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Lovász proved (see [7]) that given real numbers p1, . . . ,pn, one can round them up or down
to integers ε1, . . . , εn, in such a way that the total rounding error over every interval (i.e.,
sum of consecutive pi’s) is at most 1− 1

n+1
. Here we show that the rounding can be done

so that for all d= 1, . . . ,bn+1
2
c, the total rounding error over every union of d intervals is

at most
(

1− d
n+1

)
d. This answers a question of Bohman and Holzman [1], who showed

that such rounding is possible for each value of d separately.

1. Introduction

Let [n] = {1, . . . ,n}. The linear discrepancy of a hypergraph H ⊆ 2[n] is
defined by

lindisc(H) = max
p1,...,pn∈[0,1]

min
ε1,...,εn∈{0,1}

max
X∈H

∣∣∣∣∣∑
i∈X

(εi − pi)

∣∣∣∣∣ .
Thus, given any assignment of real numbers p1, . . . ,pn to the vertices of H,
the goal is to round them up or down to integers ε1, . . . , εn so that the total
rounding error over any edge of H will be as small as possible. This concept
was introduced by Lovász, Spencer and Vesztergombi [5], who studied its
relationship to several other notions of hypergraph discrepancy. Additional
investigations of linear discrepancy include [7,4,6,2,3,1].

A natural example for studying linear discrepancy is the interval hyper-
graph Hn on the vertex set [n], having as edges all the integer intervals,
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i.e., sets of consecutive elements of [n]. Spencer [7] gave a short argument
(a ‘gem’ attributed to Lovász) that lindisc(Hn) = 1− 1

n+1 . An example of

an assignment of p1, . . . ,pn which forces a rounding error of at least 1− 1
n+1

over some interval is p1= . . .=pn= 1
n+1 .

More generally, one may consider the d-interval hypergraph H(d)
n , where a

subset of [n] is an edge if it is the union of at most d intervals. The relevant

values of d are 1, . . . ,bn+1
2 c, with H(1)

n =Hn and H(bn+1
2
c)

n =2[n]. It is straight-

forward to deduce from lindisc(Hn)=1− 1
n+1 that lindisc(H(d)

n )≤
(

1− 1
n+1

)
d.

Bohman and Holzman [1] improved this, showing that lindisc(H(d)
n ) =(

1− d
n+1

)
d for every d ∈

{
1, . . . ,

⌊
n+1
2

⌋}
. But the rounding used to estab-

lish this was devised for each value of d separately. The question whether
the same rounding can work simultaneously for all d=1, . . . ,

⌊
n+1
2

⌋
was left

open in [1]. Here we answer this affirmatively:

Theorem 1. For any p1, . . . ,pn∈ [0,1] there exist ε1, . . . , εn∈{0,1} such that
the following holds true:

For all d=1, . . . ,
⌊
n+1
2

⌋
and for any 2d integers 0≤a1<b1<.. .<ad<bd≤n

we have
d∑
t=1

∣∣∣∣∣
bt∑

i=at+1

(εi − pi)

∣∣∣∣∣ ≤
(

1− d

n+ 1

)
d.

Note that
∣∣∣∑d

t=1

∑bt
i=at+1(εi−pi)

∣∣∣≤∑d
t=1

∣∣∣∑bt
i=at+1(εi−pi)

∣∣∣, so the form

that appears in Theorem 1 is stronger than in the definition of linear dis-
crepancy. Yet, as shown in [1] using the assignment p1 = . . .=pn= d

n+1 , the

upper bound (1− d
n+1)d is sharp even when taking the absolute value of the

total rounding error over the entire union of d intervals.
The proof of Theorem 1 is based on an adaptation of the above-mentioned

argument of Lovász, and on an auxiliary result which is interesting in its own
right, about partitions of a circle. Consider a circle of length one, partitioned
into arcs J0,J1, . . . ,Jn in cyclic order. (Some of these arcs may have length
zero. Indices of arcs are taken modulo n+1.) For each Jk, we look at its length
|Jk|, the 2-length around Jk defined as 2|Jk|+|Jk−1|+|Jk+1|, and in general

the d-length around Jk defined as d|Jk|+
∑d−1

i=1 (d− i)(|Jk−i|+ |Jk+i|), for
d=1, . . . ,bn+1

2 c. Note that the average over all k of the d-length around Jk

equals d2

n+1 . Hence for each d there is some Jk around which the d-length is
at least this average. The nontrivial fact that we shall prove is that there is
always a Jk around which all d-lengths are at least the respective averages:
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Theorem 2. Let J0,J1, . . . ,Jn be a cyclically ordered partition of a circle
of length one into arcs. Then there exists k such that for all d=1, . . . ,

⌊
n+1
2

⌋
we have

d |Jk|+
d−1∑
i=1

(d− i) (|Jk−i|+ |Jk+i|) ≥
d2

n+ 1
.

In Section 2 we shall derive Theorem 1 from Theorem 2 (this is essentially
the adaptation by Bohman and Holzman of the argument of Lovász, but is
repeated here for completeness). In Section 3 we shall prove Theorem 2.

2. Proof of Theorem 1

Given the real numbers p1, . . . ,pn ∈ [0,1], we consider a string of length∑n
j=1 pj , with n+1 marked points, namely the points at distance 0,p1,p1+

p2, . . . ,
∑n

j=1 pj from the left endpoint of the string. Now we wrap this string
around a circle of length one, and the marked points appear on the circle
as the points

∑i
j=1 pj modulo 1, i = 0,1, . . . ,n. These points partition the

circle into n+1 arcs (connected components), which we denote J0,J1, . . . ,Jn
in cyclic order (marked points may coincide on the circle, so we allow arcs
of length zero). Applying Theorem 2, we find an arc Jk around which the

d-length is at least d2

n+1 , for all d=1, . . . ,bn+1
2 c.

Note that for each pi there is a corresponding piece of the string, that we
denote Pi, which has length pi and lies between the marked points

∑i−1
j=1 pj

and
∑i

j=1 pj . After wrapping around the circle, Pi becomes the union of some
cyclically consecutive arcs among J0,J1, . . . ,Jn. We set εi = 1 if Jk (found
above) is one of the consecutive arcs forming Pi, and εi=0 otherwise.

We verify that this rounding scheme satisfies the statement of Theo-
rem 1. For an integer interval {at+1, . . . , bt}, observe that |

∑bt
i=at+1(εi−pi)|

equals the difference (in absolute value) between the length of the piece of
string

⋃bt
i=at+1Pi and the number of times it wraps around Jk. This dif-

ference equals the length of the circular arc between the two endpoints of⋃bt
i=at+1Pi that does not contain Jk. The length of this circular arc is at

most 1−|Jk|. When we consider d such intervals {at+1, . . . , bt}, t=1, . . . ,d,
with 0 ≤ a1 < b1 < .. . < ad < bd ≤ n, the 2d endpoints of

⋃bt
i=at+1Pi,

t = 1, . . . ,d, occupy 2d distinct marked points on the circle. Thus, Jk is
contained in none of the corresponding d circular arcs, Jk±1 are each con-
tained in at most one of them, Jk±2 are each contained in at most two
of them, etc. Hence the total length of these d circular arcs is at most
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d−d|Jk|−
∑d−1

i=1 (d− i)(|Jk−i|+ |Jk+i|), which by our choice of k is at most

d− d2

n+1 =
(

1− d
n+1

)
d, as required.

3. Proof of Theorem 2

We first restate Theorem 2 in an equivalent but more convenient form. In-
stead of working with the lengths |Ji|, we work with the excess lengths
(compared to the average length), namely

ei = |Ji| −
1

n+ 1
, i = 0, 1, . . . , n.

Clearly, the excess lengths satisfy
n∑
i=0

ei = 0,

and we need to prove that there exists k such that for all d= 1, . . . ,
⌊
n+1
2

⌋
we have

dek +
d−1∑
i=1

(d− i) (ek−i + ek+i) ≥ 0.

We recall that the entries e0,e1, . . . ,en are cyclically ordered, and their in-
dices are taken modulo n+ 1. The circular distance between two indices i
and j is denoted by ‖i−j‖, that is, for 0≤ i, j≤n we have

‖i− j‖ = min
(
|i− j|, n+ 1− |i− j|

)
.

Let us assume, for the sake of contradiction, that for each k there exists
dk such that

dkek +

dk−1∑
i=1

(dk − i) (ek−i + ek+i) < 0.

Consider the (n+ 1)× (n+ 1) matrix A, with entries
(
Aij
)
i=0,...,n,j=0,...,n

defined by

Aij =

{
di − ‖i− j‖ if ‖i− j‖ < di,

0 otherwise.

Our assumption is equivalent to

(1) A


e0
e1
...
en

 <


0
0
...
0

 .
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Consider also the (n+1)×(n+1) matrix B, with entries
(
Bij
)
i=0,...,n,j=0,...,n

defined by

Bij =


2 if i = j,

−1 if ‖i− j‖ = 1,

0 otherwise.

We claim that

(2)


e0
e1
...
en

 ∈ ImB.

As B is symmetric, its kernel is the subspace orthogonal to its image. We
know that

∑n
i=0 ei=0, hence it suffices to prove that

KerB = Span




1
1
...
1


 .

Indeed, a vector ~x in KerB satisfies xi−xi−1=xi+1−xi. So its entries form
an arithmetic progression, and as xn+1=x0 they must all be equal.

By (2), there exists ~v such that

B~v =


e0
e1
...
en

 .

Substituting in (1), we get

(3) AB~v <


0
0
...
0

 .

We proceed to compute the matrix AB. Noting that

Aij = di −min
(
‖i− j‖, di

)
,
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we have

(AB)ij = −2 min(‖i−j‖, di)+min(‖i−(j−1)‖, di)+min(‖i−(j+1)‖, di)

=


2 if i = j,

−1 if ‖i− j‖ = di <
n+1
2 ,

−2 if ‖i− j‖ = di = n+1
2 ,

0 otherwise.

Thus, (3) requires that

2vi − vi−di − vi+di < 0, i = 0, 1, . . . , n.

But this does not hold for i0=argmaxivi, because

2vi0 − vi0−di0 − vi0+di0 ≥ 2vi0 − vi0 − vi0 = 0.

This contradiction proves Theorem 2.

References

[1] T. Bohman and R. Holzman: Linear versus hereditary discrepancy, Combinatorica
25 (2005), 39–47.

[2] B. Doerr: Linear and hereditary discrepancy, Combinatorics, Probability and Com-
puting 9 (2000), 349–354.

[3] B. Doerr: Linear discrepancy of totally unimodular matrices, Combinatorica 24
(2004), 117–125.

[4] D. E. Knuth: Two-way rounding, SIAM Journal on Discrete Mathematics 8 (1995),
281–290.

[5] L. Lovász, J. Spencer and K. Vesztergombi: Discrepancy of set systems and
matrices, European Journal of Combinatorics 7 (1986), 151–160.
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