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Lovész proved (see [7]) that given real numbers p1,...,pn, one can round them up or down
to integers €1,...,€n, in such a way that the total rounding error over every interval (i.e.,
sum of consecutive p;’s) is at most 1 — n%_l Here we show that the rounding can be done
so that for all d=1,..., L”THJ, the total rounding error over every union of d intervals is

_d_
n+1

that such rounding is possible for each value of d separately.

at most (17 )d. This answers a question of Bohman and Holzman [1], who showed

1. Introduction

Let [n] = {1,...,n}. The linear discrepancy of a hypergraph H C 2" is
defined by

fndise () = Iy iy B | 2 P

Thus, given any assignment of real numbers p1,...,p, to the vertices of H,
the goal is to round them up or down to integers €1,...,€, so that the total
rounding error over any edge of H will be as small as possible. This concept
was introduced by Lovdsz, Spencer and Vesztergombi [5], who studied its
relationship to several other notions of hypergraph discrepancy. Additional
investigations of linear discrepancy include [7,4,6,2,3,1].

A natural example for studying linear discrepancy is the interval hyper-
graph H, on the vertex set [n], having as edges all the integer intervals,
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i.e., sets of consecutive elements of [n]. Spencer [7] gave a short argument
(a ‘gem’ attributed to Lovész) that lindisc(H,) =1— - +1 An example of
an assignment of p1,...,p, which forces a rounding error of at least 1—

1
n+1"
(d)

More generally, one may consider the d-interval hypergraph Hy~’, where a

subset of [n] is an edge if it is the union of at most d intervals. The relevant
ntl
values of d are 1,..., | %5 |, with HY =H, and Hg 2D ol 145 straight-

forward to deduce from lindisc(H,,) = 1—=1; that lindisc(H\") < (1 - 7) d.

+1
over some interval is p;=...=p, =

n+1
(d)

Bohman and Holzman [1] improved this, showing that lindisc(Hy') =

(1 — TH) d for every d € {1 L”'QHJ } But the rounding used to estab-

lish this was devised for each value of d separately. The question whether
the same rounding can work simultaneously for all d=1,..., L%HJ was left

open in [1]. Here we answer this affirmatively:

Theorem 1. For any p1,...,p, € [0,1] there exist €1,...,e, €{0,1} such that
the following holds true:
For alld=1,..., L"THJ and for any 2d integers 0<a; <b;1 <...<ag<bg<n

we have
d bt
d
S| 3 wom)<(1-15)e
=1 [i=a¢+1 n+1

Note that ’zt 121 apr1(€—Dpi) <Zt 1 ‘Zl a1 (€ — pi)’, so the form
that appears in Theorem 1 is stronger than in the definition of linear dis-

crepancy. Yet, as shown in [1] using the assignment p; =...=p, = niﬂ, the
upper bound (1— niﬂ)d is sharp even when taking the absolute value of the
total rounding error over the entire union of d intervals.

The proof of Theorem 1 is based on an adaptation of the above-mentioned
argument of Lovasz, and on an auxiliary result which is interesting in its own
right, about partitions of a circle. Consider a circle of length one, partitioned
into arcs Jy,J1,...,Jy in cyclic order. (Some of these arcs may have length
zero. Indices of arcs are taken modulo n+1.) For each Ji, we look at its length
|Jk|, the 2-length around Jj, defined as 2|Jg|+|Jx—1|+|Jk+1|, and in general
the d—length around J; defined as d|Ji| + 921 (d—i) (| Jo—il +|Jpra]), for
d=1,. L”HJ Note that the average over all k of the d-length around Jj
equals -2 +1 Hence for each d there is some Jj around which the d-length is
at least this average. The nontrivial fact that we shall prove is that there is
always a Ji around which all d-lengths are at least the respective averages:
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Theorem 2. Let Jy,J1,...,J, be a cyclically ordered partition of a circle

of length one into arcs. Then there exists k such that for all d=1, ..., L”T‘HJ
we have
d2
d|J; (1, J] .
|k|+z |kz\+|kz+z|)_n+1

In Section 2 we shall derive Theorem 1 from Theorem 2 (this is essentially
the adaptation by Bohman and Holzman of the argument of Lovasz, but is
repeated here for completeness). In Section 3 we shall prove Theorem 2.

2. Proof of Theorem 1

Given the real numbers p1,...,p, € [0,1], we consider a string of length
Z;’l:lpj’ with n+1 marked points, namely the points at distance 0,p1,p1 +
D2,y.-ey Z?:l pj from the left endpoint of the string. Now we wrap this string
around a circle of length one, and the marked points appear on the circle
as the points Z;lej modulo 1, ¢ =0,1,...,n. These points partition the
circle into n+1 arcs (connected components), which we denote Jy, Ji,...,J,
in cyclic order (marked points may coincide on the circle, so we allow arcs
of length zero). Applying Theorem 2, we find an arc Ji around which the
d-length is at least ﬁ, for all d=1,...,[ 2 ].

Note that for each p; there is a correspondmg piece of the string, that we
denote P;, which has length p; and lies between the marked points Z j=1Pj

and Z;Zl pj. After wrapping around the circle, P; becomes the union of some
cyclically consecutive arcs among Jy,J1,...,J,. We set ¢; =1 if Ji (found
above) is one of the consecutive arcs forming P;, and ¢; =0 otherwise.

We verify that this rounding scheme satisfies the statement of Theo-
rem 1. For an integer interval {a;+1,...,b;}, observe that |ZZ at+1(61 i)l
equals the difference (in absolute value) between the length of the piece of
string Ul a1 i and the number of times it wraps around Ji. This dif-
ference equals the length of the circular arc between the two endpoints of
Ugtzat 41 P that does not contain Ji. The length of this circular arc is at
most 1—|Ji|. When we consider d such intervals {a;+1,...,b:}, t=1,....d,
with 0 < a1 < b1 < ... < aq < bg <mn, the 2d endpomts of Uz az+1P
t=1,...,d, occupy 2d distinct marked points on the circle. Thus, Jy is
contained in none of the corresponding d circular arcs, Jip+1 are each con-
tained in at most one of them, Jiio are each contained in at most two
of them, etc. Hence the total length of these d circular arcs is at most
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d—d|Jy| — Zd 1 (d—1) (| Jk—i| + | Jrti]), which by our choice of k is at most

d2
—ara=\1- TH) d, as required.

3. Proof of Theorem 2

We first restate Theorem 2 in an equivalent but more convenient form. In-
stead of working with the lengths |J;|, we work with the excess lengths
(compared to the average length), namely

1 .
€Z:’Ji‘—m, 2:(),1,...,n.

Clearly, the excess lengths satisfy

n
=0

and we need to prove that there exists k such that for all d=1,..., L”
we have

v+
=
| I—

deg + Z (ex—i + exys) > 0.

We recall that the entries eg,eq,...,e, are cyclically ordered, and their in-
dices are taken modulo n+ 1. The circular distance between two indices i
and j is denoted by ||i—j||, that is, for 0<4,j <n we have

li = jll = min (Ji — j],n+ 1~ |i — ).
Let us assume, for the sake of contradiction, that for each k there exists

di such that
dp—1

drey, + Z (dk — Z) (ek_i + ek—i—i) < 0.
i=1
Consider the (n+1) x (n+ 1) matrix A, with entries (Aij)z‘:o =0
defined by
o fatial il <
iy = :
0 otherwise.

Our assumption is equivalent to

€0 0

(&) 0
(1) Al | <

en 0
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Consider also the (n+1)x (n+1) matrix B, with entries (B;;)
defined by

1=0,...,n,7=0,...,n

2 ifi=j,
Bij =4 -1 if[i—j|l =1,

0 otherwise.
We claim that

(2) . | €ImB.

As B is symmetric, its kernel is the subspace orthogonal to its image. We
know that """ ;e;=0, hence it suffices to prove that

1

1
Ker B = Span

1
Indeed, a vector ¥ in Ker B satisfies x; —x;_1 =x;4+1 —x;. So its entries form
an arithmetic progression, and as x,41 =z they must all be equal.

By (2), there exists ¢/ such that

€0
el
Bv =

€n
Substituting in (1), we get
(3) ABU <

We proceed to compute the matrix AB. Noting that
Aij = dl — min (HZ — j”, dz),
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we have
(AB)ij = —=2min([li—j||, ;i) +min(|[i— (j — )], di) +-min([|i— (j+1) ]|, d:)
2 if 1 =7,
=1 if i — ] = d; < "3,
=2 if [li — jl| = d; = "4,
0 otherwise.
Thus, (3) requires that
20 — Vi—g; — Vitq; <0, 1=0,1,...,n.
But this does not hold for ig =argmax;v;, because
204, — Vig—d;y — Vig+ds, > 204 — Vi — Vi = 0.

This contradiction proves Theorem 2.
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