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We prove that any family E1, . . . ,Edrne of (not necessarily distinct) sets of edges in an r-
uniform hypergraph, each having a fractional matching of size n, has a rainbow fractional
matching of size n (that is, a set of edges from distinct Ei’s which supports such a fractional
matching). When the hypergraph is r-partite and n is an integer, the number of sets
needed goes down from rn to rn−r+1. The problem solved here is a fractional version
of the corresponding problem about rainbow matchings, which was solved by Drisko and
by Aharoni and Berger in the case of bipartite graphs, but is open for general graphs as
well as for r-partite hypergraphs with r>2. Our topological proof is based on a result of
Kalai and Meshulam about a simplicial complex and a matroid on the same vertex set.

1. Introduction

Given a family M1, . . . ,Mm of (not necessarily distinct) matchings in a graph
G, a rainbow matching of size n is a matching {e1, . . . ,en} with ei ∈Mσ(i),
i= 1, . . . ,n, so that σ(1), . . . ,σ(n) are distinct. Drisko proved the following
theorem (which he stated using Latin-rectangles terminology).

Theorem 1.1 (Theorem 1 of Drisko [8]). Let G=Kn,k with n≤k. Any
family of 2n−1 matchings of size n in G has a rainbow matching of size n.
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Drisko applied his theorem to questions about complete mappings for
group actions, and difference sets in groups. Later, Alon [4] pointed out
connections to additive number theory, and showed in particular that The-
orem 1.1 implies the well-known result of Erdős, Ginzburg and Ziv [9].

Aharoni and Berger re-formulated and re-proved Drisko’s theorem, while
removing the assumption that one side of the bipartite graph is of size n.
Namely, they established the following.

Theorem 1.2 (Theorem 4.1 of Aharoni and Berger [1]). Any family
of 2n−1 matchings of size n in a bipartite graph has a rainbow matching of
size n.

Drisko showed that the parameter 2n− 1 is best possible: Consider a
cycle of length 2n, and a family of 2n−2 matchings consisting of n−1 copies
of each of its two perfect matchings. He conjectured that this is the only
extremal example, and Aharoni, Kotlar and Ziv [3] proved this not only in
Drisko’s Kn,k setting but in general bipartite graphs.

If the bipartiteness assumption is removed, the result of Theorem 1.2
is no longer true. Indeed, Barát, Gyárfás and Sárközy [7] showed that for
even n, one can start as above with n−1 copies of each of the two perfect
matchings in C2n (whose vertices we denote by 1, . . . ,2n in cyclic order), and
add one extra matching {13, 24, 57, 68, . . . ,(2n−3)(2n−1), (2n−2)2n}, still
without having a rainbow matching of size n.

No examples with more than 2n− 1 matchings of size n in arbitrary
graphs are known which have no rainbow matching of size n. It may well be
the case that 2n matchings suffice, perhaps already 2n−1 are enough if n
is odd. However, the best known result for arbitrary graphs is the following
one due to Aharoni et al.

Theorem 1.3 (Theorem 1.9 of Aharoni et al. [2]). Any family of 3n−2
matchings of size n in an arbitrary graph has a rainbow matching of size n.

In the absence of a tight result for matchings in arbitrary graphs, we are
led to consider the fractional version of the problem. Recall that a fractional
matching for a set E of edges is a function f : E→R+ such that

∑
e3v f(e)≤1

for every vertex v. The size of f is
∑

e∈E f(e). The fractional matching
number ν∗(E) is the maximal size of a fractional matching for E. In bipartite
graphs, by Kőnig’s theorem, this number is equal to the matching number
ν(E). In an arbitrary graph, ν∗(E) may be larger than ν(E), and is either
an integer or a half-integer.

Given a family E1, . . . ,Em of (not necessarily distinct) sets of edges in a
graph G, a rainbow fractional matching of size n is a set of edges {e1, . . . ,ek}
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with ei∈Eσ(i), i= 1, . . . ,k, so that σ(1), . . . ,σ(k) are distinct, together with
a fractional matching f : {e1, . . . ,ek}→R+ of size n.

Due to Kőnig’s theorem, the following is equivalent to Theorem 1.2.

Theorem 1.4. Let n be a positive integer. Any family E1, . . . ,E2n−1 of sets
of edges in a bipartite graph, such that ν∗(Ei)≥n for i=1, . . . ,2n−1, has a
rainbow fractional matching of size n.

We get here a new proof of Theorem 1.2/1.4 by considering fractional
matchings. Our unified approach also yields the following new result for
arbitrary graphs.

Theorem 1.5. Let n be a positive integer or half-integer. Any family
E1, . . . ,E2n of sets of edges in an arbitrary graph, such that ν∗(Ei) ≥ n
for i=1, . . . ,2n, has a rainbow fractional matching of size n.

Thus, the cost of allowing arbitrary graphs instead of just bipartite ones is
only one more family in the fractional case. This suggests that the difficulty
of the problem for (integral) matchings in arbitrary graphs has to do with
the fact that matchings behave differently than fractional matchings in such
graphs.

The parameter 2n is best possible for fractional matchings in arbitrary
graphs. Indeed, if n is a half-integer, say n= k+ 1

2 , k≥ 1, take E1, . . . ,E2k

to be 2k copies of the edge set of a cycle of length 2k+1. Then ν∗(Ei)=n,
but we need all 2k+1 edges to achieve this, so there is no rainbow fractional
matching of size n. If n≥3 is an integer, we can repeat the above construction
using two vertex-disjoint odd cycles whose lengths add up to 2n.

In fact, our approach is more general, as we consider r-uniform hyper-
graphs for any r≥ 2. The definition of a fractional matching for a set E of
edges of size r is the same as above, but for r > 2 the number ν∗(E) may
have as its fractional part any rational number in [0,1).

Our main result, of which Theorem 1.5 is the case r=2, is the following.

Theorem 1.6. Let r≥2 be an integer, and let n be a positive rational num-
ber. Any family E1, . . . ,Edrne of sets of edges in an r-uniform hypergraph,
such that ν∗(Ei)≥n for i=1, . . . ,drne, has a rainbow fractional matching of
size n.

Constructions similar to those described above for r=2 show that when
rn is an integer, we cannot do with fewer than rn sets of edges. When rn
is not an integer, we believe that brnc sets (instead of drne) suffice, but our
method of proof is not capable of showing this.
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Just like bipartite graphs behave slightly better than general graphs with
respect to guaranteeing a rainbow fractional matching, so do r-partite hy-
pergraphs compared to general r-uniform hypergraphs. Recall that a hyper-
graph is r-partite if there exists a partition A1, . . . ,Ar of the vertex set, so
that every edge consists of exactly one vertex from each Ai.

The following is a sharpening of the main result when confined to r-
partite hypergraphs and integer values of n.

Theorem 1.7. Let r≥2 and n≥1 be integers. Any family E1, . . . ,Ern−r+1

of sets of edges in an r-partite hypergraph, such that ν∗(Ei) ≥ n for i =
1, . . . , rn−r+1, has a rainbow fractional matching of size n.

While the requirement that n be an integer is restrictive, we note that it
always holds when the hypergraph is equi-partite and each Ei has a perfect
fractional matching. In this case n= |A1|= · · ·= |Ar| is the size of a perfect
fractional matching, and Theorem 1.7 guarantees the existence of a rainbow
perfect fractional matching. The parameter rn−r+1 is best possible here.
Indeed, taking n= r−1 to be a prime power, and letting Ei be the set of
lines of a truncated projective plane of order n, we have |Ei|=n2=rn−r+1
and ν∗(Ei) =n. However, we need all edges to achieve this value of ν∗ (see
Theorem 2.1 of Füredi [10]), so fewer copies of Ei do not suffice for a rainbow
perfect fractional matching. We also observe that Theorem 1.7 specializes
to Theorem 1.4 in the case r=2.

Thus, we only have to prove Theorems 1.6 and 1.7. This will be done
in Section 3. The proof is based on a topological result, due to Kalai and
Meshulam [11], which they developed as an extension of the colorful versions,
due to Lovász and Bárány [6], of the Helly and Carathéodory theorems. The
necessary notions will be reviewed in Section 2.

In the case of perfect fractional matchings, both Theorem 1.6 and The-
orem 1.7 follow from Bárány’s colorful Carathéodory theorem.

Theorem 1.8 (Theorem 2.2 of Bárány [6]). Suppose V1, . . . ,Vn ⊆ Rn
and a ∈ posVi (the conical hull of Vi) for i = 1, . . . ,n. Then there exist
elements vi∈Vi for each i such that a∈pos{v1, . . . ,vn}.

To derive Theorem 1.6 in the case of rn vertices, note that a set E of
edges has a perfect fractional matching if and only if ~1 ∈ pos{χe : e ∈ E},
where χe is the indicating vector of e as a subset of the vertex set. To derive
the corresponding case of Theorem 1.7 note also that since the sum of entries
of χe in every side of the hypergraph is the same, the vectors χe all live in
an (rn−r+1)-dimensional subspace.
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We end the introduction with a comment on the relation between the
question of the existence of a rainbow fractional matching, dealt with here,
and the original question concerning the existence of a rainbow (integral)
matching. For graphs, the state of affairs in the two questions is very similar:
the questions are equivalent in the bipartite case, and in the general case we
know that 2n sets suffice for a rainbow fractional matching of size n, while
3n−2 suffice for a rainbow matching of size n (and it may well be the case
that already 2n suffice). For r-uniform hypergraphs with r > 2, however,
the two questions diverge. While drne sets suffice for a rainbow fractional
matching of size n, results of Aharoni and Berger [1] and Alon [4] show that
even in r-partite hypergraphs, the number of matchings of size n required
for a rainbow matching of size n grows exponentially in r (the nature of the
dependence on n is far from being understood).

2. Topological tools

Let V be a finite vertex set. A simplicial complex on V is a family X of
subsets of V (called simplices or faces) which is downward closed (i.e., σ⊆
τ ∈X =⇒σ ∈X). A face τ ∈X which is maximal with respect to inclusion
is called a facet of X. A matroid on V is a simplicial complex M which
satisfies the augmentation property (i.e., σ, τ ∈M , |σ|< |τ |=⇒σ∪{v}∈M
for some v∈τ \σ). The rank function ρ of M assigns to every subset U⊆V
the number ρ(U)=max{|σ| : σ∈M,σ⊆U}.

Let X be a simplicial complex, and let d be a positive integer. If σ is a
face which is contained in a unique facet τ of X, and |σ|≤d, the operation
of removing from X the face σ and all faces containing it is called an ele-
mentary d-collapse. A complex X is d-collapsible if there exists a sequence
of elementary d-collapses X =X0−−→

σ1
X1−−→

σ2
X2−−→

σ3
· · · −−→

σm
Xm = {∅} that

reduces X to {∅}. Wegner [12] introduced this property, and observed that
every d-collapsible complex X is d-Leray, i.e., all its induced subcomplexes
have trivial homology in dimensions d and above. As we will not work here
directly with d-Lerayness, we do not give a detailed definition.

We will use the following observation about d-collapsibility (the anal-
ogous statement for d-Lerayness appeared as Proposition 14(i) of Alon et
al. [5]).

Proposition 2.1. Let X be a simplicial complex on V . Consider a blown-
up vertex set Ṽ which contains one or more copies of each vertex in V , i.e.,
Ṽ = {(v, i) : v ∈ V, i= 1, . . . ,kv}, and the simplicial complex X̃ on Ṽ having
as faces those subsets of Ṽ whose projection on V is a face of X. Let d be
a positive integer. If X is d-collapsible, then so is X̃.
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Proof. It suffices to prove the statement for the case when only one vertex
u∈V is blown up, being replaced by two copies of it. The general case will
follow by repeated use of this special case of the proposition.

Adapting our notation to the special case, we have Ṽ = V ∪ {ũ}, the
restriction of X̃ to V coincides with X, and vertices u, ũ are clones, in
the sense that for all σ ⊆ V \ {u} we have σ ∪ {u} ∈ X̃ ⇐⇒ σ ∪ {ũ} ∈
X̃ ⇐⇒ σ ∪ {u, ũ} ∈ X̃. Now, given a sequence of elementary d-collapses
X =X0 −−→

σ1
X1 −−→

σ2
X2 −−→

σ3
· · · −−→

σm
Xm = {∅}, we show how to modify the

sequence so as to reduce X̃ to {∅}. Whenever the original σi does not contain
u, we use the same σi in our modified sequence. Whenever the original σi
contains u, we replace the step by a double step using σi and (σi\{u})∪{ũ},
respectively. One can verify by induction on i that these are indeed legal
elementary d-collapses, and that after each step or double step the remaining
subcomplex X̃i satisfies: its restriction to V coincides with Xi, and vertices
u, ũ are clones with respect to X̃i. It follows in particular that X̃m={∅} as
required.

The following result of Kalai and Meshulam is our main tool.

Theorem 2.2 (Theorem 1.6 of Kalai and Meshulam [11]). Let X be
a simplicial complex and let M be a matroid with rank function ρ, both on
the same vertex set V , such that M⊆X. Let d be a positive integer. If X is
d-Leray, then there exists a face τ ∈X such that ρ(V \τ)≤d.

We will only use the conclusion of this theorem under the stronger as-
sumption that X is d-collapsible. (Alternatively, we could use Theorem 2.1
of [11] which, under this stronger assumption, derives a slightly stronger
conclusion than we need.)

3. Proofs

The main ingredient of the proof of Theorem 1.6 is the following.

Theorem 3.1. Let r≥ 2 be an integer, let E be the set of edges of some
r-uniform hypergraph, and let n > 1 be a rational number. The simplicial
complex X on E, defined by X = {E′ ⊆ E : ν∗(E′) < n}, is (drne − 1)-
collapsible.

Note that the condition n > 1 only serves to avoid a trivial case: when
0<n≤1 our complex is just {∅}. Before proving this theorem, we show how
Theorem 1.6 follows from it via Proposition 2.1 and Theorem 2.2.
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Proof of Theorem 1.6. Let E1, . . . ,Edrne be sets of edges of size r such
that ν∗(Ei)≥n for i=1, . . . ,drne. Assume for the sake of contradiction that
there is no rainbow fractional matching of size n. Clearly, we must have
n>1.

We shall apply Theorem 2.2 to a simplicial complex and a matroid on

the set Ẽ consisting of all edges in E =
⋃drne
i=1 Ei labeled by the sets they

appear in, i.e.,

Ẽ = {(e, i) : e ∈ Ei} .

The simplicial complex on Ẽ that we consider is

X̃ = {Ẽ′ ⊆ Ẽ : ν∗({e : ∃i s.t. (e, i) ∈ Ẽ′}) < n}.

Note that the complex X̃ is obtained from the complex X of Theorem 3.1
by a blowing up construction as in Proposition 2.1. Since, by Theorem 3.1,
X is (drne−1)-collapsible, it follows by Proposition 2.1 that so is X̃.

We consider the partition matroid M on Ẽ with parts corresponding to
E1, . . . ,Edrne, i.e.,

M = {Ẽ′ ⊆ Ẽ : |Ẽ′ ∩ (Ei × {i})| ≤ 1, i = 1, . . . , drne}.

Our assumption that there is no rainbow fractional matching of size n means
that M ⊆ X̃. As X̃ is (drne−1)-collapsible, and hence (drne−1)-Leray, it
follows from Theorem 2.2 that there exists Ẽ′ ∈ X̃ such that ρ(Ẽ \ Ẽ′) ≤
drne−1. The latter means that Ẽ\Ẽ′ entirely misses one of the parts in the
partition. Thus, there exists i such that Ei×{i} ⊆ Ẽ′, which is impossible
because ν∗(Ei)≥n and Ẽ′∈X̃.

We prove below a generalization of Theorem 3.1 which allows for edge and
vertex weights. To explain the role of these weights in facilitating the proof,
we note that we were inspired by Wegner’s [12] proof that the nerve of every
finite family of convex sets in Rd is d-collapsible. Our proof essentially follows
his sliding hyperplane argument, but instead of using the intersections of
the convex sets to guide the choice of collapse moves, we use the values of
ν∗ on subsets of E. Wegner’s generic choice of the direction in which the
hyperplane moves is achieved here by slightly perturbing the vertex weights.
Where he slightly modifies the convex sets in order to apply induction, we
slightly perturb the edge weights.
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Let E be a set of edges on a vertex set V . Let a={ae}e∈E and b={bv}v∈V
be systems of positive real weights. For any E′⊆E we consider

ν∗a,b(E′) = max
∑
e∈E′

aef(e)

s.t.
∑
e3v

f(e) ≤ bv ∀v ∈ V

f(e) ≥ 0 ∀e ∈ E′.

By linear programming duality, the above value is equal to

τ∗a,b(E′) = min
∑
v∈V

bvg(v)

s.t.
∑
v∈e

g(v) ≥ ae ∀e ∈ E′

g(v) ≥ 0 ∀v ∈ V.

The case, where all ae and all bv are equal to 1 gives the standard fractional
matching and covering numbers.

The following extends Theorem 3.1 to the weighted set-up.

Theorem 3.2. Let r≥2 be an integer, and let E be the set of edges of some
r-uniform hypergraph on a vertex set V . Let a={ae}e∈E and b={bv}v∈V be
systems of positive real weights, and write a=mine∈E ae and b=minv∈V bv.
Let n > ab be a real number. The simplicial complex X = Xa,b,n on E,
defined by X={E′⊆E : ν∗a,b(E′)<n}, is (d rnab e−1)-collapsible.

Proof. We proceed by induction on |X|. If X = {∅} there is nothing to
show, so we assume that |X|>1.

We will assume that for any E′ ⊆E there is a unique function g on V
that attains the minimum in the program defining τ∗a,b(E′). Indeed, we can
achieve this by slightly perturbing the vertex weights b. If the perturbation
is small enough and does not decrease any bv, it does not affect the complex
X=Xa,b,n, nor the value of d rnab e−1 (due to rounding up).

Let n < n be defined by n = maxE′∈X ν
∗
a,b(E′), and let E ∈ X be a

set of edges which attains this maximum, and is inclusion-minimal among
such sets. We will show that removing E and all its supersets from X is
an elementary (d rnab e−1)-collapse, which leaves a subcomplex of X to which

induction may be applied. This is done in the following three claims.

Claim 1. E is contained in a unique facet of X.
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Let E+ = {e ∈ E \E : E ∪{e} ∈ X}. Let e be any edge in E+. By the
maximality of n, we have ν∗a,b(E∪{e})=ν∗a,b(E)=n, and hence τ∗a,b(E∪{e})=

τ∗a,b(E) = n. By our assumption above, there is a unique function g on V

that attains the minimum defining τ∗a,b(E), so this function must also satisfy

the constraint
∑

v∈e g(v)≥ ae for the extra edge e. As this is true for each

e∈E+, the same function g satisfies the constraints for all edges in E∪E+,
and therefore τ∗a,b(E ∪E+) = n as well, implying that E ∪E+ ∈X. Thus,

E∪E+ is the unique facet of X that contains E.

Claim 2. |E|≤d rnab e−1.

Consider the space RE of real-valued functions f defined on E. The
constraints

∑
e3v f(e)≤bv for v∈V and f(e)≥0 for e∈E define a polytope P

in RE , and the maximum of
∑

e∈E aef(e) over P equals n. Hence, there exists

a vertex f of P at which the maximum is attained, i.e.,
∑

e∈E aef(e) = n.

Any vertex of P must satisfy at least |E| of the constraints defining P as
equalities. However, if f(e)=0 for some e∈E, then ν∗a,b(E\{e})=ν∗a,b(E)=

n, contradicting the choice of E as inclusion-minimal. Therefore, we must
have

∑
e3v f(e) = bv for all v ∈U , where U is some subset of V of size |E|.

Now

|U |b ≤
∑
v∈U

bv =
∑
v∈U

∑
e3v

f(e) =
∑
e∈E

∑
v∈e∩U

f(e) ≤ r
∑
e∈E

f(e)

≤ r

a

∑
e∈E

aef(e) =
rn

a
.

Thus |E|= |U |≤ rn
ab <

rn
ab , and since |E| is an integer it is at most d rnab e−1.

Claim 3. Let X̂ = {E′ ∈X : E′ +E} be the remaining subcomplex of X.

Then either X̂ = {∅}, or there exists a system of positive real edge weights

â={âe}e∈E so that X̂ is the complex corresponding to â,b,n, i.e.,

X̂ = {E′ ⊆ E : ν∗â,b(E′) < n},

and the inequalities n>âb, rn
âb ≤

rn
ab hold.

We are going to show that for sufficiently small ε> 0, the edge weights
â={âe}e∈E defined by

âe =

{
ae if e ∈ E
ae − ε if e /∈ E
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satisfy the requirements of the claim. To show that X̂={E′⊆E : ν∗â,b(E′)<

n}, we consider three kinds of subsets E′⊆E. If E′ /∈X (and so E′ /∈X̂), we
know that ν∗a,b(E′)≥n, and therefore ν∗â,b(E′)>n for small enough ε, since

n<n. If E′ ∈X but E′⊇E (and so E′ /∈ X̂), we have ν∗â,b(E′)≥ ν∗â,b(E) =

ν∗a,b(E) = n. For the third kind, suppose that E′ ∈X and E′ + E (and so

E′ ∈ X̂), and assume for the sake of contradiction that ν∗â,b(E′)≥n. Let f

be a function on E′ which satisfies the constraints of the program defining
ν∗â,b(E′) and gives

∑
e∈E′ âef(e)≥n. The support of f cannot be contained

in E′∩E, because the latter is a proper subset of E, and this would contradict
the choice of E as inclusion-minimal. Hence, there exists an edge e∈E′ \E
with f(e)>0, and therefore

∑
e∈E′ aef(e)>

∑
e∈E′ âef(e)≥n, contradicting

the maximality of n. This completes the proof that X̂={E′⊆E : ν∗â,b(E′)<

n}. Since we may assume that X̂ 6= {∅}, and clearly ν∗â,b({e})≥ âb for any

single edge, it follows that n > âb. Finally, since n < n, choosing ε small
enough when defining â guarantees that rn

âb ≤
rn
ab holds.

Applying the induction hypothesis to X̂ completes the proof of Theo-
rem 3.2.

Having proved Theorem 1.6, we now indicate how to get the improvement
stated in Theorem 1.7 for the r-partite case with integer n.

Proof of Theorem 1.7. The proof follows the same line, except that in
the r-partite case the conclusion of Theorem 3.2 becomes: X is (rb nabc)-
collapsible, where n=maxE′∈X ν

∗
a,b(E′) as defined in the original proof.

To establish the corresponding bound in Claim 2, we decompose the set
of vertices U for which

∑
e3v f(e)=bv holds, as U=

⋃r
i=1Ui, where Ui is the

intersection of U with the i-th part of the vertex set. Then we can write for
each i:

|Ui|b ≤
∑
v∈Ui

bv =
∑
v∈Ui

∑
e3v

f(e) =
∑
e∈E

∑
v∈e∩Ui

f(e) ≤
∑
e∈E

f(e)

≤ 1

a

∑
e∈E

aef(e) =
n

a
.

Thus |Ui| ≤ b nabc, and summing these inequalities for i= 1, . . . , r we obtain

|E|= |U |≤rb nabc.
Just as in the original proof, we apply the induction hypothesis to the

remaining subcomplex X̂, getting that X̂ is (rb n̂âbc)-collapsible, where n̂=
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max
E′∈X̂ ν

∗
â,b(E′). We have n̂<n and therefore, by choosing ε small enough

when defining â, we guarantee that rb n̂âbc ≤ rb nabc, so the induction goes

through.
In the unweighted case, the result just proved shows that X is (rbnc)-

collapsible. We assume in Theorem 1.7 that n is an integer, and clearly
we may assume n > 1. As n < n we have bnc ≤ n− 1, thus X is (rn− r)-
collapsible. Just as in the proof of Theorem 1.6, this implies the conclusion
of Theorem 1.7 with rn−r+1 sets of edges.

Acknowledgements. We are grateful to Dani Kotlar, Roy Meshulam and
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