COMBINATORICA Bolyai Society – Springer-Verlag

SIMULTANEOUS LINEAR DISCREPANCY FOR UNIONS OF INTERVALS

RON HOLZMAN, NITZAN TUR

Received February 16, 2017 Online First March 5, 2018

Lovász proved (see [7]) that given real numbers p_1, \ldots, p_n , one can round them up or down to integers $\epsilon_1, \ldots, \epsilon_n$, in such a way that the total rounding error over every interval (i.e., sum of consecutive p_i 's) is at most $1 - \frac{1}{n+1}$. Here we show that the rounding can be done so that for all $d = 1, \ldots, \lfloor \frac{n+1}{2} \rfloor$, the total rounding error over every union of d intervals is at most $\left(1 - \frac{d}{n+1}\right)d$. This answers a question of Bohman and Holzman [1], who showed that such rounding is possible for each value of d separately.

1. Introduction

Let $[n] = \{1, \ldots, n\}$. The *linear discrepancy* of a hypergraph $\mathcal{H} \subseteq 2^{[n]}$ is defined by

$$\operatorname{lindisc}(\mathcal{H}) = \max_{p_1, \dots, p_n \in [0,1]} \min_{\epsilon_1, \dots, \epsilon_n \in \{0,1\}} \max_{X \in \mathcal{H}} \left| \sum_{i \in X} (\epsilon_i - p_i) \right|.$$

Thus, given any assignment of real numbers p_1, \ldots, p_n to the vertices of \mathcal{H} , the goal is to round them up or down to integers $\epsilon_1, \ldots, \epsilon_n$ so that the total rounding error over any edge of \mathcal{H} will be as small as possible. This concept was introduced by Lovász, Spencer and Vesztergombi [5], who studied its relationship to several other notions of hypergraph discrepancy. Additional investigations of linear discrepancy include [7,4,6,2,3,1].

A natural example for studying linear discrepancy is the *interval hyper*graph \mathcal{H}_n on the vertex set [n], having as edges all the integer intervals,

Mathematics Subject Classification (2000): 05C65, 11K38

i.e., sets of consecutive elements of [n]. Spencer [7] gave a short argument (a 'gem' attributed to Lovász) that $\operatorname{lindisc}(\mathcal{H}_n) = 1 - \frac{1}{n+1}$. An example of an assignment of p_1, \ldots, p_n which forces a rounding error of at least $1 - \frac{1}{n+1}$ over some interval is $p_1 = \ldots = p_n = \frac{1}{n+1}$.

More generally, one may consider the *d*-interval hypergraph $\mathcal{H}_n^{(d)}$, where a subset of [n] is an edge if it is the union of at most *d* intervals. The relevant values of *d* are $1, \ldots, \lfloor \frac{n+1}{2} \rfloor$, with $\mathcal{H}_n^{(1)} = \mathcal{H}_n$ and $\mathcal{H}_n^{(\lfloor \frac{n+1}{2} \rfloor)} = 2^{[n]}$. It is straightforward to deduce from $\operatorname{lindisc}(\mathcal{H}_n) = 1 - \frac{1}{n+1}$ that $\operatorname{lindisc}(\mathcal{H}_n^{(d)}) \leq \left(1 - \frac{1}{n+1}\right) d$. Bohman and Holzman [1] improved this, showing that $\operatorname{lindisc}(\mathcal{H}_n^{(d)}) = \left(1 - \frac{d}{n+1}\right) d$ for every $d \in \{1, \ldots, \lfloor \frac{n+1}{2} \rfloor\}$. But the rounding used to establish this was devised for each value of *d* separately. The question whether the same rounding can work simultaneously for all $d = 1, \ldots, \lfloor \frac{n+1}{2} \rfloor$ was left open in [1]. Here we answer this affirmatively:

Theorem 1. For any $p_1, \ldots, p_n \in [0, 1]$ there exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ such that the following holds true:

For all $d = 1, ..., \lfloor \frac{n+1}{2} \rfloor$ and for any 2d integers $0 \le a_1 < b_1 < ... < a_d < b_d \le n$ we have

$$\sum_{t=1}^{d} \left| \sum_{i=a_t+1}^{b_t} (\epsilon_i - p_i) \right| \le \left(1 - \frac{d}{n+1} \right) d.$$

Note that $\left|\sum_{t=1}^{d}\sum_{i=a_t+1}^{b_t}(\epsilon_i-p_i)\right| \leq \sum_{t=1}^{d}\left|\sum_{i=a_t+1}^{b_t}(\epsilon_i-p_i)\right|$, so the form that appears in Theorem 1 is stronger than in the definition of linear discrepancy. Yet, as shown in [1] using the assignment $p_1 = \ldots = p_n = \frac{d}{n+1}$, the upper bound $(1-\frac{d}{n+1})d$ is sharp even when taking the absolute value of the total rounding error over the entire union of d intervals.

The proof of Theorem 1 is based on an adaptation of the above-mentioned argument of Lovász, and on an auxiliary result which is interesting in its own right, about partitions of a circle. Consider a circle of length one, partitioned into arcs J_0, J_1, \ldots, J_n in cyclic order. (Some of these arcs may have length zero. Indices of arcs are taken modulo n+1.) For each J_k , we look at its length $|J_k|$, the 2-length around J_k defined as $2|J_k|+|J_{k-1}|+|J_{k+1}|$, and in general the *d*-length around J_k defined as $d|J_k| + \sum_{i=1}^{d-1} (d-i) (|J_{k-i}|+|J_{k+i}|)$, for $d=1,\ldots,\lfloor\frac{n+1}{2}\rfloor$. Note that the average over all k of the *d*-length around J_k equals $\frac{d^2}{n+1}$. Hence for each d there is some J_k around which the *d*-length is at least this average. The nontrivial fact that we shall prove is that there is always a J_k around which all *d*-lengths are at least the respective averages: **Theorem 2.** Let J_0, J_1, \ldots, J_n be a cyclically ordered partition of a circle of length one into arcs. Then there exists k such that for all $d=1,\ldots,\lfloor\frac{n+1}{2}\rfloor$ we have

$$d |J_k| + \sum_{i=1}^{d-1} (d-i) (|J_{k-i}| + |J_{k+i}|) \ge \frac{d^2}{n+1}.$$

In Section 2 we shall derive Theorem 1 from Theorem 2 (this is essentially the adaptation by Bohman and Holzman of the argument of Lovász, but is repeated here for completeness). In Section 3 we shall prove Theorem 2.

2. Proof of Theorem 1

Given the real numbers $p_1, \ldots, p_n \in [0,1]$, we consider a string of length $\sum_{j=1}^{n} p_j$, with n+1 marked points, namely the points at distance $0, p_1, p_1 + p_2, \ldots, \sum_{j=1}^{n} p_j$ from the left endpoint of the string. Now we wrap this string around a circle of length one, and the marked points appear on the circle as the points $\sum_{j=1}^{i} p_j$ modulo 1, $i = 0, 1, \ldots, n$. These points partition the circle into n+1 arcs (connected components), which we denote J_0, J_1, \ldots, J_n in cyclic order (marked points may coincide on the circle, so we allow arcs of length zero). Applying Theorem 2, we find an arc J_k around which the *d*-length is at least $\frac{d^2}{n+1}$, for all $d=1, \ldots, \lfloor \frac{n+1}{2} \rfloor$.

Note that for each p_i there is a corresponding piece of the string, that we denote P_i , which has length p_i and lies between the marked points $\sum_{j=1}^{i-1} p_j$ and $\sum_{j=1}^{i} p_j$. After wrapping around the circle, P_i becomes the union of some cyclically consecutive arcs among J_0, J_1, \ldots, J_n . We set $\epsilon_i = 1$ if J_k (found above) is one of the consecutive arcs forming P_i , and $\epsilon_i = 0$ otherwise.

We verify that this rounding scheme satisfies the statement of Theorem 1. For an integer interval $\{a_t+1,\ldots,b_t\}$, observe that $|\sum_{i=a_t+1}^{b_t} (\epsilon_i - p_i)|$ equals the difference (in absolute value) between the length of the piece of string $\bigcup_{i=a_t+1}^{b_t} P_i$ and the number of times it wraps around J_k . This difference equals the length of the circular arc between the two endpoints of $\bigcup_{i=a_t+1}^{b_t} P_i$ that does not contain J_k . The length of this circular arc is at most $1 - |J_k|$. When we consider d such intervals $\{a_t + 1, \ldots, b_t\}, t = 1, \ldots, d$, with $0 \le a_1 < b_1 < \ldots < a_d < b_d \le n$, the 2d endpoints of $\bigcup_{i=a_t+1}^{b_t} P_i$, $t = 1, \ldots, d$, occupy 2d distinct marked points on the circle. Thus, J_k is contained in none of the corresponding d circular arcs, $J_{k\pm 1}$ are each contained in at most one of them, $J_{k\pm 2}$ are each contained in at most two of them, etc. Hence the total length of these d circular arcs is at most $\begin{aligned} d-d|J_k| - \sum_{i=1}^{d-1} \left(d-i\right) \left(|J_{k-i}| + |J_{k+i}|\right), \text{ which by our choice of } k \text{ is at most} \\ d - \frac{d^2}{n+1} = \left(1 - \frac{d}{n+1}\right) d, \text{ as required.} \end{aligned}$

3. Proof of Theorem 2

We first restate Theorem 2 in an equivalent but more convenient form. Instead of working with the lengths $|J_i|$, we work with the excess lengths (compared to the average length), namely

$$e_i = |J_i| - \frac{1}{n+1}, \quad i = 0, 1, \dots, n_i$$

Clearly, the excess lengths satisfy

$$\sum_{i=0}^{n} e_i = 0,$$

and we need to prove that there exists k such that for all $d = 1, ..., \lfloor \frac{n+1}{2} \rfloor$ we have

$$de_k + \sum_{i=1}^{d-1} (d-i) (e_{k-i} + e_{k+i}) \ge 0.$$

We recall that the entries e_0, e_1, \ldots, e_n are cyclically ordered, and their indices are taken modulo n+1. The circular distance between two indices i and j is denoted by ||i-j||, that is, for $0 \le i, j \le n$ we have

 $||i - j|| = \min(|i - j|, n + 1 - |i - j|).$

Let us assume, for the sake of contradiction, that for each k there exists d_k such that

$$d_k e_k + \sum_{i=1}^{d_k-1} \left(d_k - i \right) \left(e_{k-i} + e_{k+i} \right) < 0.$$

Consider the $(n+1) \times (n+1)$ matrix A, with entries $(A_{ij})_{i=0,\dots,n,j=0,\dots,n}$ defined by

$$A_{ij} = \begin{cases} d_i - \|i - j\| & \text{if } \|i - j\| < d_i, \\ 0 & \text{otherwise.} \end{cases}$$

Our assumption is equivalent to

(1)
$$A\begin{pmatrix} e_0\\ e_1\\ \vdots\\ e_n \end{pmatrix} < \begin{pmatrix} 0\\ 0\\ \vdots\\ 0 \end{pmatrix}.$$

Consider also the $(n+1) \times (n+1)$ matrix B, with entries $(B_{ij})_{i=0,\dots,n,j=0,\dots,n}$ defined by

$$B_{ij} = \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } \|i - j\| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

We claim that

(2)
$$\begin{pmatrix} e_0\\ e_1\\ \vdots\\ e_n \end{pmatrix} \in \operatorname{Im} B.$$

As B is symmetric, its kernel is the subspace orthogonal to its image. We know that $\sum_{i=0}^{n} e_i = 0$, hence it suffices to prove that

$$\operatorname{Ker} B = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \right\}.$$

Indeed, a vector \vec{x} in Ker *B* satisfies $x_i - x_{i-1} = x_{i+1} - x_i$. So its entries form an arithmetic progression, and as $x_{n+1} = x_0$ they must all be equal.

By (2), there exists \vec{v} such that

$$B\vec{v} = \begin{pmatrix} e_0\\ e_1\\ \vdots\\ e_n \end{pmatrix}.$$

Substituting in (1), we get

We proceed to compute the matrix AB. Noting that $A_{ij} = d_i - \min(||i - j||, d_i),$ we have

$$(AB)_{ij} = -2\min(\|i-j\|, d_i) + \min(\|i-(j-1)\|, d_i) + \min(\|i-(j+1)\|, d_i) \\ = \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } \|i-j\| = d_i < \frac{n+1}{2}, \\ -2 & \text{if } \|i-j\| = d_i = \frac{n+1}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus, (3) requires that

$$2v_i - v_{i-d_i} - v_{i+d_i} < 0, \quad i = 0, 1, \dots, n.$$

But this does not hold for $i_0 = \operatorname{argmax}_i v_i$, because

$$2v_{i_0} - v_{i_0 - d_{i_0}} - v_{i_0 + d_{i_0}} \ge 2v_{i_0} - v_{i_0} - v_{i_0} = 0.$$

This contradiction proves Theorem 2.

References

- T. BOHMAN and R. HOLZMAN: Linear versus hereditary discrepancy, *Combinatorica* 25 (2005), 39–47.
- [2] B. DOERR: Linear and hereditary discrepancy, Combinatorics, Probability and Computing 9 (2000), 349–354.
- [3] B. DOERR: Linear discrepancy of totally unimodular matrices, Combinatorica 24 (2004), 117–125.
- [4] D. E. KNUTH: Two-way rounding, SIAM Journal on Discrete Mathematics 8 (1995), 281–290.
- [5] L. LOVÁSZ, J. SPENCER and K. VESZTERGOMBI: Discrepancy of set systems and matrices, *European Journal of Combinatorics* 7 (1986), 151–160.
- [6] J. MATOUŠEK: On the linear and hereditary discrepancies, European Journal of Combinatorics 21 (2000), 519–521.
- [7] J. SPENCER: Ten Lectures on the Probabilistic Method, 2nd edition, SIAM, 1994.

Ron Holzman, Nitzan Tur

Department of Mathematics Technion-Israel Institute of Technology 32000 Haifa, Israel holzman@tx.technion.ac.il nitzan.tur@gmail.com