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Abstract

A famous conjecture of Caccetta and Häggkvist is that in a

digraph on n vertices and minimum outdegree at least n/r

there is a directed cycle of length r or less. We consider the

following generalization: in an undirected graph on n

vertices, any collection of n disjoint sets of edges, each of

size at least n/r, has a rainbow cycle of length r or less. We

focus on the case r = 3 and prove the existence of a

rainbow triangle under somewhat stronger conditions than

in the conjecture. In our main result, whenever n is larger

than a suitable polynomial in k, we determine the

maximum number of edges in an n‐vertex edge‐colored
graph where all color classes have size at most k and there

is no rainbow triangle. Moreover, we characterize the

extremal graphs for this problem.
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1 | INTRODUCTION

The following conjecture is one of the best known in graph theory:

Conjecture 1.1 (Caccetta and Häggkvist [3]). For every positive integer r , every digraph on
n vertices with minimum outdegree at least n/r has a directed cycle of length at most r .

This conjecture is trivial for ≤r 2 and has been proved for ≥r n2 by Shen [22]. The special
case r = 3 has received considerable attention [2,9,19,21]; the best known bound in this case is
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given by a theorem of Hladký, Král’, and Norin [10] asserting that every simple digraph on n
vertices with minimum outdegree at least n0.3465 contains a directed triangle.

The following conjecture of the first author (unpublished) is a generalization of this
conjecture, which concerns undirected, simple graphs. It replaces the notion of “directed cycle”
by that of “rainbow cycle.” Define an edge‐colored graph to be a graph G V E= ( , ) equipped
with a distinguished partition C C C{ , , …, }p1 2 of E, called a color partition. The sets Ci are called
color classes, the indices ∈i p{1, …, } are called colors, and we say that an edge e has color i if
∈e Ci. A subgraph H of G is called rainbow if distinct edges of H have distinct colors.

Conjecture 1.2. Let r be a positive integer and let G be an edge‐colored graph on n

vertices. If there are n color classes, all of size at least n/r, thenG contains a rainbow cycle of
length at most r .

To see that Conjecture 1.2 implies the original, let r be a positive integer and let D be a
directed simple graph on a setV of n vertices with minimum outdegree at least n/r. LetG be the
undirected underlying graph of D (which has the same vertex and edge set). Extend G to an
edge‐colored graph with the color partition ∣ ∈A v v V{ ( ) }D

+ (here A v( )D
+ denotes the set of edges

of D incident with v and directed away from it). Conjecture 1.2 implies that G has a rainbow
cycle of length at most r , and it is easy to see that it corresponds to a directed cycle of length at
most r in the original digraph D.

Since the Caccetta‐Häggkvist conjecture is sharp, if true, so is this conjecture. The standard
example showing that the requirement on the size of the color classes cannot be relaxed is
obtained by taking a cycle of length n kr= + 1 with vertices v v, …, n1 , and defining Ci ( ≤ ≤i n1 )
to be the set of all edges ≤ ≤v v j k, 1i i j+ (indices taken cyclically). Conjecture 1.2 is sharp also in
another sense, namely, the requirement on the number of colors cannot be relaxed. An example
showing that n − 1 colors do not suffice is obtained by adding a new vertex z, which is not part of
the cycle, to the previous example (so now n kr= + 2), and adding to eachCi ( ≤ ≤i n1 − 1) the
edge v zi . (Below, in Example 3.5, the case r = 3 of this example will serve yet another purpose.)

In this paper, we focus on the case r = 3 of Conjecture 1.2. This leads us to seek conditions
on an edge‐colored graph that guarantee the existence of a rainbow triangle. Such conditions
have been studied in the literature [4,5,7,8,11–13]. The feature special to the present paper is
that the size of the color classes plays the key role.

2 | TWO OBSERVATIONS

Some straightforward arguments give reasonably good approximations to Conjecture 1.2 for the
special case r = 3. Henceforth we use the term triangle for a subgraph isomorphic to K3. The
case r = 3 of Conjecture 1.2 says that every edge‐colored graph on n vertices with n color
classes, each of size at least n/3, contains a rainbow triangle. The following theorem gives two
approximations to this.

Theorem 2.1. Let G be an edge‐colored graph on n vertices. If either of the following
conditions is satisfied, then G has a rainbow triangle.

(1) There are at least (9/8)n color classes, each of size at least n/3.
(2) There are at least n color classes, each of size at least 2n/5.
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To prove these statements, for every graph G let t G( ) denote the number of triangles in G.

Lemma 2.2. Let G be an edge‐colored graph with m edges without rainbow triangles. If
every color class has size at most k, then ≤t G m k( ) (1/2) ( − 1).

Proof. Let C C{ , …, }p1 be the color partition of G. For a triangle, there is a color class
containing the majority of its edges. Every color i can be the majority for at most ∣ ∣

( )
C

2
i

triangles. Thus

∑ ∑≤
∣ ∣

∣ ∣ ≤t G
C

C m
m
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k m m k( )
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□

The lemma bounds from above the number of triangles which can appear in an edge‐colored
graph without rainbow triangles. Contrarily, there is a rather straightforward lower bound on
the number of triangles in a graph with n vertices and m edges, which follows from a nice
application of the Cauchy‐Schwarz inequality.

Theorem 2.3 (Goodman [6]; see also Nordhaus and Stewart [17]). If G is a graph with n
vertices and m edges, then

≥t G
m

n
m

n
( )

4

3
−

4
.

2⎛
⎝⎜

⎞
⎠⎟

Note that this implies Mantel’s theorem [15]—the special case of Turán’s theorem which
asserts that an n‐vertex graph with more than n2/4 edges contains a triangle. Goodman’s
theorem was improved by Bollobás [1], and more recently Razborov [18] proved a theorem
establishing the precise dependence between the edge density and triangle density. (This result
was then extended by Nikiforov [16] to K4 subgraphs and by Reiher [20] for cliques of arbitrary
size.) However, for the purpose of our application, using Razborov’s theorem instead of
Goodman’s provides no improvement.

Proof of Theorem 2.1. Assume (for a contradiction) that G is an edge‐minimal graph
which violates one of the conditions. Then the size of each color class is k, where

⌈ ⌉k n= /3 in the first case and ⌈ ⌉k n= 2 /5 in the second. Now, combining Lemma 2.2 and
Theorem 2.3, we obtain the inequality ≥n k m n3 ( − 1) 8 − 2 2. As ≥m nk(9/8) in the first
case and ≥m nk in the second, we get a contradiction in both cases. □

3 | BOUNDED ‐SIZE COLOR CLASSES

For positive integers n k, define g n k( , ) to be the largest integerm so that there exists an edge‐
colored graph with n vertices andm edges, so that all color classes have size at most k and there
is no rainbow triangle. If we knew that ⌈ ⌉ ⌈ ⌉g n n n n( , /3 ) < /3 , then the r = 3 case of Conjecture
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1.2 would follow. Thus, determining g n k( , ) for all n and k appears at least as difficult as the
r = 3 case of the Cacceta‐Häggkvist conjecture. But it is possible to calculate g n k( , ) for n
suitably larger than k. This is the main content of this paper.

We start by introducing a family of edge‐colored graphs that, as we shall later prove, achieve
the optimal bound for g n k( , ) whenever n is sufficiently large. To define this family, let k a b, ,

be positive integers. Consider a complete bipartite graph Ka b, with bipartition A B( , ) where
∣ ∣A a= and ∣ ∣B b= . Form a new graph Ha b

k
, from this graph by adding ⌊ ⌋b k/ disjoint copies of Kk

on the set B, and then if ⌊ ⌋r b k b k= − / > 0 we add another clique of size r to B, disjoint from
the rest. Next we equip this graph with an edge coloring. Let ⌈ ⌉B B, …, b k1 / be the cliques which
were added to B, and for every ∈v A and ≤ ≤ ⌈ ⌉i b k1 / declare the set of edges between v and
Bi to be a color class. Then, for each i, order the vertices of Bi as u u, …, k1 ′ (where ∣ ∣k B= i

′ ), and
for every ≤ ≤j k1 − 1′ declare the set of edges between uj and u u{ , …, }j k+1 ′ to be a color class. It
is straightforward to verify that all color classes have size at most k, and there is no rainbow
triangle.

Remark: The color classes which contain edges with both ends in B have sizes ranging from 1

up to k − 1. If one wishes to obtain a coloring where all color classes have size equal to k, this
can easily be arranged in the case when k2 divides b by merging color classes from this
construction.

When k = 1 all subgraphs are rainbow, so the Turán graph ⌊ ⌋ ⌈ ⌉K n n/2 , /2 (which is also
isomorphic to ⌊ ⌋ ⌈ ⌉H n n/2 , /2

1 ) has the maximum number of edges without a rainbow triangle. Thus

g n
n n

( , 1) =
2 2

.
⎢
⎣⎢

⎥
⎦⎥

⎡
⎢⎢

⎤
⎥⎥

Next consider the case k = 2.

Theorem 3.1. The values of g n( , 2) are given by

(1) g (5, 2) = 8,
(2) ⌊ ⌋⌈ ⌉ ⌊ ⌈ ⌉⌋g n n n n( , 2) = /2 /2 + (1/2) /2 for ≠n 5.

Proof. To see that ≥g (5, 2) 8 let G be the 5‐wheel with center z and cycle vertices
v v v v, , ,1 2 3 4, and let the color classes be ≤ ≤C v v v z i= { , } (1 4)i i i i+1 , where ≔v v5 1. To
see that ≥ ⌊ ⌋⌈ ⌉ ⌊ ⌈ ⌉⌋g n n n n( , 2) /2 /2 + (1/2) /2 , notice that the graph ⌊ ⌋ ⌈ ⌉H n n/2 , /2

2 has n

vertices and ⌊ ⌋⌈ ⌉ ⌊ ⌈ ⌉⌋n n n/2 /2 + (1/2) /2 edges, setting this as a lower bound on g n( , 2).
For an upper bound, we shall use the following stability version of Turán’s theorem.

Theorem 3.2 (Lovász and Simonovits [14]). If G is a graph with n vertices and
⌊ ⌋⌈ ⌉n n s/2 /2 + edges, where ⌊ ⌋s n< /2 , then ≥ ⌊ ⌋t G s n( ) /2 .

The upper bound can easily be checked for ≤n 5. We henceforth assume that G is a graph
with ≥n 6 vertices andm edges, with edges colored so that the color classes are of size at most
2, and G has no rainbow triangles. Let ⌊ ⌋⌈ ⌉s m n n= − /2 /2 . We have to show
that ≤ ⌈ ⌉s n(1/2) /2 .

Assume first that ⌊ ⌋s n< /2 . In this case, combining Lemma 2.2 (for k = 2) with Theorem 3.2
gives
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n m
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.
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⎣⎢

⎥
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Replacing m by ⌊ ⌋⌈ ⌉n n s/2 /2 + and multiplying by ⌊ ⌋n2/ /2 yields

≤
⌊ ⌋

s
n s

n
2

2
+

/2
.

⎡
⎢⎢

⎤
⎥⎥

Since ⌊ ⌋s n/ /2 is less than 1, it may be removed from the right‐hand side, and we obtain
≤ ⌈ ⌉s n(1/2) /2 as desired.
If ≥ ⌊ ⌋s n/2 , we can remove edges from the graph until the number of edges is

⌊ ⌋⌈ ⌉ ⌊ ⌋n n n/2 /2 + /2 − 1. By the above argument, the number of edges in the new graph does not
exceed ⌊ ⌋⌈ ⌉ ⌈ ⌉n n n/2 /2 + (1/2) /2 . For all values of ≥n 6 except n = 7, this is a contradiction because
⌊ ⌋ ⌈ ⌉n n/2 − 1 > (1/2) /2 . It remains to rule out the case whenG has 7 vertices and 15 edges. In this
case, the average degree inG is less than 5. By removing a vertex of degree at most 4, we are left with
a graph on 6 vertices having at least 11 edges, contradicting the upper bound for n = 6. □

For k > 2 we do not know the value of g n k( , ) for general n. But the following theorem gives
the answer for large enough n.

Theorem 3.3. Let ≥n k k36 ( + 1)10 4. Then there exists a so that Ha n a
k
, − has the

maximum number of edges over all n‐vertex edge‐colored graphs for which all color
classes have size at most k and there is no rainbow triangle. Moreover, any graph attaining
this maximum is isomorphic to Ha n a

k
, − for some a.

This theorem is proved in the next section. Roughly speaking, it asserts that

≈g n k
n k n

( , )
4

+
( − 1)

4
,

2

when n is large. To determine the exact value of g n k( , ) for all large enough n, we need to find
the optimal choice of a within the family of graphs Ha n a

k
, − . This is a routine maximization

problem, whose solution is stated without proof in the following proposition. It turns out that
the answer depends on the remainder n leaves upon division by k2 .

Proposition 3.4. Let n t k r= (2 ) + , where ≤ ≤r k1 2 .

(1) If ≤ ≤r k1 then the maximum of ∣ ∣E H( )a b
k
, under the constraint a b n+ =

is attained (solely) in the following two cases: a tk b tk r= , = + , and
a tk b tk r= + 1, = + − 1. The value of the maximum is

n k n r k r

4
+

( − 1)

4
−

( + 1 − )

4
.

2

(2) If ≤ ≤k r k+ 1 2 then the maximum of ∣ ∣E H( )a b
k
, under the constraint a b n+ = is

attained (solely) when a t k r b t k= ( − 1) + , = ( + 1) . The value of the maximum is
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n k n r k k r

4
+

( − 1)

4
+

( − − 1)(2 − )

4
.

2

Theorem 3.3 shows that if n is large enough with respect to k, then g n k( , ) is attained at
some graph Ha b

k
, . This is not true for all values of n. We have already noticed it in the case

n k= 5, = 2 (see Theorem 3.1), where an example was given demonstrating ≥g (5, 2) 8, while
the optimal value of ∣ ∣E H( )a b,

2 is 7. This example can be generalized, as follows:

Example 3.5. Let ≥k 2 and n k= 3 − 1. Take a cycle v v v… k1 2 3 −2, add a special vertex z,
and connect every vi to all vertices vj at distance at most k − 1 from it on the cycle, and to
z. The k3 − 2 color classes are the sets ∣ ≤ ≤ ∪C v v j k v z= { 1 − 1} { }i i i j i+ for all
≤ ≤i k1 3 − 2, where counting is modulo k3 − 2.

It is easy to check that there are no rainbow triangles. The number of edges is
k k k k(3 − 2) = 3 − 22 , while by Proposition 3.4 (applied with t r k= 1, = − 1) the optimal

value of ∣ ∣E H( )a b
k
, is k k3 − 3 + 12 .

4 | PROOF OF THEOREM 3.3

Here is a pleasing fact about complete edge‐colored graphs:

Lemma 4.1. Every edge‐colored Kn without rainbow triangles has a color class of size at
least n − 1.

The lemma is an easy corollary of the following pretty theorem of Gallai.

Theorem 4.2 (Gallai [5]; Gyárfás and Simonyi [8]). IfG is an edge‐colored complete graph
on at least two vertices without a rainbow triangle, there is a nontrivial partitionP ofV G( )

satisfying:

(1) If ∈ PP Q, satisfy ≠P Q, then all edges with one end in P and the other inQ have the
same color.

(2) The set of edges with ends in distinct blocks of P has at most two colors.

Proof of Lemma 4.1. We may assume ≥n 2 and apply the above theorem to choose a
partitionP . If this is a bipartition, then the edge‐cut it defines is monochromatic and has
size at least n − 1. If ∣ ∣P = 3, then of the three cuts it defines two must be of the same
color, meaning that the graph has a nontrivial monochromatic edge‐cut (which must
have size ≥ n − 1). Otherwise ∣ ∣ ≥P 4 and the number of edges between blocks of P
must be at least n2( − 1) which again forces a color class to have size≥ n − 1 (to see this
last claim, note that the number of edges between blocks is one‐half of the sum over all
blocks ∈ PP of the number of edges with exactly one end in P). □

For a graph G, let δ G( ) denote the minimum degree in G. If X is a set of vertices of G, let
G X[ ] denote the graph induced on X , let E X( ) denote the set of edges ofG with both ends in X ,
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and let ∣ ∣e X E X( ) = ( ) . Also, for ∈x X let d x( )X denote the degree of x in G X[ ]. If Y is a set of
vertices disjoint from X , then let E X Y( , ) denote the set of edges with one end in X and the
other in Y , and let ∣ ∣e X Y E X Y( , ) = ( , ) . Also, ∣ ∣⋅∣ ∣e X Y X Y e X Y( , ) = − ( , ).

The main ingredient in the proof of Theorem 3.3 is as follows:

Lemma 4.3. Let G V E= ( , ) be an edge‐colored graph with the property that every color
class has size at most k and there is no rainbow triangle. If ∣ ∣n V= satisfies
≥ ≔n n k k k( ) 6 ( + 1)1

5 2 and ∣ ∣m E= satisfies

≥m
n k n k k

4
+

( − 1)

4
−

( − 1)

2
,

2

(1)

and

≥δ G
n

( )
2

,
⎢
⎣⎢

⎥
⎦⎥ (2)

then there exists a partition X Y{ , } of V so that X is an independent set and every
component of G Y[ ] has size at most k.

Proof. For k = 1 the lemma follows from Turán’s theorem, so we may assume that
≥k 2. LetT be the set of triangles ofG. Now Lemma 2.2 together with a straightforward

application of Cauchy‐Schwarz yields

∑ ∑

∑

∣ ∪ ∣ ∣ ∈ ∣ ∈ ∣

∣ ∣

≥

∈ ∈

∈

T

T

N u N v d u d v T uv E T

d v

m

n
m k

( ) ( ) = ( ( ) + ( ) − { ( )} )

= ( ( )) − 3

4
−

3

2
( − 1).

uv E uv E

v V

2

2

Thus there exists an edge x y0 0 such that ∣ ∪ ∣ ≥ ≥N x N y m n k n( ) ( ) (4 / ) − (3/2)( − 1) −0 0

k(2/3)( − 1), where for the second inequality we have used (1) and ≥n n k( )1 . Choose
disjoint sets ⊆X N x( )0 0 and ⊆Y N y( )0 0 so that ∪ ∪X Y N x N y= ( ) ( )0 0 0 0 . Next we
establish a claim which gives upper bounds on e X( )0 and e Y( )0 , that we will use to get a
lower bound on e X Y( , )0 0 . This, in turn, will give a lower bound on the size of a maximum
cut inG, which is the sole purpose of this part of the proof; the sets X Y,0 0 themselves will
play no further role.

Claim. If ⊆W N w( ) for some ∈w V , then ≤ ∣ ∣e W k W( ) ( − 1) .

Proof. Let I be the set of colors appearing on the edges E w W({ }, ) and for every ∈i I let
di be the number of edges in E w W({ }, ) of color i. Let F be the set of edges ∈uv E W( ) for
which wu and wv have the same color. Then ∣ ∣ ≤ ∑

∈
F ( )

i I

d

2
i . Since there are no rainbow
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triangles, every edge ∈uv E W F( )\ is colored by some ∈i I . Since for every ∈i I the
number of edges in E W( ) colored i is at most k d− i, we have

∑

∑

∑

∣ ∣ ≤

≤

∣ ∣

∈

∈

∈

( )

( )

( )

( )

E W k d

k d d k d

k d

k W

( ) + ( − )

= ( − 1) − ( − 1) −

( − 1)

= ( − 1) ,

i I

d
i

i I

i i i

i I

i

2

1

2

i

establishing the claim.
Define ∪Z V X Y= \( )0 0 . Applying the claim to each of E X( )0 and E Y( )0 , we have

∑

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∪ ∣

≤ ∣ ∣ ∣ ∣
∈

m E X E Y E X Y E Z E Z X Y

k X Y e X Y d z

= ( ) + ( ) + ( , ) + ( ) + ( , )

( − 1)( + ) + ( , ) + ( ).
z Z

0 0 0 0 0 0

0 0 0 0

Since ∣ ∣ ∣ ∣ ≤X Y n+0 0 and ∣ ∣ ≤Z k(2/3)( − 1), this implies

≤m e X Y k n( , ) +
5

3
( − 1) .0 0 (3)

Let E X Y( , ) be a maximum cut, meaning that X Y{ , } is a partition of V for which
e X Y( , ) is maximum. Let aX be the average degree ofG X[ ], let aY be the average degree of
G Y[ ] and without loss of generality assume that ≤a aX Y . We proceed to prove a series of
properties of X and Y , eventually showing that they satisfy the conclusions of the lemma.

(1) ≥e X Y n k n( , ) ( /4) − (3/2)( − 1)2 and ≤e X Y k n( , ) (3/2)( − 1) . The first part
follows from Inequality (3), the fact that ≥e X Y e X Y( , ) ( , )0 0 (since X Y( , ) is a
maximum cut), Inequality (1), and the assumption that ≥n n k( )1 . The second part
follows from the first since

∣ ∣⋅∣ ∣ ≤ ≤e X Y X Y e X Y
n

e X Y k n( , ) = − ( , )
4
− ( , )

3

2
( − 1) .

2

(2) Every ∈x X satisfies ≥ ⌊ ⌋e x Y n( , ) (1/2) /2 and every ∈y Y satisfies ≥e y X( , )

⌊ ⌋n(1/2) /2 . This follows from the assumption that the minimum degree is at least
⌊ ⌋n/2 , and the fact that a maximum cut is “unfriendly,” namely, every vertex is
adjacent to at least as many vertices on the other side as on its own side.

(3) Both graphs G X[ ] and G Y[ ] have maximum degree less than k7 . Suppose for a
contradiction that this is false, and assume (without loss of generality) that ∈x X has

≥d x k( ) 7X . Choose a set ⊆ ∩X N x X( )′ with ∣ ∣X k= 7′ and let I be the set of colors

appearing on the edges E x X( , )′ . Let ∩Y N x Y= ( )′ and note that by (2) we must
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have ∣ ∣ ≥ ⌊ ⌋Y n(1/2) /2′ . Fix ∈y Y′ ′. For each ∈ ∩x N y X( )′ ′ ′, we have a triangle on
x x y, ,′ ′. The majority color in that triangle can be the color of xy′ for at most k − 1

choices of x′. For all other choices of x′, the color of x y′ ′ must be in I . Hence

∣ ∩ ∣ ≤ ∣ ∈ ∣ ∣N y X k e E y X e I( ) − 1 + { ( , ) has a color in }′ ′ ′ ′ . It follows that

≥ ∣ ∈ ∣ ∣e y X k e E y X e I( , ) 6 + 1 − { ( , ) has a color in } .′ ′ ′ ′

The total number of edges in G with a color in I is at most k7 2. Thus summing the above
inequalities over all ∈y Y′ ′ yields ≥ ⌊ ⌋e Y X k n k( , ) (6 + 1)(1/2) /2 − 7′ ′ 2 which exceeds

k n(3/2)( − 1) for ≥n n k( )1 , contradicting (1).
(4) ⌊ ⌋ ∣ ∣ ∣ ∣ ⌈ ⌉n k X Y n k/2 − 7 < , < /2 + 7 . To show, for example, that ∣ ∣ ⌊ ⌋X n k> /2 − 7 ,

take any vertex ∈y Y . By assumption (2), its degree in G is at least ⌊ ⌋n/2 , and by the
previous fact its degree inG Y[ ] is less than k7 . Hence ⌊ ⌋e y X n k( , ) > /2 − 7 , implying
in particular ∣ ∣ ⌊ ⌋X n k> /2 − 7 . Combining the last inequalities with (2) yields:

(5) Every ∈x X satisfies e x Y k( , ) < 14 and every ∈y Y satisfies e y X k( , ) < 14 .
(6) Every component of G X[ ] and G Y[ ] has size at most k; in particular, G X[ ] and G Y[ ]

have maximum degree less than k. Suppose (for a contradiction) that there is a
component ofG X[ ] with size greater than k and choose a tree T inG X[ ] with exactly
k + 1 vertices. It follows from (5) that the number of common neighbors of V T( ) in
the set Y is at least ∣ ∣ ≥Y k k n k k− 14 ( + 1) ( /2) − 14( + 1) >2 2, using ≥n n k( )1 .
Since there are at most k2 edges which have the same color as an edge of T , it follows
that there is at least one vertex ∈y Y so that y is adjacent to every vertex in V T( )

with the added property that no edge in E y V T( , ( )) shares a color with an edge in
E T( ). However, this gives a contradiction: it is not possible for all edges in
E y V T( , ( )) to have the same color (since this set has size k + 1), but otherwise there
is a rainbow triangle containing y and an edge of T .

(7) ≥a a k k n+ − 1 − (3 / )X Y
2 . Note that ≤ ∣ ∣ ∣ ∣m a X a n X(1/2) + (1/2) ( − ) +X Y

∣ ∣ ∣ ∣X n X( − ). The right‐hand side of this inequality is a quadratic function of ∣ ∣X for
which the maximum is attained at ∣ ∣X n a a= ( /2) + (( − )/4)X Y . This maximum value
is equal to

n a a n a a

4
+

( + )

4
+

( − )

16
.X Y X Y

2 2

It follows from (6) that ∣ ∣ ≤a a k− − 1X Y and this gives us the following inequality which
completes the argument:

≤ ≤
n k n k k

m
n a a n k

4
+

( − 1)

4
−

( − 1)

2 4
+

( + )

4
+

( − 1)

16
.X Y

2 2 2

(8) ≤a k1/( + 1)X . (Remember that we assumed ≤a aX Y and our aim is to show that
a = 0X .) Suppose (for a contradiction) that a k> 1/( + 1)X . Define

⌈ ⌉a kã = − (1/( + 1))X X and ⌈ ⌉a kã = − (1/( + 1))Y Y and note that our assumptions
imply ≥ã , ã 1X Y . Let ∈ ∣ ≥X x X d x= { ( ) ã }X X

+ and ⧹X X X=− +. Then we have
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∑∣ ∣ ≤ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣

∈

a X d x a
k

X k X a
k

X

k a
k

X

= ( ) −
1

+ 1
+ = −

1

+ 1

+ − +
1

+ 1
.

X

x X

X X X

X

− +

+

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

It follows that ∣ ∣ ≥ ∣ ∣X X k k/( ( + 1))+ . Similarly, setting ∈ ∣ ≥Y y Y d y= { ( ) ã }Y Y
+ we find

that ∣ ∣ ≥ ∣ ∣Y Y k k/( ( + 1))+ . It follows from (7) that

≥ ≥a a
k

k
k

n k
kã + ã + −

2

+ 1
− 1 −

3
−

2

+ 1
> − 2,X Y X Y

2

again using ≥n n k( )1 . So, ãX and ãY are positive integers which sum to at least k − 1. For
every component ofG X[ ] of size at least ã + 1X choose a spanning tree, and letTX be the
set of these spanning trees. Similarly letTY be a collection consisting of one spanning tree
from each component ofG Y[ ] of size at least ã + 1Y . We claim that for every ∈ TT X and
∈ TU Y one of the following holds:

(a) ≥e V T V U( ( ), ( )) 1.
(b) E V T V U( ( ), ( )) contains an edge with the same color as an edge of T or U .
Were neither condition above to be satisfied, all edges betweenV T( ) and V U( ) would need
to have the same color to prevent a rainbow triangle, but then this color would appear too
many times. Indeed, ≥e V T V U( ( ), ( )) (ã + 1)(ã + 1)X Y and this product exceeds k,
because its two factors are greater than 1 and sum to at least k + 1. For every ∈ ∪T TT X Y ,
the total number of edges in G with the same color as some color in E T( ) is less than k2.
Thus, by considering all pairs of trees fromT T×X Y we get the following bound:

≥ ∣ ∣⋅∣ ∣ ∣ ∣ ∣ ∣T T T Te X Y k k( , ) − − .X Y X Y
2 2

Every vertex ∈x X+ has ≥d x( ) ãX X and must therefore be in a component ofG X[ ] of size
at least ã + 1X . It follows that ∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣T X k X k k( / ) /( ( + 1))X

+ 2 . A similar argument for
Y shows that ∣ ∣ ≥ ∣ ∣T Y k k/( ( + 1))Y

2 . Since (using ≥n n k( )1 ) both of these quantities are
larger than k2 we can plug these bounds for ∣ ∣TX and ∣ ∣TY in the previous equation. Doing
so gives the following (note that we have used (4) to get the bound ∣ ∣⋅∣ ∣ ≥X Y n k( /4) − 492 2

and, again, ≥n n k( )1 ):

≥

≥

≥

∣ ∣ ⋅ ∣ ∣ ∣ ∣ ∣ ∣

( )

e X Y

k n

k n

( , ) −

− −

− −

> ( − 1) .

X Y

k k

X Y

k

n

k k k k

n

k

k k n k

( + 1)

+

+ 1

4 ( + 1)

49

( + 1) + 1

3

2

49

( + 1)

1

+ 1

3

2

4 2

2

4 2 2 2

2 2

This contradicts (1), and completes the proof of (8).

With this last property in hand, we have all we need to complete the proof. It follows
from (8) and (7) and ≥n n k( )1 that
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≥ ≥a k
k

n k
k

k
− 1 −

3
−

1

+ 1
− 1 −

1
.Y

2

Note that the graph obtained from Kk by removing one edge has average degree
k k− 1 − (2/ ); more generally any graph on at most k vertices which is not isomorphic to
Kk has average degree at most k k− 1 − (2/ ). Setting t to be the number of components of
G Y[ ] isomorphic to Kk we then have

∣ ∣ ≤ ∣ ∣

≤ ∣ ∣

∣ ∣ ∣ ∣

( )
( )

k Y a Y

tk k Y tk k

Y k Y tk

− 1 −

( − 1) + ( − ) − 1 −

= ( − 1) − ( − ).

k Y

k

k

1

2

2

It follows from this that ≥ ∣ ∣t Y k/(2 ). Let s be the number of nontrivial components of
G X[ ] (ie, components with at least two vertices). By Lemma 4.1 there is at least one
missing edge between every Kk subgraph of G Y[ ] and every nontrivial component of
G X[ ]. Since each such component contains at most k k( − 1)/2 edges, we have the bound

≤ ∣ ∣ ∣ ∣ ∣ ∣m Y n Y
k

Y s t
k k

( − ) +
− 1

2
− −

( − 1)

2
.

⎛
⎝⎜

⎞
⎠⎟

Now ∣ ∣ ∣ ∣ ∣ ∣Y n Y k Y( − ) + (( − 1)/2) is a quadratic function of ∣ ∣Y maximized at
∣ ∣Y n k= ( /2) + (( − 1)/4) with maximum value n k n k( /4) + (( − 1) /4) + (( − 1) /16)2 2 , so

≤m
n k n k

s t
k k

4
+

( − 1)

4
+

( − 1)

16
− −

( − 1)

2
.

2 2 ⎛
⎝⎜

⎞
⎠⎟

Using our initial lower bound onm, and the facts that ≥ ∣ ∣t Y k/(2 ), ∣ ∣ ⌊ ⌋Y n k> /2 − 7 , and
≥n n k( )1 , shows that s > 0 is impossible. Therefore, s = 0 and we have that X is an

independent set. We established that all components ofG Y[ ] have size at most k in (6) so
the proof is now complete. □

An easy calculation yields that removing a vertex of degree smaller than ⌊ ⌋n/2 retains
Inequality (1), namely:

Lemma 4.4. Let G V E= ( , ) be a graph with n vertices and m edges, where

≥m
n k n k k

4
+

( − 1)

4
−

( − 1)

2
.

2

Let v be a vertex with degree smaller than ⌊ ⌋n/2 , let ∣ ∣m E G v= ( − )′ and let
∣ ∣n V G v n= ( − ) = − 1′ . Then
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≥m
n k n k k

4
+

( − 1)

4
−

( − 1)

2
.′

′2 ′

The next lemma shows that given Inequality (1), the process of removing vertices of degree
smaller than half the current number of vertices cannot continue for too long.

Lemma 4.5. Let G V E= ( , ) be a graph with n vertices and m edges, where ≥n k2 and

≥m
n k n k k

4
+

( − 1)

4
−

( − 1)

2
.

2

(4)

Then there exists a subset U of V G( ) of size ≥n n′ , such that the graph G G U= [ ]′ has
minimal degree at least ⌊ ⌋n /2′ , and its number of edges m′ satisfies

≥m
n k n k k

4
+

( − 1)

4
−

( − 1)

2
.′

′2 ′
(5)

Moreover, U can be obtained by removing sequentially vertices of degree smaller than half
the current number of vertices.

Proof. If there is no vertex of degree smaller than ⌊ ⌋n/2 , there is nothing to prove.
Suppose that G has a vertex, denote it xn, with degree smaller than ⌊ ⌋n/2 . Let
G G v= −n−1 . By the previous lemma,Gn−1 satisfies (5). If all vertices inGn−1 have degree
at least ⌊ ⌋n( − 1)/2 , we are done. If not, remove a vertex xn−1 of degree smaller than
⌊ ⌋n( − 1)/2 . By the previous lemma the graph G x x− −n n−1 satisfies (5). We continue
this way, until, having deleted vertices x x x, ,…,n n n′+1 ′+2 , we obtain a graph Gn′ all of
whose vertices have degrees at least ⌊ ⌋n /2′ . The proof of the lemma will be complete if we
show that ≥n n′ .

Let U x x= { , …, }n1 ′ be the remaining set of vertices. There are at most ( )n

2

′

edges of G

contained in U , and each vertex xi, i n> ′, is adjacent in G to at most i( − 1)/2 vertices
x j i, <j . Hence

∑∣ ∣ ≤m E G
n i n n n n n

= ( ) (
2

) +
− 1

2
= (

2
) +

1

2
((

2
) − (

2
)) =

1

2
((

2
) + (

2
)).

i n

n
′

= +1

′ ′ ′

′

This, combined with (4) and the fact that ≥n k2 , yields ≥n n′ , completing the
proof. □

Proof of Theorem 3.3. Let ≥k 2 and let ≥n k k36 ( + 1)10 4. Let G be an edge‐colored
graph on n vertices, with color classes of size at most k and no rainbow triangle, so that its
number of edgesm is the largest among all such graphs. We shall show that there exists a
graph Ha b

k
, with a b n+ = and ∣ ∣ ≥E H m( )a b

k
, .

Clearly
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∣ ∣ ≥ ∣ ∣ ≥⌊ ⌋ ⌈ ⌉m E G E H
n k n k k

= ( ) ( )
4

+
( − 1)

4
−

( − 1)

2
.n n

k
/2 , /2

2

Hence, by Lemma 4.5, there exists a subset U of V V G= ( ) of size
≥ ≥n n k k6 ( + 1)′ 5 2, obtained by deleting sequentially vertices of degree less than

half the current number of vertices, such that all degrees in G U[ ] are at least ⌊ ⌋n /2′ and
(5) is satisfied. By Lemma 4.3 applied toG U[ ], there exists a partition X Y{ , }′ ′ ofU so that
X ′ is an independent set, and all components of G Y[ ]′ have size at most k.

Starting from G U[ ] and the partition X Y{ , }′ ′ , we show how to construct a graph
isomorphic to Ha b

k
, , a b n+ = , having at least m edges. First, we put vertices

z z z, ,…,n n n′+1 ′+2 back into the graph, in this order, instead of the vertices
x x x, ,…,n n n′+1 ′+2 that were deleted. At each step we add zi to the smaller side of the
partition that we have at hand at that step (or to any side, if the two sides are equal), and
we connect it to all vertices on the other side. By the property of xi, the addition of zi adds
more edges than the number of edges deleted when xi was removed. At the end of this
process, we get a graph Ĝ with n vertices and at least m edges, together with a partition
X Y{ , } of V G( ˆ ) satisfying the conclusion of Lemma 4.3. Note that at this stage we do not
care about edge‐colors, we just aim to show that the number of edges of Ĝ is at most that
of ∣ ∣ ∣ ∣HX Y

k
, .

If there is a component H ofG Yˆ [ ] which is not a complete graph, modify Ĝ by adding
all edges with both ends in V H( ) that are missing. If there are two components of G Yˆ [ ],
say H1 and H2, both of size less than k, say ∣ ∣ ≥ ∣ ∣k V H V H> ( ) ( )1 2 , increase ∣ ∣E G( ˆ ) by
deleting the edges ⧹E v V H v( , ( ) { })2 for some ∈v V H( )2 , and then adding the edges
E v V H( , ( ))1 . Finally, add to Ĝ any missing edge between X and Y . Our modified Ĝ is now
isomorphic to ∣ ∣ ∣ ∣HX Y

k
, , and has at least m edges. This proves the first part of the theorem.

For the “moreover” part, observe that if n n<′ or if Ĝ is modified at all, we end up with
strictly more than m edges, contradicting the maximality of m. □
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