SIMULTANEOUS LINEAR DISCREPANCY FOR UNIONS OF INTERVALS

RON HOLZMAN, NITZAN TUR

Received February 16, 2017
Online First March 5, 2018

Lovász proved (see [7]) that given real numbers p_{1}, \ldots, p_{n}, one can round them up or down to integers $\epsilon_{1}, \ldots, \epsilon_{n}$, in such a way that the total rounding error over every interval (i.e., sum of consecutive p_{i} 's) is at most $1-\frac{1}{n+1}$. Here we show that the rounding can be done so that for all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$, the total rounding error over every union of d intervals is at most $\left(1-\frac{d}{n+1}\right) d$. This answers a question of Bohman and Holzman [1], who showed that such rounding is possible for each value of d separately.

1. Introduction

Let $[n]=\{1, \ldots, n\}$. The linear discrepancy of a hypergraph $\mathcal{H} \subseteq 2^{[n]}$ is defined by

$$
\operatorname{lindisc}(\mathcal{H})=\max _{p_{1}, \ldots, p_{n} \in[0,1]} \min _{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} \max _{X \in \mathcal{H}}\left|\sum_{i \in X}\left(\epsilon_{i}-p_{i}\right)\right|
$$

Thus, given any assignment of real numbers p_{1}, \ldots, p_{n} to the vertices of \mathcal{H}, the goal is to round them up or down to integers $\epsilon_{1}, \ldots, \epsilon_{n}$ so that the total rounding error over any edge of \mathcal{H} will be as small as possible. This concept was introduced by Lovász, Spencer and Vesztergombi [5], who studied its relationship to several other notions of hypergraph discrepancy. Additional investigations of linear discrepancy include $[7,4,6,2,3,1]$.

A natural example for studying linear discrepancy is the interval hypergraph \mathcal{H}_{n} on the vertex set $[n]$, having as edges all the integer intervals,

Mathematics Subject Classification (2000): 05C65, 11K38
i.e., sets of consecutive elements of [n]. Spencer [7] gave a short argument (a 'gem' attributed to Lovász) that $\operatorname{lindisc}\left(\mathcal{H}_{n}\right)=1-\frac{1}{n+1}$. An example of an assignment of p_{1}, \ldots, p_{n} which forces a rounding error of at least $1-\frac{1}{n+1}$ over some interval is $p_{1}=\ldots=p_{n}=\frac{1}{n+1}$.

More generally, one may consider the d-interval hypergraph $\mathcal{H}_{n}^{(d)}$, where a subset of $[n]$ is an edge if it is the union of at most d intervals. The relevant values of d are $1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$, with $\mathcal{H}_{n}^{(1)}=\mathcal{H}_{n}$ and $\mathcal{H}_{n}^{\left(\left\lfloor\frac{n+1}{2}\right\rfloor\right)}=2^{[n]}$. It is straightforward to deduce from $\operatorname{lindisc}\left(\mathcal{H}_{n}\right)=1-\frac{1}{n+1}$ that $\operatorname{lindisc}\left(\mathcal{H}_{n}^{(d)}\right) \leq\left(1-\frac{1}{n+1}\right) d$. Bohman and Holzman [1] improved this, showing that lindisc $\left(\mathcal{H}_{n}^{(d)}\right)=$ $\left(1-\frac{d}{n+1}\right) d$ for every $d \in\left\{1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor\right\}$. But the rounding used to establish this was devised for each value of d separately. The question whether the same rounding can work simultaneously for all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$ was left open in [1]. Here we answer this affirmatively:

Theorem 1. For any $p_{1}, \ldots, p_{n} \in[0,1]$ there exist $\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}$ such that the following holds true:

For all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$ and for any $2 d$ integers $0 \leq a_{1}<b_{1}<\ldots<a_{d}<b_{d} \leq n$ we have

$$
\sum_{t=1}^{d}\left|\sum_{i=a_{t}+1}^{b_{t}}\left(\epsilon_{i}-p_{i}\right)\right| \leq\left(1-\frac{d}{n+1}\right) d
$$

Note that $\left|\sum_{t=1}^{d} \sum_{i=a_{t}+1}^{b_{t}}\left(\epsilon_{i}-p_{i}\right)\right| \leq \sum_{t=1}^{d}\left|\sum_{i=a_{t}+1}^{b_{t}}\left(\epsilon_{i}-p_{i}\right)\right|$, so the form that appears in Theorem 1 is stronger than in the definition of linear discrepancy. Yet, as shown in [1] using the assignment $p_{1}=\ldots=p_{n}=\frac{d}{n+1}$, the upper bound $\left(1-\frac{d}{n+1}\right) d$ is sharp even when taking the absolute value of the total rounding error over the entire union of d intervals.

The proof of Theorem 1 is based on an adaptation of the above-mentioned argument of Lovász, and on an auxiliary result which is interesting in its own right, about partitions of a circle. Consider a circle of length one, partitioned into $\operatorname{arcs} J_{0}, J_{1}, \ldots, J_{n}$ in cyclic order. (Some of these arcs may have length zero. Indices of arcs are taken modulo $n+1$.) For each J_{k}, we look at its length $\left|J_{k}\right|$, the 2-length around J_{k} defined as $2\left|J_{k}\right|+\left|J_{k-1}\right|+\left|J_{k+1}\right|$, and in general the d-length around J_{k} defined as $d\left|J_{k}\right|+\sum_{i=1}^{d-1}(d-i)\left(\left|J_{k-i}\right|+\left|J_{k+i}\right|\right)$, for $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$. Note that the average over all k of the d-length around J_{k} equals $\frac{d^{2}}{n+1}$. Hence for each d there is some J_{k} around which the d-length is at least this average. The nontrivial fact that we shall prove is that there is always a J_{k} around which all d-lengths are at least the respective averages:

Theorem 2. Let $J_{0}, J_{1}, \ldots, J_{n}$ be a cyclically ordered partition of a circle of length one into arcs. Then there exists k such that for all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$ we have

$$
d\left|J_{k}\right|+\sum_{i=1}^{d-1}(d-i)\left(\left|J_{k-i}\right|+\left|J_{k+i}\right|\right) \geq \frac{d^{2}}{n+1} .
$$

In Section 2 we shall derive Theorem 1 from Theorem 2 (this is essentially the adaptation by Bohman and Holzman of the argument of Lovász, but is repeated here for completeness). In Section 3 we shall prove Theorem 2.

2. Proof of Theorem 1

Given the real numbers $p_{1}, \ldots, p_{n} \in[0,1]$, we consider a string of length $\sum_{j=1}^{n} p_{j}$, with $n+1$ marked points, namely the points at distance $0, p_{1}, p_{1}+$ $p_{2}, \ldots, \sum_{j=1}^{n} p_{j}$ from the left endpoint of the string. Now we wrap this string around a circle of length one, and the marked points appear on the circle as the points $\sum_{j=1}^{i} p_{j}$ modulo $1, i=0,1, \ldots, n$. These points partition the circle into $n+1$ arcs (connected components), which we denote $J_{0}, J_{1}, \ldots, J_{n}$ in cyclic order (marked points may coincide on the circle, so we allow arcs of length zero). Applying Theorem 2, we find an arc J_{k} around which the d-length is at least $\frac{d^{2}}{n+1}$, for all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$.

Note that for each p_{i} there is a corresponding piece of the string, that we denote P_{i}, which has length p_{i} and lies between the marked points $\sum_{j=1}^{i-1} p_{j}$ and $\sum_{j=1}^{i} p_{j}$. After wrapping around the circle, P_{i} becomes the union of some cyclically consecutive arcs among $J_{0}, J_{1}, \ldots, J_{n}$. We set $\epsilon_{i}=1$ if J_{k} (found above) is one of the consecutive arcs forming P_{i}, and $\epsilon_{i}=0$ otherwise.

We verify that this rounding scheme satisfies the statement of Theorem 1. For an integer interval $\left\{a_{t}+1, \ldots, b_{t}\right\}$, observe that $\left|\sum_{i=a_{t}+1}^{b_{t}}\left(\epsilon_{i}-p_{i}\right)\right|$ equals the difference (in absolute value) between the length of the piece of string $\bigcup_{i=a_{t}+1}^{b_{t}} P_{i}$ and the number of times it wraps around J_{k}. This difference equals the length of the circular arc between the two endpoints of $\bigcup_{i=a_{t}+1}^{b_{t}} P_{i}$ that does not contain J_{k}. The length of this circular arc is at most $1-\left|J_{k}\right|$. When we consider d such intervals $\left\{a_{t}+1, \ldots, b_{t}\right\}, t=1, \ldots, d$, with $0 \leq a_{1}<b_{1}<\ldots<a_{d}<b_{d} \leq n$, the $2 d$ endpoints of $\bigcup_{i=a_{t}+1}^{b_{t}} P_{i}$, $t=1, \ldots, d$, occupy $2 d$ distinct marked points on the circle. Thus, J_{k} is contained in none of the corresponding d circular arcs, $J_{k \pm 1}$ are each contained in at most one of them, $J_{k \pm 2}$ are each contained in at most two of them, etc. Hence the total length of these d circular arcs is at most
$d-d\left|J_{k}\right|-\sum_{i=1}^{d-1}(d-i)\left(\left|J_{k-i}\right|+\left|J_{k+i}\right|\right)$, which by our choice of k is at most $d-\frac{d^{2}}{n+1}=\left(1-\frac{d}{n+1}\right) d$, as required.

3. Proof of Theorem 2

We first restate Theorem 2 in an equivalent but more convenient form. Instead of working with the lengths $\left|J_{i}\right|$, we work with the excess lengths (compared to the average length), namely

$$
e_{i}=\left|J_{i}\right|-\frac{1}{n+1}, \quad i=0,1, \ldots, n
$$

Clearly, the excess lengths satisfy

$$
\sum_{i=0}^{n} e_{i}=0
$$

and we need to prove that there exists k such that for all $d=1, \ldots,\left\lfloor\frac{n+1}{2}\right\rfloor$ we have

$$
d e_{k}+\sum_{i=1}^{d-1}(d-i)\left(e_{k-i}+e_{k+i}\right) \geq 0
$$

We recall that the entries $e_{0}, e_{1}, \ldots, e_{n}$ are cyclically ordered, and their indices are taken modulo $n+1$. The circular distance between two indices i and j is denoted by $\|i-j\|$, that is, for $0 \leq i, j \leq n$ we have

$$
\|i-j\|=\min (|i-j|, n+1-|i-j|)
$$

Let us assume, for the sake of contradiction, that for each k there exists d_{k} such that

$$
d_{k} e_{k}+\sum_{i=1}^{d_{k}-1}\left(d_{k}-i\right)\left(e_{k-i}+e_{k+i}\right)<0
$$

Consider the $(n+1) \times(n+1)$ matrix A, with entries $\left(A_{i j}\right)_{i=0, \ldots, n, j=0, \ldots, n}$ defined by

$$
A_{i j}= \begin{cases}d_{i}-\|i-j\| & \text { if }\|i-j\|<d_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Our assumption is equivalent to

$$
A\left(\begin{array}{c}
e_{0} \tag{1}\\
e_{1} \\
\vdots \\
e_{n}
\end{array}\right)<\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Consider also the $(n+1) \times(n+1)$ matrix B, with entries $\left(B_{i j}\right)_{i=0, \ldots, n, j=0, \ldots, n}$ defined by

$$
B_{i j}= \begin{cases}2 & \text { if } i=j \\ -1 & \text { if }\|i-j\|=1 \\ 0 & \text { otherwise }\end{cases}
$$

We claim that
(2)

$$
\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{n}
\end{array}\right) \in \operatorname{Im} B .
$$

As B is symmetric, its kernel is the subspace orthogonal to its image. We know that $\sum_{i=0}^{n} e_{i}=0$, hence it suffices to prove that

$$
\operatorname{Ker} B=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)\right\} .
$$

Indeed, a vector \vec{x} in $\operatorname{Ker} B$ satisfies $x_{i}-x_{i-1}=x_{i+1}-x_{i}$. So its entries form an arithmetic progression, and as $x_{n+1}=x_{0}$ they must all be equal.

By (2), there exists \vec{v} such that

$$
B \vec{v}=\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{n}
\end{array}\right) .
$$

Substituting in (1), we get

$$
A B \vec{v}<\left(\begin{array}{c}
0 \tag{3}\\
0 \\
\vdots \\
0
\end{array}\right) .
$$

We proceed to compute the matrix $A B$. Noting that

$$
A_{i j}=d_{i}-\min \left(\|i-j\|, d_{i}\right),
$$

we have

$$
\begin{aligned}
(A B)_{i j} & =-2 \min \left(\|i-j\|, d_{i}\right)+\min \left(\|i-(j-1)\|, d_{i}\right)+\min \left(\|i-(j+1)\|, d_{i}\right) \\
& = \begin{cases}2 & \text { if } i=j, \\
-1 & \text { if }\|i-j\|=d_{i}<\frac{n+1}{2} \\
-2 & \text { if }\|i-j\|=d_{i}=\frac{n+1}{2}, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Thus, (3) requires that

$$
2 v_{i}-v_{i-d_{i}}-v_{i+d_{i}}<0, \quad i=0,1, \ldots, n
$$

But this does not hold for $i_{0}=\operatorname{argmax}_{i} v_{i}$, because

$$
2 v_{i_{0}}-v_{i_{0}-d_{i_{0}}}-v_{i_{0}+d_{i_{0}}} \geq 2 v_{i_{0}}-v_{i_{0}}-v_{i_{0}}=0
$$

This contradiction proves Theorem 2.

References

[1] T. Bohman and R. Holzman: Linear versus hereditary discrepancy, Combinatorica 25 (2005), 39-47.
[2] B. Doerr: Linear and hereditary discrepancy, Combinatorics, Probability and Computing 9 (2000), 349-354.
[3] B. Doerr: Linear discrepancy of totally unimodular matrices, Combinatorica 24 (2004), 117-125.
[4] D. E. Knuth: Two-way rounding, SIAM Journal on Discrete Mathematics 8 (1995), 281-290.
[5] L. Lovász, J. Spencer and K. Vesztergombi: Discrepancy of set systems and matrices, European Journal of Combinatorics 7 (1986), 151-160.
[6] J. Matoušek: On the linear and hereditary discrepancies, European Journal of Combinatorics 21 (2000), 519-521.
[7] J. Spencer: Ten Lectures on the Probabilistic Method, 2nd edition, SIAM, 1994.

Ron Holzman, Nitzan Tur
Department of Mathematics
Technion-Israel Institute of Technology
32000 Haifa, Israel
holzman@tx.technion.ac.il
nitzan.tur@gmail.com

