support. This does not affect the validity
of the claims.

8. Technically, the assumption in Shawe-Taylor, Bartlett, Williamson, and Anthony (1998) bounds the effective VC
dimension of H̃r: i.e., the VC dimension w.r.t. typical samples; but also all other results discussed here apply under
this assumption.
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and Anthony, 1998) using the above SRM technique with partial concept classes Hi = H̃ri , for a
suitable discretization r1 ≥ r2 ≥ · · · (e.g., chosen so that VC(Hi) = i). On the other hand, our
framework allows us to use SRM with any sequence of partial concept classes, including those not
induced by a luckiness function on a class of total concepts.

4.2. Multiclass Classification

One basic question that immediately arises when considering partial concepts is how this setting
differs from the 3-label multiclass classification problem (Ben-David, Cesa-Bianchi, Haussler, and
Long, 1995). In both cases, there is a class H of functions X → {0, 1, ?}. The only distinction is
in the definition of PAC learning, where the multiclass setting would allow distributions P on X ×
{0, 1, ?}, whereas the setting of partial concepts restricts to distributions supported on X × {0, 1}.
That is, a distribution P on X × {0, 1, ?} is realizable w.r.t. H in the 3-label multiclass setting if
infh∈H P ({(x, y) : h(x) 6= y}) = 0, and otherwise the definition of PAC learnability remains the
same as in Definition 2.

As it turns out, any partial concept class H that is PAC learnable in the 3-label multiclass setting
is also PAC learnable in the partial concepts setting. However, there are simple examples where the
reverse implication fails. A simple example of this is the class H of all functions N → {0, 1, ?}
whose image is {0, ?}. Generally, we can relate learnability in these two settings by considering the
VC dimension of the supports of the partial concepts, as shown in the following simple result.

Proposition 23 Let H be a class of functions X → {0, 1, ?}. The following are equivalent.

1. H is PAC learnable in the 3-label multiclass settting.

2. H is PAC learnable in the partial concepts setting and VC({supp(h) : h ∈ H}) <∞.

Proof PAC learnability in the 3-label multiclass setting is known to be completely characterized
by a family of combinatorial complexity measures (Ben-David, Cesa-Bianchi, Haussler, and Long,
1995). In particular, the Graph dimension is defined as dG := suph0 VC({x 7→ 1[h(x) = h0(x)] :
h ∈ H}), where h0 ranges over all functions X → {0, 1, ?}. Another complexity measure, known
as the Natarajan dimension (Natarajan, 1989), denoted dN , is defined as the largest d such that
there exist (x1, y

(0)
1 , y

(1)
1 ), . . . , (xd, y

(0)
d , y

(1)
d ) ∈ X × {0, 1, ?}2 with y

(0)
i 6= y

(1)
i for all i, and

with the property that ∀b1, . . . , bd ∈ {0, 1}, ∃h ∈ H with ∀i ≤ d, h(xi) = y
(bi)
i . In the case of

3-label multiclass classification, Ben-David, Cesa-Bianchi, Haussler, and Long (1995) show that
dN ≤ dG ≤ cdN for a finite numerical constant c. Moreover, Natarajan (1989); Ben-David, Cesa-
Bianchi, Haussler, and Long (1995) have shown that H is PAC learnable in the 3-label multiclass
setting if and only if dN <∞.

In particular, note that VC(H) is merely the quantity resulting from restricting each y(0)
i = 0

and y(1)
i = 1 in the definition of Natarajan dimension, so that we always have dN ≥ VC(H). Thus,

any H that is PAC learnable in the 3-label multiclass setting has VC(H) <∞, so that our Theorem 3
implies H is also PAC learnable in the partial concepts setting. Moreover, note that for any sequence
x1, . . . , xd shattered by {supp(h) : h ∈ H}, if we take h0 : X → {0, 1, ?} as any function equal
? on all of x1, . . . , xd, then this sequence is also shattered by {x 7→ 1[h(x) = h0(x)] : h ∈ H}.
Therefore, dG ≥ VC({supp(h) : h ∈ H}), so that if H is PAC learnable in the 3-label multiclass
setting, then VC({supp(h) : h ∈ H}) <∞.
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In the other direction, let (x1, y
(0)
1 , y

(1)
1 ), . . . , (xd, y

(0)
d , y

(1)
d ) be as in the definition of dN . Then

{xi : ? /∈ {y(0)
i , y

(1)
i }} is shattered by the partial concept class H, while {xi : ? ∈ {y(0)

i , y
(1)
i }} is

shattered by {supp(h) : h ∈ H}. Therefore, we have dN ≤ VC(H) + VC({supp(h) : h ∈ H}).
Thus, since any H that is PAC learnable in the partial concepts setting must have VC(H) < ∞ (by
our Theorem 3), we find that if VC({supp(h) : h ∈ H}) <∞ as well, then dN <∞, and hence H
is also PAC learnable in the 3-label multiclass setting.

The comparison to 3-label multiclass classification yields some further interesting observations.
For instance, one can show that Proposition 23 also implies that, when VC({supp(h) : h ∈ H}) <
∞, the ERM principle does hold for learning in the partial concepts setting.9 This contrasts with the
discussion above where we found that ERM learners can fail spectacularly for some partial concept
classes with VC(H) <∞ (cf Proposition 4).

Moreover, this connection to multiclass classification has a further implication for disambigua-
tion. Specifically, we have the following result.

Proposition 24 Any partial concept class H can be strongly disambiguated to a total concept class
H̄ with VC(H̄) = O(VC(H) + VC({supp(h) : h ∈ H})).

Proof Define H̄ = {x 7→ 1[h(x) = 1] : h ∈ H}. Continuing the notation introduced in the proof
of Proposition 23, we have VC(H̄) ≤ dG = O(dN ) (where the last equality is from Ben-David,
Cesa-Bianchi, Haussler, and Long, 1995, in this case of 3-class multiclass classification). Then, as
established in the proof of Proposition 23, we have dN ≤ VC(H)+VC({supp(h) : h ∈ H}), which
completes the proof.

In particular, this means that if H is a PAC learnable partial concept class, and VC({supp(h) :
h ∈ H}) < ∞, then it can be disambiguated to a learnable total concept class. This contrasts with
the general case discussed in the sections above, where we found that there exist learnable partial
concept classes H that cannot be disambiguated to learnable total concept classes (see Theorems 1
and 11).

Another property enjoyed by classes H that are PAC learnable in the 3-label multiclass setting
is that they satisfy closure properties. Specifically, for any finite k and classes H1, . . . ,Hk that are
PAC learnable in the 3-label multiclass setting, and any function U : {0, 1, ?}k → {0, 1, ?}, the
class {x 7→ U(h1(x), . . . , hk(x)) : ∀i, hi ∈ Hi} is also learnable in the 3-label multiclass setting.
Together with Proposition 23, we may conclude that, for any partial concept classes H1, . . . ,Hk with
VC(Hi) <∞ and VC({supp(h) : h ∈ Hi}) <∞, and for any function U : {0, 1, ?}k → {0, 1, ?},
the partial concept class {x 7→ U(h1(x), . . . , hk(x)) : ∀i, hi ∈ Hi} is PAC learnable in the partial
concepts setting. Interestingly, this property is not true for general partial concept classes, with
unrestricted supports. Specifically, we have the following result.

Proposition 25 Define the 2-argument majority function U : if 1 ∈ {y, y′} ⊆ {1, ?}, let U(y, y′) =
1; if 0 ∈ {y, y′} ⊆ {0, ?}, let U(y, y′) = 0; otherwise let U(y, y′) = ?. If |X | = ∞, there exist

9. This follows from the fact that, with VC(H) < ∞ and VC({supp(h) : h ∈ H}) < ∞, we have a Sauer-Shelah-
Perles type bound on the total number of {0, 1, ?} patterns possible on any data set, from which uniform convergence
guarantees follow for the losses.
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partial concept classes H1,H2 with VC(H1) = VC(H2) = 0 such that VC({x 7→ U(h1(x), h2(x)) :
h1 ∈ H1, h2 ∈ H2}) =∞.

Proof Take H1 as the set of all functions with image contained in {0, ?}, and H2 the set of all
functions with image contained in {1, ?}. For any d ∈ N and any distinct x1, . . . , xd ∈ X , for any
y1, . . . , yd ∈ {0, 1}, take h1 ∈ H1 with 1[h1(xi) = 0] = 1[yi = 0] for all i, and h2 ∈ H2 with
1[h2(xi) = 1] = 1[yi = 1] for all i. In particular, note that supp(h1)∩{x1, . . . , xd} and supp(h2)∩
{x1, . . . , xd} are disjoint, and their union is {x1, . . . , xd}. Moreover, U(h1(xi), h2(xi)) = yi for
all i. Thus, the sequence x1, . . . , xd is shattered by {x 7→ U(h1(x), h2(x)) : h1 ∈ H1, h2 ∈ H2}.
Since d can be chosen arbitrarily large, this completes the proof.

In fact, one can even show such a negative result for functions U having a single argument: that
is, U : {0, 1, ?} → {0, 1, ?}. For instance, taking U(y) = 1[y = 1], the class {x 7→ U(h(x)) : h ∈
H} represents a strong disambiguation of H, so that Theorem 1 indicates that, even if H is learnable,
it can happen that the class {x 7→ U(h(x)) : h ∈ H} is not learnable.

Appendix A. Formal Definitions of Complexity Measures

Before getting into the detailed results and proofs, we first elaborate on the definitions of the com-
binatorial complexity measures appearing in our results. As mentioned in Section 2, when suitably
expressed, the complexity measures all inherit precisely the same definitions as for the traditional
setting of total concept classes. Nevertheless, for those readers not familiar with the original defini-
tions for total concept classes, we state the definitions here in full detail.

Definition 26 (Vapnik-Chervonenkis Dimension) For a partial concept class H, the VC dimen-
sion of H, denoted VC(H), is the maximum number d ∈ N ∪ {0} such that ∃x1, . . . , xd with
{(h(x1), . . . , h(xd)) : h ∈ H} ⊇ {0, 1}d. Such a sequence {x1, . . . , xd} is said to be shattered
by H. If there is no largest such d, then define VC(H) =∞.

Next we state the definition of the Littlestone dimension. Recall that a sequence of examples
(x1, y1), . . . , (xn, yn) ∈ X × {0, 1} is said to be realizable w.r.t. H if ∃h ∈ H with ∀i ≤ n,
h(xi) = yi.

Definition 27 (Littlestone dimension) For any partial concept class H, the Littlestone dimension
of H, denoted by LD(H), is the largest integer d such that there exists a set
{xy : y ∈

⋃
0≤i≤d−1{0, 1}i} ⊆ X with the property that, for every y1, . . . , yd ∈ {0, 1}, the

sequence
(x(), y1), (x(y1), y2), (x(y1,y2), y3), . . . , (x(y1,...,yd−1), yd)

is realizable w.r.t. H. In particular, if no x has more than one realizable label in {0, 1}, then
LD(H) = 0. On the other hand, if no such largest d exists, we define LD(H) =∞.

To interpret the definition, it is conventional to think of the xy points as being organized into
a binary tree based on the prefixes of y, where edges corresponding to a left branch are labeled 0
and edges corresponding to a right branch are labeled 1: that is, the bits of y determine whether to
branch left or right at each level along the path leading to the node xy. Then LD(H) is the maximum
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depth d of a complete tree of this type, such that all descending paths from the root correspond to
a sequence realizable w.r.t. H when each non-terminal node xy on the path is given the label of the
edge followed next in the path.

Next we restate the definition of the Threshold dimension:

Definition 28 (Threshold dimension) The Threshold dimension of a partial concept class H, de-
noted by TD(H), is the maximum integer d for which there exist x1, . . . , xd ∈ X and h1, . . . hd ∈ H
such that hi(xj) = 1[i ≤ j]. If no such largest d exists, define TD(H) =∞.

We conclude by restating the definition of compression scheme in formal detail. Specifically,
the following definition is originally due to Littlestone and Warmuth (1986a).

Definition 29 (Compression Scheme) A compression scheme is a pair (κ, ρ), consisting of a com-
pression function κ : (X × {0, 1})∗ → (X × {0, 1})∗ × {0, 1}∗ and a reconstruction function
ρ : (X × {0, 1})∗ × {0, 1}∗ → {0, 1}X , satisfying the following property. For any sequence
S ∈ (X × {0, 1})∗, κ(S) evaluates to some (S′, B) ∈ (X × {0, 1})∗ × {0, 1}∗ where S′ is a se-
quence of elements of S (possibly re-ordered, and possibly including copies, having length at most
|S|).10

The size of the compression scheme for a given sample size m is maxS∈(X×{0,1})m |κ(S)| (i.e.,
the length of the sequence S′ plus the number of bits in B), and the (unqualified) size of the com-
pression scheme is the maximum size over all m, or infinite if the size can be unbounded.

For any partial concept class H, a sample compression scheme for H is a compression scheme
(κ, ρ) with the additional property that, for every finite data sequence S realizable w.r.t. H, ρ(κ(S))
is correct on S: i.e., êrS(ρ(κ(S))) = 0.

The intention in the above definition is that ρ(κ(·)) is interpreted as a learning algorithm. For
brevity, we will sometimes leave off the bit sequence B, simply specifying κ : (X × {0, 1})∗ →
(X × {0, 1})∗ and ρ : (X × {0, 1})∗ → {0, 1}X , reflecting the special case where no extra bits are
ever output by the compression function.

Appendix B. Proofs of Disambiguation

Proof of Proposition 10 The proof is similar to that of Theorem 20. Let k = O(d?/γ2). Con-
sider the class H̄k of all k-wise majority votes of concepts from H̄. We will show that H̄k disam-
biguates H (note that by standard bounds on the variability of the VC dimension under composi-
tion/aggregation, we have that VC(H̄k) = Õ(VC(H̄) · k) = Õ(d·d

∗

γ2
), as required).

Let S be a sample realizable by H. We claim that for every distribution P over S there exists h̄ ∈
H̄ such that erP (h̄) ≤ 1−γ/2

2 . This will suffice, because then an application of the Minimax Theorem
yields a distribution Q over H̄ such that Prh̄∼Q[h̄(x) 6= y] ≤ 1−γ/2

2 for every (x, y) ∈ S. Then, an
application of the VC theorem (ε-approximation/uniform-convergence) to the dual class H̄? implies
that with positive probability, a random i.i.d sample h̄1, . . . , h̄k ∼ Q, where k = O(d?/γ2), will
satisfy that its majority vote realizes S entirely.

10. We also constrain (κ, ρ) to be such that, for any n ∈ N, ((x1, y1), . . . , (xn−1, yn−1), xn) 7→
ρ(κ((x1, y1), . . . , (xn−1, yn−1)))(xn) is a measurable function.
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Thus, it remains to show that for every distribution P over S there exists h̄ ∈ H̄ such that
erP (h̄) ≤ 1−γ/2

2 . Indeed, consider such a distribution P , and draw a random sample S′ of size
O(d/γ2) from P . By assumption, there must exist h̄ = h̄(S′) ∈ H̄ whose empirical loss on the sam-
ple satisfies êrS′(h̄) ≤ 1−γ

2 . By the VC theorem (again, ε-approximation/uniform-convergence), it
follows that with positive probability (over the generation of S′), we have that the population loss
satisfies

erP (h̄) ≤ êrS′(h̄) + γ/4 ≤ 1− γ/2
2

,

as required.

Proof of Theorem 11 Interestingly, our proof exploits a recent line of breakthroughs in complexity-
theory and combinatorics. For our purpose, it will be convenient to use the following combinatorial
formulation of these results, which provides a nearly tight bound to a question posed by Alon,
Saks, and Seymour (for background on this question, see the survey by Bousquet, Lagoutte, and
Thomassé (2014)). Let G = (V,E) be a simple graph. Recall that the chromatic number of G,
denoted by χ(G), is the minimum k for which there exists a coloring c : V → [k] such that every
edge {u, v} ∈ E satisfies c(u) 6= c(v). The biclique partition number of G, denoted bp(G) is the
minimum number of complete bipartite graphs needed to partition the edge set ofG. The next result
follows from a recent line of works by Göös (2015); Ben-David, Hatami, and Tal (2017); Balodis,
Ben-David, Göös, Jain, and Kothari (2021):

Theorem 30 For every n, there exists a simple graph G = (V,E) with bp(G) = n such that

χ(G) ≥ n(log(n))1−ε(n)
,

where ε(n) is a sequence satisfying ε(n)→n→∞ 0.

LetG = (V,E) be a graph as promised by Theorem 30, and letBi = (Li, Ri, Ei) be n complete
bipartite graphs which witness that bp(G) = n. Define a partial concept class Hn ⊆ {0, 1, ?}n as
follows: for each vertex v ∈ V there is a partial concept cv ∈ H such that for every i ∈ [n]:

cv(i) =


0 v ∈ Li,
1 v ∈ Ri,
? otherwise.

We finish the proof with the following two lemmas:

Lemma 31 VC(Hn) = 1 and TD(Hn) ≤ 2. In fact, on every pair of coordinates {i, j} the class H
realizes at most 2 patterns, that is:

(∀i, j ∈ [n]) :
∣∣∣{0, 1}2 ∩ {(h(i), h(j)

)
: h ∈ H}

∣∣∣ ≤ 2

Proof VC(Hn) > 0 because every edge {u, v} ∈ E satisfies {u, v} ∈ Ei for some i ∈ [n] and thus
{cv(i), cu(i)} = {0, 1} which implies that {i} is shattered by Hn and hence VC(Hn) ≥ 1.
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Note that VC(Hn) < 2 and TD(Hn) ≤ 2 follow from

(∀i, j ∈ [n]) :
∣∣∣{0, 1}2 ∩ {(h(i), h(j)

)
: h ∈ H}

∣∣∣ ≤ 2,

and thus it suffices to prove the latter. Let {i, j} ⊆ [n] be a pair of distinct coordinates. Assume
towards contradiction that ∣∣∣{0, 1}2 ∩ {(h(i), h(j)

)
: h ∈ H}

∣∣∣ ≥ 3.

Thus, either both patterns 00 and 11 are realized, or both patterns 01 and 10 are realized. We first
rule out the former: assume towards contradiction that both 00 and 11 are realized. Thus, there exist
two partial concepts cu, cv ∈ H for u, v ∈ V such that cu(i) = cu(j) = 0 and cv(i) = cv(j) = 1.
Thus, by the definitions of cu, cv it follows that u ∈ Li∩Lj and v ∈ Ri∩Rj and therefore the edge
{u, v} is covered by bothBi andBj , which contradicts the assumption that the edges ofB1, . . . , Bn
partition the edges of G. Similarly, the realization of both patterns 01 and 10 also implies an edge
which is covered twice and hence a contradiction.

Lemma 32 Let H̄ ⊆ {0, 1}n be a disambiguation of Hn. Then H̄ defines a coloring of G using |H̄|
colors. Therefore,

|H̄| ≥ n(log(n))1−ε(n)
,

as required.

Proof Assign to each vertex v ∈ V a color c̄v ∈ H̄ such that c̄v disambiguates the partial concept
cv ∈ Hn. (I.e., c̄v extends cv to a total concept in {0, 1}n.) Indeed, this is a proper coloring since
for every edge {u, v} ∈ E there exists a complete bipartite Bi = (Li, Ri, Ei) such that u ∈ Li
and v ∈ Ri or vice versa. Thus, cu(i) 6= cv(i) and both are in {0, 1}, therefore also c̄u(i) 6= c̄v(i).
Hence, u, v are assigned different colors, as required.

Thus, we have shown the first part in Theorem 11 by demonstrating the classes Hn, for n ∈ N.
For the second part, we need to show that over an infinite X (say X = N), there exists H∞ ⊆
{0, 1, ?}X such that VC(H∞) = 1, TD(H∞) ≤ 2 and every total concept class H̄ that disam-
biguates H∞ satisfies VC(H̄) = ∞. One way to construct H∞ is by taking disjoint copies of the
classes Hn (i.e., each Hn has its domain Xn, the domains Xn are mutually disjoint, and H∞ is de-
fined by taking the union ∪nH̃n, where H̃n is obtained from Hn by adding ?’s outside its domain).
It is easy to see that VC(H∞) = 1 and TD(H∞) ≤ 2. To see that every disambiguating class H̄
must have an unbounded VC dimension, notice that such a class H̄ simultaneously disambiguates
all of the Hn’s. Thus, by the (contra-positive of) the Sauer-Shelah-Perles Lemma (Sauer, 1972),
VC(H̄) must be unbounded.

Proof of Theorem 12 Assume without loss of generality that X = [n] = {1, . . . , n}.
For any H′ ⊆ H , we define its shattering strength:

s
(
H′
)

=
∣∣{S ⊆ [n] : S is shattered by H′

}∣∣.
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Note in particular that s
(
H′
)
≤
(

n
≤VC(H′)

)
≤
(
n
≤d
)
. Also, for (x, y) ∈ [n]× {0, 1} we denote

H′|(x, y) = {h ∈ H′ : h(x) = y}.

Define the VC-majority function associated with a subclass H′ by letting MH′(x) for x ∈ [n]
be the value y ∈ {0, 1} which maximizes s(H′|(x, y)), with an arbitrary tie-breaking rule. Observe
that

s(H′) ≥ s(H′|(x, 0)) + s(H′|(x, 1)).

Indeed, every S that is shattered by one of the subclasses H′|(x, 0) or H′|(x, 1) is also shattered by
H′ and if S is shattered by both H′|(x, 0) and H′|(x, 1) then both S and S∪{x} are shattered by H′.

Consider the following strong disambiguation algorithm. Given a partial concept h ∈ H, write
the entries of its disambiguation in the natural order. Start with H′ equal the entire class H and
compute the value of its VC-majority function at x = 1. Write this value as the entry at x and leave
the class intact, except if x ∈ supp(h) and h(x) 6= MH(x). In the latter case, write the opposite
value, and update the class by adding (x, h(x)) as a constraint: i.e., update H′ to H′|(x, h(x)).
Proceed to the next value of x and carry out this procedure with the updated subclass, and so on,
until reaching x = n.

We claim that given any partial concept h ∈ H, the number u(h) of updates is at most

log2(s(H)) ≤ log2

(( n

≤ d

))
≤ 1 + d log2(n).

Indeed, by the above, after each update the strength of the updated subclass is at most half of the
strength of the subclass before the update, and at all times the maintained subclass contains the
partial concept h. When running this disambiguation algorithm, the output is determined by the
location of the updates. By the above bound on u(h), the number of ways to place the updates is at
most (

n

≤ 1 + d log2(n)

)
= nO(d log(n)).

Proof of Theorem 13 The proof follows a similar idea like the proof of Theorem 12, but we use a
carefully tailored weighted VC-majority rather than an unweighted one.

For a finite sequence (x1, y1), . . . , (xk, yk) with xi ∈ N, yi ∈ {0, 1} and x1 < . . . < xk, denote
by H|(x1, y1), . . . , (xk, yk) the subclass of those partial concepts h ∈ H such that h(xi) = yi for
all i. For such a constrained subclass, we define its weight:

w(H|(x1, y1), . . . , (xk, yk)) =
∑
S

1

n(S)d+1
,

where the summation is over all nonempty subsets S of N \ {1, . . . , xk} that are shattered by this
subclass, and n(S) denotes the largest element of S. In the special case when k = 0, i.e., the class
is the entire H, the definition is the same, taking {1, . . . , xk} = ∅. Observe that in this case (and
hence in every case) the sum is finite:

w(H) ≤
∑
n

nd−1

nd+1
=
∑
n

1

n2
=
π2

6
,
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where the inequality holds because for a fixed n, the number of terms 1
nd+1 is at most the number of

subsets of [n] of size d or less that include the element n, and this number is
∑d−1

i=0

(
n−1
i

)
≤ nd−1.

Define the VC-weighted majority function associated with such a constrained subclass by let-
ting MH|(x1,y1),...,(xk,yk)(x) for x ∈ N \ {1, . . . , xk} be the value y ∈ {0, 1} which maximizes
w(H|(x1, y1), . . . , (xk, yk), (x, y)), with an arbitrary tie-breaking rule. Observe that

w(H|(x1,y1), . . . , (xk,yk))≥w(H|(x1,y1), . . . , (xk,yk),(x,0))+w(H|(x1,y1), . . . , (xk,yk),(x,1)).

Indeed, every term 1
n(S)d+1 that appears in one of the two sums on the right-hand side, also appears

in the sum on the left-hand side (for the same S). If a term appears in both sums on the right-hand
side, then it appears twice in the sum on the left-hand side: once for S and once for {x} ∪ S.

Consider the following strong disambiguation algorithm. Given a partial concept h ∈ H, write
the entries of its disambiguation in the natural order. Start with the entire class H and compute the
value of its VC-weighted majority function at x = 1. Write this value as the entry at x and leave the
class intact, except if x ∈ supp(h) and h(x) 6= MH(x). In the latter case, write the opposite value,
and update the class by adding (x, h(x)) as a constraint. Proceed to the next value of x and carry
out this procedure with the updated subclass, and so on.

We claim that given any partial concept h ∈ H, the number u(m) of updates up to x = m is at
most (d+1) log2(m)+2. Indeed, by the above, after each update the weight of the updated subclass
is at most half of the weight of the subclass before the update. Consider the subclass before the last
update up to x = m (assuming there is at least one – otherwise there is nothing to prove). For the
last update to occur, that subclass must shatter at least the singleton S = {x}, so its weight then is
at least 1

md+1 . Hence
1

md+1
2u(m)−1 ≤ w(H) ≤ π2

6
,

which implies that u(m) ≤ log2(π
2

6 m
d+1) + 1 ≤ (d+ 1) log2(m) + 2, as claimed.

When running this disambiguation algorithm, the first m entries of the output are determined
by the location of the updates up to x = m. By the above bound on u(m), the number of ways to
place the updates is at most

∑b(d+1) log2(m)+2c
i=0

(
m
i

)
≤ (m+ 1)(d+1) log2(m)+2 = mO(d log(m)).

Appendix C. PAC Learnability: Proofs and Sample Complexity Bounds

This section presents the formal proofs associated with PAC learnability, both in the realizable case
and agnostic case. In particular, these results will imply Theorem 3 from Section 2.2, but we will
also establish quantitative versions that provide upper and lower bounds on the optimal sample
complexity in each case.

Here, and in later sections, we use the notation log(x) := max{ln(x), 1}.

C.1. Realizable PAC Learning

The following lemma describes basic properties of the notion of realizability with respect to partial
concepts (as used in Definition 2): it demonstrates the relationship with the classical definition for
classes H ⊆ {0, 1}X which contain only total concepts, and implies that the definition we use is
more general.



C PAC LEARNABILITY: PROOFS AND SAMPLE COMPLEXITY BOUNDS 29

Lemma 33 (Connection with the classical notion of realizability) Let H ⊆ {0, 1, ?}X and let P
be a distribution over X × {0, 1} such that

inf
h∈H

erP (h) = 0.

Then, for every n, S ∼ Pn is realizable by H with probability 1. Conversely, if P is a distribution
with finite or countable support such that for every n, S ∼ Pn is realizable by H with probability
1, then infh∈H erP (h) = 0. Moreover, if H contains only total concepts and VC(H) < ∞ then the
converse holds regardless of the support of P .

Thus, our definition generalizes the classical one in the sense that any distribution P which is realiz-
able in the classical sense (infh∈H erP (h) = 0) is also realizable according to our definition (every
sample drawn from it is realizable with probability 1). Hence, any algorithm which learns H in the
realizable case according to our definition, also learns it according to the traditional sense. On the
other hand, our definition of realizable PAC learning in the partial concept class setting may admit
realizable distributions for which infh∈H erP (h) 6= 0. For example, if X is the interval [0, 1] and
H ⊆ {0, ?}X consists of the functions satisfying that h−1(0) has Lebesgue measure 1/2, then the
uniform P over X × {0} is realizable according to our definition, yet infh∈H erP (h) = 1/2.

Proof Notice that for every h ∈ H:

erP (h) = E
S∼Pn

êrS(h) ≥ E
S∼Pn

[
min
h∈H

êrS(h)
]
,

and therefore also
inf
h∈H

erP (h) ≥ E
S∼Pn

[
min
h∈H

êrS(h)
]
≥ 0.

Thus, if infh∈H erP (h) = 0 then ES∼Pn

[
minh∈H êrS(h)

]
= 0 and hence S ∼ Pn is realizable with

probability 1.
For the converse, assume first that P has finite support of size n. Taking S to be the support of

P , which occurs with positive probability for S ∼ Pn, shows that the entire support is realizable by
H, that is, minh∈H erP (h) = 0. If the support of P is countably infinite, we can enumerate it and
repeat the above argument for its first n elements, showing the existence of h ∈ H realizing those
n elements. Taking n → ∞ implies that infh∈H erP (h) = 0. Finally, assume that H ⊆ {0, 1}X
contains only total concepts and satisfies VC(H) < ∞, and P satisfies that S ∼ Pn is realizable
with probability 1. Then:

0 = E
S∼Pn

[
min
h∈H

êrS(h)
]

≥ inf
h∈H

[
erP (h)−O

(√VC(H)

n

)]
(by uniform convergence)

= inf
h∈H

erP (h)− o(1).

Thus, by letting n→∞ we see that infh∈H erP (h) = 0 as claimed.
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The following theorem establishes upper and lower bounds on the optimal sample complexity
of PAC learning for any given partial concept class H. In particular, this supplies part of the proof
of Theorem 3 (i.e., the part concerning the realizable case).11

Theorem 34 (PAC Sample Complexity) For any partial concept class H with VC(H) < ∞, the
optimal sample complexity of PAC learning H,M(ε, δ), satisfies the following bounds:

• M(ε, δ) = O
(
VC(H)
ε log

(
1
δ

))
.

• M(ε, δ) = O
(
VC(H)
ε log2

(
VC(H)
ε

)
+ 1

ε log
(

1
δ

))
.

• M(ε, δ) = Ω
(
VC(H)
ε + 1

ε log
(

1
δ

))
.

Moreover, if VC(H) =∞, then H is not PAC learnable.

The following lemma was proven by Haussler, Littlestone, and Warmuth (1994) for total concept
classes. Here we merely note that the result trivially also holds for partial concept classes.

Lemma 35 (One-inclusion Graph Predictor) For any partial concept class H with VC(H) <∞,
there is a function A : (X × {0, 1})∗ × X → {0, 1} such that, for any n ∈ N and any sequence
{(x1, y1), . . . , (xn, yn)} ∈ (X × {0, 1})n that is realizable w.r.t. H,

1

n!

∑
σ∈Sym(n)

1
[
A(xσ(1), yσ(1), . . . , xσ(n−1), yσ(n−1), xσ(n)) 6= yσ(n)

]
≤ VC(H)

n
, (1)

where Sym(n) denotes the symmetric group (of permutations of {1, . . . , n}).

Proof As Haussler, Littlestone, and Warmuth (1994) proved this result for all total concept classes
H, we need only note that it easily extends to partial concept classes, as follows. For any n ∈ N and
S = {x1, . . . , xn}, let XS denote the set of distinct elements of the sequence S, and define HXS

as
the class of all total functions h : XS → {0, 1} such that the sequence {(x, h(x)) : x ∈ XS} is real-
izable w.r.t. H. In the case that HXS

6= ∅, let AXS
be the function guaranteed by the lemma for the

case of instance space equal XS and for the total concept class HXS
defined on this space. Then for

any y1, . . . , yn ∈ {0, 1} such that {(x1, y1), . . . , (xn, yn)} is realizable w.r.t. H (and therefore also
realizable w.r.t. HXS

), define A(x1, y1, . . . , xn−1, yn−1, xn) = AXS
(x1, y1, . . . , xn−1, yn−1, xn).

Since any permutation of the sequence x1, . . . , xn leaves the spaces XS and HXS
unchanged, and

since it is clear from the definition of VC dimension that VC(HXS
) ≤ VC(H), it follows that (1)

holds for the sequence {(x1, y1), . . . , (xn, yn)}.
Thus, for any n ∈ N and any sequence {(x1, y1), . . . , (xn, yn)} realizable w.r.t. H, we have

defined the value A(x1, y1, . . . , xn−1, yn−1, xn) in a way that altogether satisfies (1). To complete
the definition, we may (arbitrarily) define A(x1, y1, . . . , xn−1, yn−1, xn) = 0 for all sequences
(x1, . . . , xn) ∈ X n and (y1, . . . , yn−1) ∈ {0, 1}n−1 such that {h ∈ H : ∀i ≤ n − 1, h(xi) =

11. In all of the results on PAC learning, we implicitly suppose H satisfies appropriate mild conditions necessary to
guarantee measurability of the learning algorithms involved in the proofs of upper bounds. We refer the interested
reader to van der Vaart and Wellner (1996); van Handel (2013) for thorough discussions of such issues, which we will
not discuss further in this article. We also note that such restrictions are only required if X is uncountably infinite.
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yi, and h(xn) ∈ {0, 1}} = ∅.

Parts of the proof also rely on a well-known generalization bound for compression schemes,
together with a construction of a particular compression scheme based on Boosting. The following
lemma is a classic result due to Littlestone and Warmuth (1986a).

Lemma 36 (Consistent Compression Generalization Bound) There exists a finite numerical con-
stant c ≥ 1 such that, for any compression scheme (κ, ρ), for any n ∈ N and δ ∈ (0, 1), for any
distribution P on X ×{0, 1}, for S ∼ Pn, with probability at least 1−δ, if êrS(ρ(κ(S))) = 0, then

erP (ρ(κ(S))) ≤ c

n− |κ(S)|

(
|κ(S)| log(n) + log

(
1

δ

))
.

The next component is based on a well-known Boosting algorithm, known as α-Boost, which
yields a compression scheme of a quantifiable size that is sample-consistent, given access to a
“weak” learning algorithm; see the book of Schapire and Freund (2012) for a proof.

Lemma 37 (Boosting) For any k, n ∈ N and sequence (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}, sup-
pose Aw : (X ×{0, 1})k → {0, 1}X is an algorithm that, for any distribution P on X ×{0, 1} with
P ({(x1, y1), . . . , (xn, yn)}) = 1, there exists SP ∈ {(x1, y1), . . . , (xn, yn)}k with erP (Aw(SP )) ≤
1/3. Then there is a numerical constant c ≥ 1 such that, for T = dc log(n)e, there exist sequences
S1, . . . , ST ∈{(x1, y1), . . . , (xn, yn)}k such that, for ĥ(·) :=Majority(Aw(S1)(·), . . . ,Aw(ST )(·)),
it holds that ĥ(xi) = yi for all i ∈ {1, . . . , n}.

We are now ready for the proof of Theorem 34.
Proof of Theorem 34 The proof that classes with VC(H) = ∞ are not PAC learnable, and in-
deed also the lower boundM(ε, δ) = Ω

(
VC(H)
ε + 1

ε log(1
δ )
)

, follow by standard arguments from
Vapnik and Chervonenkis (1974a); Blumer, Ehrenfeucht, Haussler, and Warmuth (1989); Ehren-
feucht, Haussler, Kearns, and Valiant (1989). Specifically, for any finite k ≤ VC(H), letting
Xk = {x1, . . . , xk} be a set shattered by H, and letting Hk be the class of all total functions
Xk → {0, 1}, any distribution P on Xk × {0, 1} realizable w.r.t. Hk can be extended to a distri-
bution on X × {0, 1} realizable w.r.t. H with P ((X \ Xk) × {0, 1}) = 0. Thus, any lower bound
on the sample complexity of PAC learning the total concept class Hk is also a lower bound on
the sample complexity of learning H. In particular, Vapnik and Chervonenkis (1974a); Blumer,
Ehrenfeucht, Haussler, and Warmuth (1989); Ehrenfeucht, Haussler, Kearns, and Valiant (1989)
show a lower bound proportional to k

ε + 1
ε log(1

δ ) for the sample complexity of PAC learning Hk,
which is therefore also a lower bound on the sample complexity of PAC learning H. Since this
holds for all finite k ≤ VC(H), it follows that partial concept classes with VC(H) = ∞ are not
PAC learnable, and partial concept classes H with VC(H) < ∞ have optimal sample complexity
M(ε, δ) = Ω

(
VC(H)
ε + 1

ε log(1
δ )
)

.
To prove the first upper bound on the optimal sample complexity when VC(H) < ∞ (which

also implies the claim of PAC learnability for such classes), we begin by studying the function A
from Lemma 35, following the analogous proof for total concept classes given by Haussler, Lit-
tlestone, and Warmuth (1994). In particular, for any distribution P realizable w.r.t. H, and for
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(X1, Y1), . . . , (Xn+1, Yn+1) i.i.d. P , letting h̃n(·) := A(X1, Y1, . . . , Xn, Yn, ·), then by exchange-
ability of these n+ 1 samples and linearity of the expectation, we have that

E
[
erP (h̃n)

]
= E[1[A(X1, Y1, . . . , Xn, Yn, Xn+1) 6= Yn+1]]

=
1

(n+ 1)!

∑
σ∈Sym(n+1)

E
[
1
[
A(Xσ(1), Yσ(1), . . . , Xσ(n), Yσ(n), Xσ(n+1)) 6= Yσ(n+1)

]]

= E

 1

(n+ 1)!

∑
σ∈Sym(n+1)

1
[
A(Xσ(1), Yσ(1), . . . , Xσ(n), Yσ(n), Xσ(n+1)) 6= Yσ(n+1)

] ≤ VC(H)

n+ 1
,

where this last inequality follows from the property (1) for A in Lemma 35, which holds with
probability one for the sequence (X1, Y1), . . . , (Xn+1, Yn+1) since P is realizable w.r.t. H.

To complete the proof, we again follow an argument of Haussler, Littlestone, and Warmuth
(1994) to convert this algorithm, guaranteeing E[erP (h̃n)] ≤ VC(H)

n+1 , into an algorithm with a

bound on erP (ĥ) holding with high probability 1− δ. Specifically, let m =
⌊

4VC(H)
ε

⌋ ⌈
log2

(
2
δ

)⌉
+⌈

32
ε ln

(
2dlog2(2/δ)e

δ

)⌉
= O

(
VC(H)
ε log(1

δ )
)

, and let (X1, Y1), . . . , (Xm, Ym) be i.i.d. P . Let n =⌊
4VC(H)

ε

⌋
, and let S1 be the first n samples, S2 the next n samples, and so on up to Sk, for

k =
⌈
log2

(
2
δ

)⌉
. Let T be the remaining t := m − nk =

⌈
32
ε ln

(
2dlog2(2/δ)e

δ

)⌉
samples. For

each i ∈ {1, . . . , k}, let hi(·) = A(Si, ·). Let ĥm = argminh∈{hi:i≤k}
∑

(x,y)∈T 1[h(x) 6= y].

Define the learning algorithm for H as returning this ĥm, given (X1, Y1), . . . , (Xm, Ym).
To show that this meets the PAC learning requirement, note that each i ≤ k has E[erP (hi)] ≤

ε
4 . Thus, by Markov’s inequality, with probability at least 1

2 , erP (hi) ≤ ε
2 . Since these hi are

independent, we have that with probability at least 1−2−k ≥ 1− δ
2 , at least one hi∗ has erP (hi∗) ≤

ε
2 . Also, by a Chernoff bound, for each i ≤ k, on the event erP (hi) ≤ ε

2 ,

Pr

1

t

∑
(x,y)∈T

1[hi(x) 6= y] >
3

4
ε

∣∣∣∣∣∣hi
 ≤ e−tε/24,

while on the event erP (hi) > ε,

Pr

1

t

∑
(x,y)∈T

1[hi(x) 6= y] ≤ 3

4
ε

∣∣∣∣∣∣hi
 ≤ e−tε/32.

Thus, by the law of total probability (over these two events), and a union bound (over all i ≤ k),
with probability at least 1− ke−tε/32 ≥ 1− δ

2 , if any i has erP (hi) ≤ ε
2 , then the returned classifier

ĥm has erP (ĥm) ≤ ε. By a union bound over the above two events, each of probability at least
1 − δ

2 , we have that with probability at least 1 − δ, erP (ĥm) ≤ ε. This completes the proof of the
first upper bound.

To prove the second upper bound, again suppose VC(H) < ∞, and again let A be the function
from Lemma 35. Let P be realizable w.r.t. H, let n ∈ N, and S = {(Xi, Yi)}i∈[n] ∼ Pn. Since P is
realizable w.r.t. H, with probability one, any distribution P0 supported on {(X1, Y1), . . . , (Xn, Yn)}
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is also realizable w.r.t. H. Therefore, as established above, for any such distribution P0, for k =
3VC(H) and SP0 ∼ P k0 , E[erP0(A(SP0 , ·))] ≤ 1/3. In particular, this implies that, given S and P0,
there exists a deterministic choice of SP0 ∈ {(X1, Y1), . . . , (Xn, Yn)}k with erP0(A(SP0)) ≤ 1/3.
Thus, A satisfies the requirement for Aw in Lemma 37, so that Lemma 37 implies that for a value
T = dc1 log(n)e (for numerical constant c1 ≥ 1), there exist S1, . . . , ST ∈ {(X1, Y1), . . . , (Xn, Yn)}k
such that, for ĥn(·) := Majority(A(S1, ·), . . . ,A(ST , ·)), it holds that êrS(ĥn) = 0. Moreover,
note that ĥn can be expressed as a compression scheme, with compression function κ such that
κ(S) = (S1, . . . , ST ) and reconstruction function ρ such that ρ(S1, . . . , ST ) = ĥn. Therefore,
Lemma 36 implies that, with probability at least 1− δ,

erP (ĥn) ≤ c2

n− kT

(
kT log(n) + log

(
1

δ

))
for a numerical constant c2 ≥ 1. For any given ε ∈ (0, 1), the right hand side above can be made
less than ε for an appropriate choice of

n = O

(
1

ε

(
VC(H) log2

(
VC(H)

ε

)
+ log

(
1

δ

)))
,

so that we have that with probability at least 1− δ, erP (ĥn) ≤ ε. This completes the proof.

We conclude this section by noting the gap between the upper and lower bounds in Theorem 34.
In the case of total concept classes H, Hanneke (2016) showed that the optimal sample complexity
of PAC learning is exactly Θ

(
VC(H)
ε + 1

ε log
(

1
δ

))
. Whether this remains true for the more-general

setting of partial concept classes is an interesting open question:

Open Question 6 Does the optimal sample complexityM(ε, δ) of PAC learning any partial con-
cept class H always satisfyM(ε, δ) = Θ

(
VC(H)
ε + 1

ε log
(

1
δ

))
?

C.2. Agnostic PAC Learning

This section extends the learnability results to the agnostic setting, thus, together with the result
above, fulfilling the complete claim of Theorem 3. We first provide a precise definition of agnostic
learning, as formulating a definition appropriate for partial concept classes requires some care.

Recall that we think of partial concept classes as a general way for expressing assumptions on
the data. Thus, we would like to define agnostic learning of a partial concept class H in a way that
reflects the “distance from realizability” of a typical sample drawn from the source distribution P .
This gives rise to the following quantities: for any n ∈ N and data sequence S ∈ (X × {0, 1})n,
define the empirical error rate of any partial concept h as êrS(h) = 1

n

∑n
i=1 1[h(xi) 6= yi]. For a

distribution P on X × {0, 1}, define the approximation error of H with respect to samples of size n
as

ε∗(n) = E
S∼Pn

[
min
h∈H

êrS(h)

]
.

We will later see that ε?(n) is non-decreasing in n and hence limn→∞ ε
?(n) exists and equals

supn ε
?(n) (see Lemma 39). We define the approximation error of H as

erP (H) := lim
n→∞

E
S∼Pn

[
min
h∈H

êrS(h)

]
.
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This measures how well a given partial concept class can fit data sets that can be sampled from P .
In particular, note that erP (H) = 0 if and only if P is realizable w.r.t. H. In the agnostic PAC
setting, we will be interested in achieving prediction error not-much-worse than erP (H), as stated
in the following definition.

Definition 38 (Agnostic PAC Learnability) We say a partial concept class H ⊆ {0, 1, ?}X is
agnostically PAC learnable if ∀ε, δ ∈ (0, 1), ∃M(ε, δ) ∈ N and a learning algorithm A such
that, for all distributions P on X × {0, 1}, for S ∼ PM(ε,δ), with probability at least 1 − δ,
erP (A(S)) ≤ erP (H) + ε. The quantity M(ε, δ) is known as the sample complexity of A for
agnostic PAC learning, and the optimal sample complexity of agnostic PAC learning for H is defined
as the minimum achievable value ofM(ε, δ) for each given ε, δ.

The following lemma shows that erP (H) is indeed well-defined for every H. Also, it shows
that for total classes, our definition of learnability is not easier to satisfy than the classical one.12

(I.e., any learning algorithm which agnostically learns a total class H according to Definition 38
also agnostically learns H in the classical PAC sense).

Lemma 39 Let H ⊆ {0, 1, ?}X and let P be a distribution over X × {0, 1}. Define

ε?(n) = E
S∼Pn

[
min
h∈H

êrS(h)

]
.

Then:

1. For every n ≥ 2, ε?(n) ≥ ε?(n− 1), and in particular limn→∞ ε
?(n) exists.

2. Also,
erP (H) = lim

n→∞
ε?(n) ≤ inf

h∈H
erP (h),

and if in addition H contains only total concepts and VC(H) < ∞ then the above inequality
is satisfied with an equality.

Proof
We begin with the first item. Let n ≥ 2, and let S be a sequence (X1, Y1), . . . , (Xn, Yn) drawn

i.i.d. from P . For i ∈ [n], denote by S−i the subsequence obtained by removing (Xi, Yi). For any
h ∈ H we get from the definition of the empirical error rate and elementary double counting that

êrS(h) =
1

n

n∑
i=1

êrS−i(h).

12. Note that one could naturally adapt the classical definition of agnostic PAC learning to partial concept classes: namely,
aiming for erP (A(S)) ≤ infh∈H erP (h) + ε, with probability at least 1 − δ. However, unlike the criterion in
Definition 38, this alternative criterion would not recover the implication that, for any given distribution P realizable
w.r.t. H, agnostic PAC learning under P implies PAC learning under P . For instance, for X = [0, 1] and H all partial
functions with image {0, ?} and having finite support, the distribution P uniform on X × {0} is realizable w.r.t. H,
but infh∈H erP (h) = 1, so that even the algorithm that returns x 7→ 1 satisfies the alternative agnostic PAC criterion.
This is another reason to use the definition in terms of erP (H) as stated in Definition 38. Note however that all of
our results on agnostic learning apply for the alternative definition.
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This implies that

min
h∈H

êrS(h) ≥ 1

n

n∑
i=1

min
h∈H

êrS−i(h).

Taking ES∼Pn on both sides of this inequality, and noting that for each i, S−i ∼ Pn−1, we get

E
S∼Pn

[
min
h∈H

êrS(h)

]
≥ 1

n

n∑
i=1

E
S−i∼Pn−1

[
min
h∈H

êrS−i(h)

]
,

so

ε?(n) ≥ 1

n

n∑
i=1

ε?(n− 1) = ε?(n− 1),

as required.
Let us now prove the second item. Notice that for every h ∈ H and n ∈ N:

erP (h) = E
S∼Pn

êrS(h) ≥ ε?(n),

and therefore also
inf
h∈H

erP (h) ≥ ε?(n).

Letting n→∞ yields the stated inequality. In addition if H ⊆ {0, 1}X contains only total concepts
and satisfies VC(H) <∞ then, by uniform-convergence, for S ∼ Pn, with probability at least 1−δ
we have:

min
h∈H

êrS(h) ≥ inf
h∈H

erP (h)−O
(√VC(H) + log(1

δ )

n

)
.

Taking δ = 1
n and letting n→∞we have the converse inequality limn→∞ ε

?(n) ≥ infh∈H erP (h),
and hence an equality.

In particular, in the case of total concept classes H, this implies that any learning algorithm
that is an agnostic PAC learner by our definition is also an agnostic PAC learner in the traditional
definition, and vice versa.

The portion of Theorem 3 concerning agnostic PAC learnability is summarized in the following
specialized statement.

Theorem 40 (Agnostic PAC Learnability) The following statements are equivalent for any par-
tial concept class H ⊆ {0, 1, ?}X .

• VC(H) <∞.

• H is agnostically PAC learnable.

Thus, the conditions for agnostic PAC learnability of H are the same as for (realizable) PAC
learnability, and recover the known conditions for agnostic learnability of total concept classes H
(both realizable and agnostic).
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As we did for the realizable case, we will prove a more-detailed result on agnostic PAC learning,
which also establishes upper and lower bounds on the optimal sample complexity. In particular,
Theorem 40 follows as an immediate implication.

Theorem 41 (Agnostic PAC Sample Complexity) For any partial concept class H with VC(H) <
∞, the optimal sample complexity of agnostically PAC learning H,M(ε, δ), satisfies the following
bounds:

• M(ε, δ) = O
(
VC(H)
ε2

log2
(
VC(H)
ε

)
+ 1

ε2
log
(

1
δ

))
.

• M(ε, δ) = Ω
(
VC(H)
ε2

+ 1
ε2

log
(

1
δ

))
.

Moreover, if VC(H) =∞, then H is not agnostically PAC learnable.

While the lower bound will follow from standard approaches, to prove the upper bound we
will use a technique introduced by David, Moran, and Yehudayoff (2016), which reduces agnostic
learning to realizable learning. This technique makes use of two main components: generalization
bounds for sample compression schemes, and a construction of a compression scheme based on
Boosting (to which the generalization bounds are then applied). Both of these components are well
known. For the Boosting component, we rely on Lemma 37. We restate the relevant result for
compression schemes here for completeness. Specifically, the following lemma is a variation on a
classic result due to Graepel, Herbrich, and Shawe-Taylor (2005).13

Lemma 42 (Agnostic Compression Generalization Bound) There exists a finite numerical con-
stant c > 0 such that, for any compression scheme (κ, ρ), for any n ∈ N and δ ∈ (0, 1), for any
distribution P on X × {0, 1}, for S ∼ Pn, letting B(S, δ) := 1

n

(
|κ(S)| log(n) + log

(
1
δ

))
, with

probability at least 1− δ,

|erP (ρ(κ(S)))− êrS(ρ(κ(S)))| ≤ c
√

êrS(ρ(κ(S)))B(S, δ) + cB(S, δ).

We apply Lemma 42 to a boosting-based compression scheme to obtain the following interme-
diate result, representing the key component in the upper bound claimed in Theorem 41. This also
supplies the algorithm supporting the claims regarding structural risk minimization in Section 4.1.

Lemma 43 For any partial concept class H with VC(H) < ∞, there is a learning algorithm A
such that, for any distribution P on X × {0, 1}, any m ∈ N, and δ ∈ (0, 1), for S ∼ Pm, letting
êrS(H) := minh∈H êrS(h), with probability at least 1− δ, the output ĥ := A(S) satisfies

erP (ĥ)≤ êrS(H)+c

√
êrS(H)

1

m

(
VC(H) log2(m)+log

(
1

δ

))
+
c

m

(
VC(H) log2(m)+log

(
1

δ

))
for a finite numerical constant c.

13. The original result of Graepel, Herbrich, and Shawe-Taylor (2005) does not include the êrS(ρ(κ(S))) factor inside
the square root. However, this variant follows by the same argument, simply substituting the empirical Bernstein
bound rather than Hoeffding’s inequality. See (Maurer and Pontil, 2009) for a similar result.
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Proof We follow a reduction-to-realizable technique of David, Moran, and Yehudayoff (2016).
Specifically, let Aw be a PAC learning algorithm for H (for the realizable case) achieving the optimal
sample complexityMRE(ε′, δ′) for PAC learning H (in the realizable case), where ε′ = δ′ = 1/3.
Note that, without loss of generality, we may suppose Aw outputs total functions (e.g., replacing
all ? with 0 cannot increase erP (h) for any h). We will first explain that this may serve as a weak
learning algorithm Aw in Lemma 37. Specifically, let k = MRE(1/3, 1/3). Given any n ∈ N
and any sequence (x1, y1), . . . , (xn, yn) ∈ X × {0, 1} realizable w.r.t. H, any distribution P on
X × {0, 1} with P ({(x1, y1), . . . , (xn, yn)}) = 1 is realizable w.r.t. H, and therefore guarantees
that, for S ∼ P k, with probability at least 2/3, erP (Aw(S)) ≤ 1/3. In particular, this implies there
exists at least one SP ∈ {(x1, y1), . . . , (xn, yn)}k with erP (Aw(S)) ≤ 1/3.

Now, let P be any distribution on X ×{0, 1}, letm ∈ N, and let S={(X1, Y1), . . . , (Xm, Ym)}
have distribution Pm. Let R denote the longest subsequence of (X1, Y1), . . . , (Xm, Ym) that is
realizable w.r.t. H (breaking ties based on a fixed measurable total ordering of such sequences). If
|R| = 0, then (arbitrarily) define ĥ as the all-0 function ĥ(x) = 0. Otherwise, if |R| > 0, by the
above property of Aw, together with Lemma 37, for T = dc′ log(|R|)e (for a numerical constant c′),
there exist S1, . . . , ST ∈ Rk such that, letting ĥ(·) := Majority(Aw(S1)(·), . . . ,Aw(ST )(·)), we
have êrR(ĥ) = 0.

In particular, this implies êrS(ĥ) ≤ m−|R|
m = êrS(H). Moreover, ĥ is the output of the compres-

sion scheme that selects κ(S) = (S1, . . . , ST ) and ρ(κ(S)) = ĥ (or in the case |R| = 0, κ(S) = {}
and ρ(κ(S)) = ĥ). Therefore, Lemma 42 implies that, with probability at least 1− δ,

erP (ĥ) ≤ êrS(ĥ) + c′′

√
êrS(ĥ)

1

m

(
kT log(m) + log

(
1

δ

))
+ c′′

1

m

(
kT log(m) + log

(
1

δ

))

≤ êrS(H) + c′′′

√
êrS(H)

1

m

(
VC(H) log2(m)+log

(
1

δ

))
+ c′′′

1

m

(
VC(H) log2(m)+log

(
1

δ

))
for appropriate numerical constants c′′, c′′′, where the last inequality is due to Theorem 34.

We are now ready for the proof of Theorem 41.
Proof of Theorem 41 As was true in the proof of Theorem 34, the proof that classes with VC(H) =

∞ are not agnostically PAC learnable, and the lower bound M(ε, δ) = Ω
(
VC(H)
ε2

+ 1
ε2

log(1
δ )
)

,
follow by standard arguments from Vapnik and Chervonenkis (1974a); Anthony and Bartlett (1999).
Specifically, for any finite k ≤ VC(H), letting Xk = {x1, . . . , xk} be a set shattered by H, and
letting Hk be the class of total functions h : Xk → {0, 1}, all distributions P (k) on Xk × {0, 1} can
be extended to a distribution P on X × {0, 1} with P ((X \ Xk) × {0, 1}) = 0. Moreover, letting
(X1, Y1), (X2, Y2), . . . be i.i.d. P , we always have

erP (H) = sup
n

E
S∼Pn

[
min
h∈H

êrS(h)

]
≤ sup

n
inf
h∈H

E
S∼Pn

[êrS(h)] = inf
h∈H

erP (h) = min
h∈Hk

erP (k)(h).
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Additionally, note that

erP (H) ≥ lim
n→∞

E

[
k∑
i=1

min
y∈{0,1}

1

n

n∑
t=1

1[Xt = xi]1[Yt 6= y]

]

=

k∑
i=1

E

[
min

y∈{0,1}
lim
n→∞

1

n

n∑
t=1

1[Xt = xi]1[Yt 6= y]

]

=
k∑
i=1

min
y∈{0,1}

P ({(xi, 1− y)}) = min
h∈Hk

erP (k)(h),

where we have used the Dominated Convergence Theorem, continuity of the min, and the Strong
Law of Large Numbers. Thus, erP (H) = minh∈Hk

erP (k)(h). This means that M(ε, δ) can be
no smaller than the sample complexity Mk(ε, δ) of agnostically learning the total concept class
Hk on Xk, in the traditional (total concepts) sense: that is, there exists an algorithm that, for
all distributions P (k) on Xk × {0, 1}, from Mk(ε, δ) i.i.d. samples from P (k), outputs an ĥ with
erP (k)(ĥ)−minh∈Hk

erP (k)(h) ≤ ε, with probability at least 1− δ. Since Xk is shattered, the stan-
dard lower bounds based on VC dimension imply a lower bound Mk(ε, δ) = Ω

(
k
ε2

+ 1
ε2

log
(

1
δ

))
(Vapnik and Chervonenkis, 1974a; Anthony and Bartlett, 1999; Kontorovich and Pinelis, 2019). In
particular, the sample complexity lower boundM(ε, δ) = Ω

(
VC(H)
ε2

+ 1
ε2

log
(

1
δ

))
for the case of

VC(H) < ∞ follows immediately, as does the fact that having VC(H) = ∞ implies that H is not
agnostically PAC learnable.

To prove the upper bound on the optimal sample complexity when VC(H) < ∞ (which also
implies the claim of agnostic PAC learnability for such classes), consider the algorithm A from
Lemma 43. From that lemma, we have that for any distribution P , sample size m ∈ N, and
δ ∈ (0, 1), for S = {(X1, Y1), . . . , (Xm, Ym)} ∼ Pm, with probability at least 1 − δ/2, the
returned classifier ĥ = A(S) satisfies

erP (ĥ)≤ êrS(H)+c

√
êrS(H)

1

m

(
VC(H) log2(m)+log

(
2

δ

))
+
c

m

(
VC(H) log2(m)+log

(
2

δ

))

≤ êrS(H) + c′

√
1

m

(
VC(H) log2(m) + log

(
1

δ

))
for appropriate numerical constants c, c′.

Taking m =
⌈
c′′ 1
ε2

(
VC(H) log2

(
VC(H)
ε

)
+ log

(
1
δ

))⌉
for a suitable numerical constant c′′ we

get from the above that with probability at least 1− δ/2,

erP (ĥ) ≤ êrS(H) +
ε

2
.

It remains to replace the empirical value êrS(H) := minh∈H êrS(h) with our benchmark erP (H).
We do this by observing that the random variable minh∈H êrS(h) is concentrated around its mean.
Indeed, this random variable is a function of the i.i.d. sequence (X1, Y1), . . . , (Xm, Ym), and chang-
ing the value of any (Xi, Yi) can change minh∈H êrS(h) by at most 1

m . By McDiarmid’s inequality

Pr

(
min
h∈H

êrS(h) > E
S′∼Pm

[
min
h∈H

êrS′(h)

]
+
ε

2

)
≤ e−

ε2m
2 ,
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and for our value of m this probability is less than δ/2. By the union bound, with probability at
least 1− δ,

erP (ĥ) ≤ min
h∈H

êrS(h) +
ε

2
≤ E

S′∼Pm

[
min
h∈H

êrS′(h)

]
+ ε ≤ erP (H) + ε.

So taking the algorithm A from Lemma 43 meets the requirement.

We note that, in the special case of total concept classes, the optimal sample complexity of
agnostic PAC learning is known to be exactlyM(ε, δ) = Θ

(
VC(H)
ε2

+ 1
ε2

log
(

1
δ

))
(Talagrand, 1994;

see van der Vaart and Wellner, 1996, Theorems 2.14.1 and 2.6.7). However, the proof of this refined
upper bound relies on a technique known as chaining, and moreover relies on uniform convergence,
which can fail for partial concept classes. Thus, the following question remains open:

Open Question 7 Does the optimal sample complexity,M(ε, δ), of agnostically PAC learning any
partial concept class H satisfyM(ε, δ) = Θ

(
VC(H)
ε2

+ 1
ε2

log
(

1
δ

))
?

Appendix D. Proofs of Results on Traditional Learning Principles

Proof of Theorem 5 Let X = N and let H∞ be the partial concept class from the proof of The-
orem 11, having VC(H∞) = 1 while any disambiguation H̄∞ of H∞ must have VC(H̄∞) = ∞.
Also let h0 be a concept with h0(x) = 0 everywhere, and define H = H∞ ∪ {h0}. In particular, it
follows from Lemma 31 that any pair of points (x1, x2) ∈ X 2 have at most two patterns of labels in
{0, 1}2 realizable w.r.t. H∞. Therefore, adding h0 to the class does not increase its VC dimension,
since it can at most increase the number of patterns to three, but not to four. Hence, VC(H) = 1.

Now consider any total concept class H̄. First, if H̄ is not a disambiguation of H, then there
exists a finite sequence S of points (x, y) ∈ X × {0, 1} that is realizable w.r.t. H but not realizable
w.r.t. H̄. Without loss of generality, suppose all elements of S are distinct. Then letting P be the
uniform distribution on S, P is realizable w.r.t. H. However, for any learning algorithm producing
hypotheses ĥ in H̄, regardless of how many i.i.d. samples it is provided with, it will always have
erP (ĥ) ≥ 1/|S|, so that its sample complexity for any ε < 1/|S| is infinite: that is, it does not
satisfy the PAC learning requirement.

On the other hand, consider the case where H̄ is a disambiguation of H. Then H̄ is also a
disambiguation of H∞, and therefore, by the property of H∞ from Theorem 11, it must be that
VC(H̄) = ∞. Now let U1, U2, . . . be a sequence of disjoint subsets of X with |Ui| = i, such that
each Ui is shattered by H̄; for instance, such a sequence can be constructed by first considering
shattered sets of sizes 4i for each i, each of which has at least (1/2)4i elements not appearing in
any of the smaller sets. Then consider an ERM algorithm A for H̄ that, given any data sequence S
whose elements are all contained in Ui × {0} for one of the i ∈ N, A(S) returns a function h with
h(x) = 1 for every x ∈ Ui that does not appear in S. A(S) may be defined as any ERM in the case
S is not contained in any of the Ui × {0} sets.

Now, given any sample size m, take P uniform on Ucm × {0} for an integer c ≥ 2. Note
that this P is realizable w.r.t. H since h0 ∈ H. However, for S ∼ Pm, we will have S contained
in Ucm × {0}, but at least (c − 1)m of the cm elements of this set will not be present in S, and
therefore A(S)(x) will be 1 for at least (c− 1)m elements of Ucm. Thus, erP (A(S)) ≥ 1− 1

c . By
choosing c large, this can be made arbitrarily close to 1.
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In particular, this implies there is no finite sample size m at which PrS∼Pm(erP (A(S)) <
1− 1

c ) > 0 holds for all P realizable w.r.t. H, so that A is not a PAC learning algorithm for H.

Proof of Theorem 6 Let H∞ be the class from Theorem 11. Consider a finite realizable data se-
quence S, and assume without loss of generality that its elements are all distinct. Letting P be the
uniform distribution on S, and aiming at a prediction error at most ε < 1/|S|, the algorithm running
on a large enough sample must output with positive probability a function that realizes S. Since
we can choose S as any finite data sequence realizable w.r.t. H, the image of the learning algorithm
disambiguates H∞, and hence by Theorem 11 it must have infinite VC dimension.

Proof of Theorem 7 For the first claim, note that Theorem 34 implies that, for any realizable
data set, and any distribution supported on those points, there exists a sequence of O(VC(H)) data
points from the m points that can be fed into the algorithm from Theorem 34 to get a hypothesis ĥ
with prediction error at most 1/3 under that distribution. In conjunction with a standard boosting
algorithm (e.g., α-boost; see Lemma 37 of Section C.2), we arrive at a sequence ĥ1, . . . , ĥT , for
T = O(log(m)), where each ĥi is based on applying the algorithm from Theorem 34 to some subset
of O(VC(H)) data points, and where Majority(ĥ1, . . . , ĥT ) is correct on the entire set of m data
points. Thus, we can specify this classifier using k = O(VC(H) log(m)) data points. Together with
O(k log(k)) bits to encode an order of the points so as to recover precisely which points correspond
to which ĥi, this yields the claimed compression scheme.

For the second claim, consider the partial concept class H∞ constructed in the proof of The-
orem 11. Recall that VC(H∞) = 1, and H∞ is formed by taking disjoint copies of Hn so that
|H̄n| ≥ n(log(n))1−o(1)

for any disambiguation H̄n of Hn.
Now suppose there is a compression scheme of some size sm depending on the sample size m.

Then note that this also supplies a compression scheme for Hm for data sets of size m. But then
Proposition 14 implies there exists a disambiguation H̄m of Hm of size at most (cm/sm)sm for
a numerical constant c. On the other hand, Theorem 11 provides that H̄m must have size at least
m(log(m))1−o(1)

. Therefore, (
cm

sm

)sm
≥ m(log(m))1−o(1)

,

which implies sm ≥ c′(log(m))1−o(1) for a numerical constant c′.

To prove Theorem 8, we will rely on the following lemma.

Lemma 44 Any partial concept class H with LD(H) < ∞ admits a compression scheme of size
LD(H).

Proof Consider the optimal online learning algorithm ASOA of Littlestone (1988), defined formally
(and for partial concept classes) in the proof of Theorem 47 in Section E.2. For any data sequence
(x1, y1), . . . , (xn, yn) ∈ X × {0, 1} realizable w.r.t. H, we initialize K = {}. We then find a point
(xi, yi) in the sequence with ASOA(K)(xi) 6= yi, if one exists, and we add (xi, yi) to the set K.
We repeat this until there are no remaining points (xi, yi) with ASOA(K)(xi) 6= yi. This specifies
a compression function κ((x1, y1), . . . , (xn, yn)) = K, and the reconstruction function is simply
ASOA(K) (noting that this is invariant to the order of K). By Theorem 47, we have |K| ≤ LD(H),
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so that this specifies a compression scheme of size LD(H).

Proof of Theorem 8 Consider again the partial concept class H∞ defined in the proof of The-
orem 11, and recall that TD(H∞) ≤ 2. On the other hand, as established in Theorem 7, H∞
does not admit a bounded-size compression scheme. Together with Lemma 44, it must be that
LD(H∞) =∞.

Appendix E. Online Learning: Detailed Results and Specific Bounds

The online learning model for total concept classes is a classic framework, introduced by Littlestone
(1988), in which there is a data sequence (X1, Y1), (X2, Y2), . . ., which is considered arbitrary
(possibly adversarially-chosen), and we are interested in the number of mistakes made by a learning
algorithm A: that is, the number of times t with A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt.

E.1. Online Learning in the Realizable Case

As with the PAC model, the online model has two main variants, depending on whether we suppose
the sequence (Xi, Yi) is realizable w.r.t. H (known as the realizable case, or the mistake bound
model), or is arbitrary (known as agnostic online learning). We start by presenting the realizable
case. Specifically, we have the following definition.

Definition 45 (Realizable Online Learnability) A partial concept class H is online learnable
if there exists a bound MB(H) < ∞ such that, for every T ∈ N, there exists a learning al-
gorithm A that, for every sequence (X1, Y1), . . . , (XT , YT ) ∈ X × {0, 1} realizable w.r.t. H,∑T

t=1 1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt] ≤ MB(H).

Littlestone (1988) proved that, in the realizable case w.r.t. any total concept class H, there exists
a learning algorithm making a bounded number of mistakes if and only if the combinatorial param-
eter LD(H) is finite; this parameter has since become known as the Littlestone dimension, and is a
key quantity of interest in many learning models. Here we use the extended definition of Littlestone
dimension stated in Definition 27 for partial concept classes.

We have the following result, extending Littlestone’s classic theorem to hold for partial concept
classes. In particular, this supplies part of the claim in Theorem 15 from Section 2.5.

Theorem 46 (Realizable Online Learnability) The following statements are equivalent for a par-
tial concept class H ⊆ {0, 1, ?}X .

• LD(H) <∞.

• H is online learnable.

E.2. Proof of Theorem 46 and Quantitative Mistake Bounds

Theorem 46 will follow as an immediate implication of the following more detailed result, which
also supplies a concrete expression for the optimal mistake bound MB(H).
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Theorem 47 (Optimal Mistake Bound) For any partial concept class H, there exists an online
learning algorithm making at most LD(H) mistakes on any realizable data sequence. Moreover, for
any finite d ≤ LD(H) and any (possibly randomized) learning algorithm A, there exists a realizable
data sequence of length d on which A makes an expected number of mistakes at least d/2.

Proof The proof of this result is essentially identical to the well-known proof for the special case
of total concept classes. We include the full details nonetheless, for completeness.

We begin with the upper bound. For any sequence S ∈ (X × {0, 1})∗, define HS = {h ∈
H : êrS(h) = 0}. Then, following Littlestone (1988), we first note that the Littlestone dimension
can be interpreted inductively, and in particular, for any non-empty H′ ⊆ H, for every x ∈ X ,
there exists y ∈ {0, 1} such that LD(H′(x,y)) < LD(H′), where we interpret LD({}) = −1. Based
on this, if LD(H) < ∞, we define the Standard Optimal Algorithm (SOA) ASOA as follows. For
any S ∈ (X × {0, 1})∗ and x ∈ X , let ASOA(S)(x) = argmaxy∈{0,1} LD(HS∪{(x,y)}), breaking
ties to favor y = 0 (or by any other rule). In particular, note that if S is realizable w.r.t. H, then
at most one y ∈ {0, 1} can have LD(HS∪{(x,y)}) = LD(HS) (it is also possible that neither value
y has this property). Thus, for every sequence (x1, y1), . . . , (xT , yT ) realizable w.r.t. H, at each
t for which ASOA((x1, y1), . . . , (xt−1, yt−1))(xt) 6= yt, it must be that LD(H{(x1,y1),...,(xt,yt)}) ≤
LD(H{(x1,y1),...,(xt−1,yt−1)}) − 1. Thus, there can be at most LD(H) times t at which this occurs:
that is, ASOA makes at most LD(H) mistakes on any realizable sequence.

To prove the lower bound, we consider the set {xy : y ∈
⋃

0≤i≤d−1{0, 1}i} ⊆ X from the
definition of LD(H). We construct a data sequence via the probabilistic method. Choose y =
(y1, . . . , yd) ∈ {0, 1}d uniformly at random, and define the data sequence asX1 = x(), X2 = x(y1),
X3 = x(y1,y2), . . ., Xd = x(y1,...,yd−1), and for each i ∈ {1, . . . , d} let Yi = yi. In particular, note
that each Yt is independent of (X1, Y1), . . . , (Xt−1, Yt−1), Xt. Thus, for any learning algorithm A,
we have Pr(A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt) ≥ 1

2 (it would be equal 1/2 if the algorithm
were restricted to outputting 0 or 1, not ?). Therefore

E

[
d∑
t=1

1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt]

]
≥ d

2

by linearity of the expectation. In particular, by the law of total expectation, this implies there exists
a deterministic sequence (X1, Y1), . . . , (Xd, Yd) with this property.

E.3. Online Learning in the Agnostic Case

Similarly to the PAC model, the online learning model also has an agnostic variant (Ben-David,
Pál, and Shalev-Shwartz, 2009), which makes no assumptions about the data sequence, and rather
than bounding the number of mistakes, it bounds the excess of the number of mistakes made by the
algorithm compared to the number made by the best hypothesis in the class H: known as the regret.
Specifically, we have the following definition.

Definition 48 (Agnostic Online Learnability) A partial concept class H is agnostically online
learnable if there exists a sequence Reg(H, T ) = o(T ) such that, for every T ∈ N, there exists
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a (possibly randomized) learning algorithm A that, for every sequence (X1, Y1), . . . , (XT , YT ) ∈
X × {0, 1},

E
T∑
t=1

1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt] ≤ Reg(H, T ) + min
h∈H

T∑
t=1

1[h(Xt) 6= Yt].

For the special case of H a total concept class, Ben-David, Pál, and Shalev-Shwartz (2009)
proved that H is agnostically online learnable if and only if LD(H) <∞. Here we extend this result
to partial concept classes. In particular, this supplies the second part of the claim in Theorem 15
from Section 2.5, so that proving this result will complete the proof of Theorem 15 as well.

Theorem 49 (Agnostic Online Learnability) The following statements are equivalent for a par-
tial concept class H ⊆ {0, 1, ?}X .

• LD(H) <∞.

• H is agnostically online learnable.

E.4. Proof of Theorem 49 and Quantitative Regret Bounds for the Agnostic Case

As above, Theorem 49 will follow as an immediate implication of the following more detailed result,
which also supplies a concrete bound on the form of the optimal regret Reg(H, T ).

Theorem 50 (Optimal Regret Bound) For any partial concept class H with LD(H) > 0, there
exists an online learning algorithm achieving an expected regret guarantee

Reg(H, T ) = O
(√

LD(H)T ln(T/LD(H))
)
.

Moreover, for any finite d ≤ LD(H), any T ∈ N such that T ≥ d, and any learning algorithm A,
there exists a data sequence of length T on which A has expected regret Ω

(√
dT
)

.

The proof makes use of a classic result for learning from expert advice (Vovk, 1990, 1992; Lit-
tlestone and Warmuth, 1994; Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth,
1997; Kivinen and Warmuth, 1999; Singer and Feder, 1999); see Theorem 2.2 of Cesa-Bianchi and
Lugosi (2006). To simplify notation, we write x1:t := (x1, . . . , xt).

Lemma 51 (Experts; Cesa-Bianchi and Lugosi, 2006, Theorem 2.2) For any N,T ∈ N and
f1, . . . , fN functions X ∗ → [0, 1], letting η =

√
(8/T ) ln(N), for any (x1, y1), . . . , (xT , yT ) ∈

X × [0, 1], letting w0,i = 1 and wt,i = e−η
∑

s≤t |fi(x1:s)−ys| for each t ≤ T , i ≤ N , letting
f̄t(x1:t, y1:(t−1)) =

∑
iwt−1,ifi(x1:t)/

∑
i′ wt−1,i′ , it holds that

T∑
t=1

∣∣f̄t(x1:t, y1:(t−1))− yt
∣∣− min

1≤i≤N

T∑
t=1

|fi(x1:t)− yt| ≤
√

(T/2) ln(N).
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We are now ready for the proof of Theorem 50.
Proof of Theorem 50 As was the case of Theorem 47, the proof of this result is essentially based
on existing proofs for the special case of total concept classes, though in this case a few important
changes are required. We include the full details for completeness.

The upper bound is based on the work of Ben-David, Pál, and Shalev-Shwartz (2009). Consider
any data sequence (X1, Y1), . . . , (XT , YT ), and let h∗ = argminh∈H

∑T
t=1 1[h(Xt) 6= Yt] (break-

ing ties arbitrarily). Let t1, . . . , tq denote the subsequence of 1, . . . , T such that h∗(Xti) 6= ?. In
particular, (Xt1 , h

∗(Xt1)), . . . , (Xtq , h
∗(Xtq)) is realizable w.r.t. H. Let ASOA be as in the proof of

Theorem 47, and recall from that proof that ASOA makes at most LD(H) mistakes on any realizable
data sequence. Now construct a subsequence J∗ of {t1, . . . , tq} as follows. Initialize J∗ = ().
For each i ∈ {1, . . . , q} in increasing order, if ASOA({(Xt, h

∗(Xt))}t∈J∗)(Xti) 6= h∗(Xti) then
append ti to the sequence J∗ and continue. In particular, note that the sequence {(Xt, h

∗(Xt))}t∈J∗
is realizable w.r.t. H, so that ASOA makes at most LD(H) mistakes. On the other hand, enumerating
J∗ = {j1, . . . , j|J∗|}, for each k ≤ |J∗| we have ASOA({(Xji , h

∗(Xji))}i<k)(Xjk) 6= h∗(Xjk).
Thus, it must be that |J∗| ≤ LD(H). Moreover, for each t ∈ {t1, . . . , tq} with t /∈ J∗, we have
ASOA({(Xji , h

∗(Xji))}ji<t)(Xt) = h∗(Xt).
Now, for each subsequence J of {1, . . . , T} with |J | ≤ LD(H), for each j ∈ J , inductively

define Ŷ J
j = 1 − ASOA({(Xj′ , Ŷ

J
j′ )}j′∈J :j′<j)(Xj). Then define an algorithm AJ that, for each

t ∈ {1, . . . , T} with t /∈ J , has AJ(X1, . . . , Xt) = ASOA({(Xj , Ŷ
J
j )}j∈J :j<t)(Xt), and for each

t ∈ J , AJ(X1, . . . , Xt) = 1 − ASOA({(Xj , Ŷ
J
j )}j∈J :j<t)(Xt). In particular, note that for all i ∈

{1, . . . , q}, AJ∗(X1, . . . , Xti) = h∗(Xti). Therefore, since h∗(Xt) 6= Yt at every t /∈ {t1, . . . , tq},
we have

∑T
t=1 1

[
AJ∗(X1, . . . , Xt) 6= Yt

]
≤
∑T

t=1 1[h∗(Xt) 6= Yt].
Now to describe the online learning algorithm achieving the regret guarantee from the theorem,

we will apply the classic exponential weights algorithm with these AJ predictors as the “experts”.
Specifically, applying Lemma 51 with the above value of T , with N =

∑LD(H)
i=0

(
T
i

)
, and with

functions f1, . . . , fN given by an enumeration of the algorithms AJ , J ⊆ {1, . . . , T}, |J | ≤ LD(H),
we conclude that, for f̄t as defined in Lemma 51,

T∑
t=1

∣∣f̄t(X1:t, Y1:(t−1))− Yt
∣∣− min

1≤i≤N

T∑
t=1

|fi(X1:t)− Yt| ≤
√

(T/2) ln(N).

Let us then define a randomized predictor A such that, for any t ∈ {1, . . . , T},
A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) evaluates to 1 with probability f̄t(X1:t, Y1:(t−1)), and other-
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wise evaluates to 0 (where this random evaluation occurs independently for each t). We then have

E

[
T∑
t=1

1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt]

]
=

T∑
t=1

∣∣f̄t(X1:t, Y1:(t−1))− Yt
∣∣

≤ min
1≤i≤N

T∑
t=1

|fi(X1:t)− Yt|+
√

(T/2) ln(N)

≤
T∑
t=1

1
[
AJ
∗
(X1, . . . , Xt) 6= Yt

]
+

√√√√√(T/2) ln

 ∑
i≤LD(H)

(
T

i

)
≤

T∑
t=1

1[h∗(Xt) 6= Yt] +O

(√
LD(H)T ln

(
T

LD(H)

))
.

This completes the proof of the upper bound.
The lower bound proof is essentially identical to the existing proof for total concepts from Ben-

David, Pál, and Shalev-Shwartz (2009), but we include the details for completeness. Given 0 < d ≤
LD(H) and T ≥ d, let k = bT/dc. Define the sequence Y1, . . . , YT as independent Bernoulli(1/2)
random variables. Consider the set {xy : y ∈

⋃
0≤i≤d−1{0, 1}i} from the definition of LD(H)

(Definition 27). Let T0 = 0, and for each i ∈ {1, . . . , d − 1}, let Ti = ki, and let Td = T . Then,
for each i ∈ {1, . . . , d}, let yi = Majority(YTi−1+1, . . . , YTi) and for each t ∈ {Ti−1 + 1, . . . , Ti},
define Xt = x{yi′}i′<i

.
Since the Yt values are independent, for any learning algorithm we certainly have

E

[
T∑
t=1

1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt]

]
≥ T

2

(with equality if A outputs 0 or 1). It remains only to upper bound the value

E
[
minh∈H

∑T
t=1 1[h(Xt) 6=Yt]

]
. In particular, consider a partial concept h̄∈H with h̄(x{yi′}i′<i

)=

yi for each i ∈ {1, . . . , d}, which exists by definition of xy from Definition 27. Then, for each
i ∈ {1, . . . , d},

Ti∑
t=Ti−1+1

(
21
[
h̄(Xt) = Yt

]
− 1
)

=

Ti∑
t=Ti−1+1

(21[Yt = yi]− 1) =

∣∣∣∣∣∣
Ti∑

t=Ti−1+1

(2Yt − 1)

∣∣∣∣∣∣ ,
and Khinchine’s inequality (see Lemma A.9 of Cesa-Bianchi and Lugosi, 2006) implies

E

∣∣∣∣∣∣
Ti∑

t=Ti−1+1

(2Yt − 1)

∣∣∣∣∣∣
 ≥√(Ti − Ti−1)/2.

Thus, since

E

 Ti∑
t=Ti−1+1

(
21
[
h̄(Xt) = Yt

]
− 1
) = (Ti − Ti−1)− 2E

 Ti∑
t=Ti−1+1

1
[
h̄(Xt) 6= Yt

] ,
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we conclude that

E

 Ti∑
t=Ti−1+1

1
[
h̄(Xt) 6= Yt

] ≤ Ti − Ti−1

2
−
√
Ti − Ti−1

8
.

Therefore,

E

[
T∑
t=1

1
[
h̄(Xt) 6= Yt

]]
≤

d∑
i=1

Ti − Ti−1

2
−
√
Ti − Ti−1

8
≤ T

2
−
√
d2k

8
≤ T

2
− 1

4

√
dT .

Altogether,

E

[
T∑
t=1

1[A((X1, Y1), . . . , (Xt−1, Yt−1))(Xt) 6= Yt]−min
h∈H

T∑
t=1

1[h(Xt) 6= Yt]

]
≥ (1/4)

√
dT .

In particular, by the law of total expectation, this also implies there exists a (A-dependent) deter-
ministic choice of the sequence (X1, Y1), . . . , (XT , YT ) satisfying this.

We note that the upper bound for total concept classes has been refined by Alon, Ben-Eliezer,
Dagan, Moran, Naor, and Yogev (2021) to match the lower bound up to numerical constants: that is
Reg(H, T ) = Θ

(√
LD(H)T

)
. However, that proof uses techniques for which it is unclear whether

they can be extended to partial concept classes. Thus, there remains an open question:

Open Question 8 Is the optimal regret for partial concept classes always Θ
(√

LD(H)T
)

?
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Mika Göös. Lower bounds for clique vs. independent set. In Venkatesan Guruswami, editor, IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 1066–1076. IEEE Computer Society, 2015. doi: 10.1109/FOCS.
2015.69. URL https://doi.org/10.1109/FOCS.2015.69.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample compression
for nearest neighbors. IEEE Trans. Inf. Theory, 64(6):4120–4128, 2018. doi: 10.1109/TIT.2018.
2822267. URL https://doi.org/10.1109/TIT.2018.2822267.

T. Graepel, R. Herbrich, and J. Shawe-Taylor. PAC-Bayesian compression bounds on the prediction
error of learning algorithms for classification. Machine Learning, 59(1-2):55–76, 2005.

S. Hanneke. The optimal sample complexity of PAC learning. Journal of Machine Learning Re-
search, 17(38):1–15, 2016.

S. Hanneke, A. Kontorovich, and M. Sadigurschi. Sample compression for real-valued learners. In
Proceedings of the 30th International Conference on Algorithmic Learning Theory, 2019.

D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on randomly drawn
points. Information and Computation, 115(2):248–292, 1994.

Ralf Herbrich and Robert C. Williamson. Algorithmic luckiness. J. Mach. Learn. Res., 3:175–212,
2002. URL http://jmlr.org/papers/v3/herbrich02a.html.

https://arxiv.org/abs/2006.10929
https://arxiv.org/abs/2006.10929
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/3357713.3384290
https://arxiv.org/abs/2012.03893
https://arxiv.org/abs/2012.03893
https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1109/TIT.2018.2822267
http://jmlr.org/papers/v3/herbrich02a.html


REFERENCES 50

J. Kivinen and M. K. Warmuth. Averaging expert predictions. In Proceedings of the 4th European
Conference on Computational Learning Theory, 1999.

A. Kontorovich and I. Pinelis. Exact lower bounds for the agnostic probably-approximately-correct
(PAC) machine learning model. The Annals of Statistics, 47(5):2822–2854, 2019.

Aryeh Kontorovich, Sivan Sabato, and Roi Weiss. Nearest-neighbor sample compression: Ef-
ficiency, consistency, infinite dimensions. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
1573–1583, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
934815ad542a4a7c5e8a2dfa04fea9f5-Abstract.html.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished
manuscript, 1986a.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and Computa-
tion, 108(2):212–261, 1994.

Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. 1986b.

Hartmut Maennel, Ibrahim M. Alabdulmohsin, Ilya O. Tolstikhin, Robert J. N. Baldock, Olivier
Bousquet, Sylvain Gelly, and Daniel Keysers. What do neural networks learn when trained with
random labels? In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e4191d610537305de1d294adb121b513-Abstract.html.

A. Maurer and M. Pontil. Empirical Bernstein bounds and sample-variance penalization. In Pro-
ceedings of the 22nd Conference on Learning Theory, 2009.

Shay Moran and Amir Yehudayoff. Sample compression schemes for VC classes. J. ACM, 63(3):
21:1–21:10, 2016. doi: 10.1145/2890490. URL https://doi.org/10.1145/2890490.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to ex-
plain generalization in deep learning. In Hanna M. Wallach, Hugo Larochelle, Alina
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