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a b s t r a c t

We prove that if the edges of a graph G can be colored blue or
red in such a way that every vertex belongs to a monochromatic
k-clique of each color, then G has at least 4(k − 1) vertices. This
confirms a conjecture of Bucic et al. (0000), and thereby solves
the 2-dimensional case of their problem about partitions of
discrete boxes with the k-piercing property. We also characterize
the case of equality in our result.
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1. Introduction

In this paper, a 2-colored graph will be a simple graph with edges colored blue or red. Bucic et al.
[2] asked the following: Given an integer k ≥ 2, what is the smallest possible number of vertices
in a 2-colored graph having the property that every vertex belongs to a monochromatic k-clique of
each color?

They gave the following construction, showing that 4(k − 1) vertices suffice. First, for k = 2,
take a 4-cycle with edges colored alternatingly. Now, for general k, blow up this 4-cycle, replacing
each vertex by a monochromatic (k− 1)-clique, with colors alternating along the 4-cycle (all edges
between two adjacent (k − 1)-cliques get the same color as the edge in the underlying 4-cycle). It
is easy to verify that this 2-colored graph has the required property.

Bucic et al. [2] conjectured that this construction is optimal, and proved a lower bound of the
form (4−ok(1))k on the number of vertices in any 2-colored graph with the required property. Here
we prove exact optimality.

Theorem 1. Let k ≥ 2 be an integer, and let G = (V , E) be a 2-colored graph so that every vertex in
V belongs to a monochromatic k-clique of each color. Then |V | ≥ 4(k − 1).
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Our proof, given in Section 2, combines counting arguments with a linear algebraic trick similar
to one used by Tverberg [7]. In Section 3 we characterize the case of equality in Theorem 1.
Perhaps surprisingly, for k ≥ 3 it turns out that the above example on 4(k − 1) vertices is not the
only extremal one. In Section 4 we discuss some generalizations and reformulations of the above
question. These involve, in particular, partitions of a box into sub-boxes and decompositions of a
bipartite graph into complete bipartite subgraphs. (The discussion of the latter clarifies the relation
to Tverberg’s above-mentioned proof.)

2. Proof of Theorem 1

Let G = (V , E) be a 2-colored graph so that every vertex in V belongs to a monochromatic
k-clique of each color. Instead of working directly with the graph, we store the information we have
in the following form: We have a vertex set V and two families B = {B1, . . . , Bb}, R = {R1, . . . , Rr}

of subsets of V satisfying:

|Bi| ≥ k and |Rj| ≥ k ∀i ∈ [b], j ∈ [r], (1)

|Bi ∩ Rj| ≤ 1 ∀i ∈ [b], j ∈ [r], (2)
b⋃

i=1

Bi =

r⋃
j=1

Rj = V . (3)

Indeed, given G we can construct B and R as the families of vertex sets of blue (resp. red) cliques
witnessing that every vertex belongs to a monochromatic clique of each color.

Next, we claim that we can keep the same vertex set V and possibly make some adjustments to
the families B and R, so that the following will be satisfied in addition to (1)–(3):

Bi \
⋃
i′ ̸=i

Bi′ ̸= ∅ and Rj \
⋃
j′ ̸=j

Rj′ ̸= ∅ ∀i ∈ [b], j ∈ [r], (4)

|Bi ∩ Rj| = 1 ∀i ∈ [b], j ∈ [r]. (5)

Indeed, if Bi ⊆
⋃

i′ ̸=i Bi′ , say, then we can discard Bi from B while retaining properties (1)–(3).
Iterating this operation we end up with families satisfying (1)–(4). At this point, if Bi ∩ Rj = ∅ then
we can choose a vertex v ∈ Bi \

⋃
i′ ̸=i Bi′ and replace Rj by Rj∪{v} while retaining properties (1)–(3).

It may happen that this change causes a violation of (4), namely when we had Rj∗ \
⋃

j′ ̸=j∗ Rj′ = {v}

for some j∗ ̸= j before the change; in this case, after adding v to Rj we discard Rj∗ . Iterating this
operation we end up with families satisfying (1)–(5).

Thus, we may assume that the set V and the two families B = {B1, . . . , Bb}, R = {R1, . . . , Rr} of
subsets of V satisfy (1)–(5). For every v ∈ V we write

Iv = {i ∈ [b] : v ∈ Bi}, Jv = {j ∈ [r] : v ∈ Rj}.

Note that the properties of V , B and R may be expressed in terms of the subsets Iv of [b] and Jv of
[r], for v ∈ V , as follows: (1) says that every i ∈ [b] is covered by the subsets Iv at least k times,
and similarly for [r] and the subsets Jv; (3) says that Iv, Jv ̸= ∅; (4) says that for every i ∈ [b] there
is v ∈ V such that Iv = {i}, and similarly for [r] and Jv; (5), which implies (2), says that the product
sets Iv × Jv partition [b] × [r].

Proposition 1. If V , B and R satisfy (4) and (5) then |V | ≥ b + r − 1.

Proof. We introduce for each i ∈ [b] a variable xi, and for each j ∈ [r] a variable yj (these variables
take real values). By (5) we have the identity

∑
v∈V

(∑
i∈Iv

xi

)
·

⎛⎝∑
j∈Jv

yj

⎞⎠ =

(
b∑

i=1

xi

)
·

⎛⎝ r∑
j=1

yj

⎞⎠ . (6)
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Now we consider the following system of homogeneous linear equations:∑
i∈Iv

xi −
∑
j∈Jv

yj = 0, v ∈ V , (7)

b∑
i=1

xi = 0. (8)

It suffices to show that the system has only the trivial solution, because this implies that the number
of equations |V |+1 is at least as large as the number of variables b+r . Let (xi)i∈[b], (yj)j∈[r] satisfy (7)
and (8). By (7) we know that for each v ∈ V there is a real number αv so that

∑
i∈Iv xi =

∑
j∈Jv yj =

αv . The identity (6) implies, using (8), that
∑

v∈V α2
v = 0 and hence αv = 0 for all v ∈ V . Now, given

i ∈ [b] we can find by (4) some v ∈ V such that xi =
∑

i∈Iv xi = αv = 0, and a similar argument
shows that yj = 0 for every j ∈ [r], as required. □

Returning to the proof of Theorem 1, we may henceforth assume that b+r ≤ 4(k−1), otherwise
|V | ≥ 4(k− 1) follows from Proposition 1. We also know that b ≥ k, because the sets Iv , v ∈ R1, are
k or more disjoint nonempty subsets of [b]; similarly r ≥ k. Thus, the relevant domain for b + r in
the rest of the proof is

2k ≤ b + r ≤ 4(k − 1). (9)

Using (1) we have∑
v∈V

|Iv| + |Jv| ≥ k(b + r), (10)

and using (5) we have∑
v∈V

|Iv||Jv| = br. (11)

Since |Iv| and |Jv| are nonzero by (3), their product is smallest (given their sum) when one of them
is 1. Hence

|Iv||Jv| ≥ |Iv| + |Jv| − 1 ∀v ∈ V . (12)

Using (10)–(12) we can write

|V | =

∑
v∈V

|Iv| + |Jv| − (|Iv| + |Jv| − 1)

≥ k(b + r) −

∑
v∈V

(|Iv| + |Jv| − 1)

≥ k(b + r) −

∑
v∈V

|Iv||Jv| (13)

= k(b + r) − br

≥ k(b + r) −
(b + r)2

4
.

The latter is a decreasing function of b+ r in the domain (9), and is therefore bounded from below
by its value at b + r = 4(k − 1), which is 4(k − 1). This proves that |V | ≥ 4(k − 1), as required. □

3. Characterization of extremal graphs

If G = (V , E) is a 2-colored graph having the property that every vertex in V belongs to a
monochromatic k-clique of each color, then adding any edges to G (between existing vertices)
and coloring them arbitrarily results in a graph with the same property. Therefore we can restrict
attention to those graphs having this property which are edge-critical, in the sense that removing
any edge entails the loss of this property.
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Here is a construction of an edge-critical 2-colored graph on 4(k−1) vertices, so that every vertex
belongs to a monochromatic k-clique of each color, which generalizes the one from [2] described in
the introduction. Let k ≥ 2 be an integer, let X and Y be two disjoint sets of 2(k− 1) vertices each,
and let B(X, Y ) and R(X, Y ) be two complementary (k−1)-regular bipartite graphs on the bipartition
(X, Y ). Our graph G = G(X, Y , B, R) has X ∪ Y as its vertex set. It has the complete bipartite graph
on (X, Y ) as a subgraph, with edges in B(X, Y ) colored blue and edges in R(X, Y ) colored red. We
refer to B(X, Y ) and R(X, Y ) as the blue and red graphs, respectively. In addition, any two vertices
in X which have a common neighbor in the blue graph are joined by a blue edge in G, and any two
vertices in Y which have a common neighbor in the red graph are joined by a red edge in G. It is
easy to verify that this 2-colored graph has the required property and is edge-critical.

For k = 2 we have |X | = |Y | = 2 and the blue and red graphs must be two complementary
perfect matchings, resulting in the 2-colored 4-cycle described in the introduction. But for higher
values of k, we have more freedom in choosing B(X, Y ) and R(X, Y ). For example, consider k = 3, so
|X | = |Y | = 4. We may choose B(X, Y ) and R(X, Y ) so that each of them is the disjoint union of two
4-cycles, resulting in the blown-up 4-cycle graph from the introduction. But we can also choose
B(X, Y ) and R(X, Y ) to be 8-cycles, resulting in a new example, not isomorphic to the previous one.

Note that the construction described in the introduction corresponds to the following choice of
B(X, Y ) and R(X, Y ): X is equi-partitioned into X1 and X2, Y is equi-partitioned into Y1 and Y2, B(X, Y )
consists of all edges between X1 and Y1 and between X2 and Y2, and R(X, Y ) consists of all edges
between X1 and Y2 and between X2 and Y1. For this choice, the resulting graph G(X, Y , B, R) induces
blue cliques on X1 and X2 and red cliques on Y1 and Y2, and has a total of 2(k − 1)(3k − 4) edges.
Among all graphs of the form G(X, Y , B, R) for a given value of k, the latter uniquely minimizes the
number of edges. To see this, observe that in the graph induced on X (and similarly for Y ) each
vertex must have degree at least k− 2, and the only way to have these degrees equal to k− 2 is by
using X1, X2, Y1, Y2 as above.

The next result shows that all edge-critical extremal examples for Theorem 1 are of the form
G = G(X, Y , B, R), thus characterizing the case of equality in that theorem.

Theorem 2. Let k ≥ 2 be an integer, and let |V | = 4(k − 1). Let G = (V , E) be a 2-colored graph
so that every vertex in V belongs to a monochromatic k-clique of each color, and G is edge-critical with
respect to this property. Then G is isomorphic to some G(X, Y , B, R), where B(X, Y ) and R(X, Y ) are
complementary (k − 1)-regular bipartite graphs on (X, Y ).

Proof. Let G = (V , E) satisfy the assumptions of the theorem. In the case k = 2, it is easy to
check directly that G must be a 4-cycle colored alternatingly, as claimed. We henceforth assume
that k ≥ 3.

As in the proof of Theorem 1, we associate with G two families B = {B1, . . . , Bb}, R =

{R1, . . . , Rr} of subsets of V satisfying (1)–(3). Clearly, the blue edges of G are those pairs {u, v}

contained in some Bi, and the red edges are those pairs {u, v} contained in some Rj (by edge-
criticality, there can be no other edges in G). In the main part of the proof below, we assume that
V , B, R satisfy (4) and (5) as well; at the end of the proof we will justify this assumption. We also
use the notations Iv and Jv for v ∈ V as introduced in the proof of Theorem 1. According to that
proof, the only values of b + r which may result in |V | = 4(k − 1) are 4(k − 1) and 4(k − 1) + 1 (if
b + r < 4(k − 1) then (13) forces |V | to be larger, and if b + r > 4(k − 1) + 1 then Proposition 1
does that).

Case 1 b + r = 4(k − 1)
Because |V | = 4(k − 1), (13) must hold as an equality. This implies that (10) and (12) hold as

equalities, and b = r = 2(k−1). Equality in (10) means that every Bi and every Rj is of size exactly k.
Equality in (12) means that for every v ∈ V , at least one of Iv, Jv is a singleton. For j ∈ [r], the sets Iv ,
v ∈ Rj, partition [b] into k nonempty subsets. This implies that |Iv| ≤ k−1, and similarly |Jv| ≤ k−1,
for every v ∈ V . Therefore |Iv||Jv| ≤ k − 1 for every v ∈ V , but since

∑
v∈V |Iv||Jv| = 4(k − 1)2 we

must have equality for every v ∈ V . This means that we can partition V into two sets:

X = {v ∈ V : |Iv| = k − 1, |Jv| = 1}, Y = {v ∈ V : |Iv| = 1, |Jv| = k − 1}.

As
∑

v∈V |Iv| = kb = 2k(k − 1), we must have |X | = |Y | = 2(k − 1).
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Now, consider a vertex v ∈ X . There is j ∈ [r] such that v ∈ Rj. Since the sets Iu, u ∈ Rj, partition
[b] into k subsets, one of which is Iv of size k−1, all other Iu must be singletons, so that Rj \{v} ⊆ Y .
This accounts for k − 1 red edges from v into Y . As this holds for every v ∈ X , and similarly every
v ∈ Y must have at least k−1 blue edges into X , the complete bipartite graph on (X, Y ) must appear
in G and be colored so that the blue graph B(X, Y ) and the red graph R(X, Y ) are both (k−1)-regular.
The above also implies that the neighbors of every v ∈ X in the red graph must form a red clique
in Y , and the neighbors of every v ∈ Y in the blue graph must form a blue clique in X . This shows
that G(X, Y , B, R) is contained in G, and as G is edge-critical, they must coincide.

Case 2 b + r = 4(k − 1) + 1
We will show that this case cannot occur. Consider the mapping from B ∪ R into V defined as

follows. To each Bi we assign, using (4), an element u of Bi which belongs to no other Bi′ ; if among
the possible choices of u for a given Bi there is one which belongs to more than one of the sets Rj,
we assign to Bi such a u. Similarly, to each Rj we assign an element u of Rj which belongs to no
other Rj′ , with priority to such u which belongs to more than one of the sets Bi. As |B ∪ R| > |V |,
the mapping is not injective, so we can find some u ∈ V which was assigned to some Bi and to
some Rj.

Assume w.l.o.g. that b ≥ 2(k − 1) + 1. For the set Rj just found, there is no vertex v such that
|Iv| > 1 and Jv = {j}; indeed, if there were such v it would be given priority as the vertex assigned
to Rj, over the actual assignment of u which belongs to a unique Bi. It follows that we can partition
Rj into two sets:

S = {v ∈ Rj : |Iv| = 1}, T = {v ∈ Rj : |Iv|, |Jv| ≥ 2}.

Write |Rj| = k + ℓ, where ℓ ≥ 0, and |S| = s.
Due to the size of Rj, the difference between the two sides of (10) is at least ℓ. Hence the first

inequality in (13) holds with a slack of at least ℓ.
For each v ∈ T , the difference between the two sides of (12) is at least

2(|Iv| + |Jv| − 2) − (|Iv| + |Jv| − 1) = |Iv| + |Jv| − 3 ≥ |Iv| − 1.

Since |T | = k+ℓ−s, the second inequality in (13) holds with a slack of at least
∑

v∈T |Iv|−(k+ℓ−s).
The sets Iv , v ∈ Rj, partition [b], and therefore

∑
v∈T |Iv| = b − s ≥ 2(k − 1) + 1 − s, so the slack in

the second inequality in (13) is at least k − ℓ − 1.
Adding up the two slacks, we obtain

|V | ≥ k(b + r) − br + k − 1
≥ k(4(k − 1) + 1) − 2(k − 1)(2(k − 1) + 1) + k − 1
= 4(k − 1) + 1,

which contradicts our assumption on |V |.
It remains to address the possibility that the families B, R associated with G do not satisfy (4) and

(5). In this case, by performing the steps indicated in the proof of Theorem 1, we obtain modified
families B′, R′ which do satisfy (4) and (5) as well as (1)–(3). By the foregoing proof, B′ and R′

must be as described in Case 1 above, and the graph corresponding to them is isomorphic to some
G(X, Y , B, R). In particular, all sets in B′

∪ R′ are of size k exactly. It follows that in passing from B,
R to B′, R′, the step of adding a vertex to a set could never occur. Thus, the only steps performed
were deletions of sets. Therefore the original graph G contains a graph of the form G(X, Y , B, R), and
by edge-criticality they must coincide. □

4. Generalizations and reformulations

4.1. More than two colors

It is natural to generalize the question treated here to t-colored graphs, i.e., simple graphs with
edges colored in one of t colors.
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Question 1 (Bucic et al. [2]). Given integers k, t ≥ 2, what is the smallest possible number of vertices
in a t-colored graph having the property that every vertex belongs to a monochromatic k-clique of each
color?

Bucic et al. noted that their construction for t = 2 on 4(k − 1) vertices can be adapted to one
for general t using 2t(k−1) vertices. In fact, our more general construction in Section 3 can also be
adapted as follows. Let X1, . . . , Xt be t disjoint sets of 2(k−1) vertices each. For any pair of colors i, j,
take the complete bipartite graph on (Xi, Xj) and color its edges i or j so that both color graphs are
(k− 1)-regular. In addition, for each color i, any two vertices in Xi which have a common neighbor
in the color i graph (in any Xj, j ̸= i) are joined by an edge colored i. This yields an edge-critical
graph with the required property.

It is natural to conjecture that the above construction is optimal for any fixed number of colors
t and large enough k. As observed by Bucic et al. [2], their proof of an asymptotic lower bound for
the case of two colors extends to general t , yielding a lower bound of (2t − ok(1))k in Question 1.
Unfortunately, it seems that our proof of the exact lower bound does not extend to general t .

We note that the above construction is not optimal if k is fixed and t is suitably large. For
example, 4 vertices suffice for k = 2, t = 3. More generally, for any fixed k and large enough t
congruent to 1(modk), the answer to Question 1 is t(k − 1) + 1. Indeed, by the existence result of
Ray-Chaudhuri and Wilson [6] for resolvable block designs, for such k and t the complete graph on
t(k−1)+1 vertices can be t-colored so that each color class is a disjoint union of k-cliques spanning
all vertices.

While the above generalization looks interesting in its own right, the intended application
of Bucic et al. [2] suggests a different generalization. This will be explained in the following
subsections.

4.2. Partition of a box into sub-boxes

A set of the form A = A1 × · · · × Ad, where A1, . . . , Ad are finite sets with |Ai| ≥ 2, is called
a d-dimensional discrete box. A set of the form B = B1 × · · · × Bd, where Bi ⊆ Ai for all i ∈ [d],
is a sub-box of A; it is said to be nontrivial if ∅ ̸= Bi ̸= Ai for all i ∈ [d]. It is easy to partition
a d-dimensional discrete box into 2d nontrivial sub-boxes, by cutting each Ai into two parts. The
following theorem answered a question of Kearnes and Kiss [4].

Theorem 3 (Alon et al. [1]). Let A be a d-dimensional discrete box, and let {B1, . . . , Bm
} be a partition

of A into m nontrivial sub-boxes. Then m ≥ 2d.

Instead of requiring the sub-boxes B1, . . . , Bm to be nontrivial, one may equivalently require that
every axis-parallel line (i.e., set of the form {(x1, . . . , xd) ∈ A : xj = aj ∀j ∈ [d] \ {i}}) intersects at
least two of them. This observation led Bucic et al. [2] to consider families of sub-boxes {B1, . . . , Bm

}

with the k-piercing property, namely: every axis-parallel line intersects at least k sub-boxes in the
family. Generalizing the question of Kearnes and Kiss, they asked the following.

Question 2 (Bucic et al. [2]). Let d ≥ 1 and k ≥ 2 be integers, and let A = A1 × · · · × Ad be a
d-dimensional discrete box with all |Ai| sufficiently large. What is the smallest possible number m of
sub-boxes in a partition {B1, . . . , Bm

} of A having the k-piercing property?

They denoted the answer to Question 2 by pbox(d, k). The case k = 2 is solved by Theorem 3:
pbox(d, 2) = 2d. For larger k, it is natural to consider first the 2-dimensional case (d = 1 is trivial).
Here, cutting each Ai into k parts gives a construction with m = k2 sub-boxes. But Bucic et al. [2]
showed that in fact m = 4(k − 1) is enough. Their construction is illustrated in Fig. 1.

Bucic et al. conjectured that this construction is optimal, that is, pbox(2, k) = 4(k − 1). They
observed that this is the case if one restricts attention to sub-boxes which are bricks, i.e., products of
intervals. In an attempt to prove optimality among partitions into general sub-boxes, they associated
with any such partition of a 2-dimensional box a 2-colored graph as follows: the vertices are the
sub-boxes in the partition, and two sub-boxes are joined by a blue (resp. red) edge if there is
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Fig. 1. A k-piercing partition of a 2-dimensional box, showing that pbox(2, k) ≤ 4(k− 1). Each quarter of the box consists
of k − 1 parallel sub-boxes. The illustration corresponds to k = 4.

a horizontal (resp. vertical) line which intersects both of them. The k-piercing property implies
that every vertex belongs to a monochromatic k-clique of each color. This led them to ask for the
minimum number of vertices in such a graph. Note that the 2-colored graph with 4(k− 1) vertices
constructed by them (and presented in the introduction) corresponds to the partition shown in
Fig. 1.

The asymptotic lower bound that Bucic et al. [2] obtained for the question about 2-colored graphs
enabled them to deduce that pbox(2, k) ≥ (4−ok(1))k. Our full solution of the question (Theorem 1)
allows us to confirm their conjecture: pbox(2, k) = 4(k− 1). In fact, since the reduction described in
the previous paragraph does not depend on the sub-boxes being a covering of the given box, but
only on their disjointness, we have the following more general statement, which is also tight.

Corollary 1. Let k ≥ 2 be an integer, let A be a 2-dimensional discrete box, and let {B1, . . . , Bm
} be a

family of m disjoint sub-boxes of A having the k-piercing property. Then m ≥ 4(k − 1).

The question of determining pbox(d, k) when both d and k are greater than 2 remains wide
open. Bucic et al. [2] attempted a reduction to colored graphs similar to the above, but it led to
a less natural and less tractable question than in the case d = 2. Their best bounds for general d
and k are of the form eΩ(

√
d)k ≤ pbox(d, k) ≤ 15d/2k (of course, when k is small relative to d, the

bounds 2d
= pbox(d, 2) ≤ pbox(d, k) ≤ kd may be better).

4.3. Decomposition of a bipartite graph into complete bipartite subgraphs

A well-studied parameter of a graph G = (V , E) is the minimum number of edge-disjoint
complete bipartite subgraphs of G which cover the edge set E. The best known result is that of
Graham and Pollak [3], saying that any such decomposition of the complete graph G = Kn must
consist of at least n−1 complete bipartite subgraphs. For more general results about decomposition
of an arbitrary graph G, see e.g. Kratzke et al. [5]. The case when G itself is complete bipartite
is of course uninteresting, because there is a decomposition into one subgraph. But it becomes
interesting under some constraints on the decomposition, as we will see below.

A 2-dimensional discrete box A = A1 ×A2 (discussed in the previous subsection) may be viewed
as the edge set of a complete bipartite graph on (A1, A2). A partition of A into sub-boxes is then
a decomposition of a complete bipartite graph into complete bipartite subgraphs. We can restate
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Corollary 1 from this point of view, as follows. (The notation G = (A1, A2; E) refers to a bipartite
graph with vertex bipartition (A1, A2) and edge set E.)

Corollary 2. Let k ≥ 2 be an integer. Let G = (A1, A2; E) be a bipartite graph, and let {Gi
=

(Bi
1, B

i
2; E

i)}i∈[m] be a decomposition of G into m complete bipartite subgraphs. Assume that every vertex
in A1 (resp. A2) belongs to Bi

1 (resp. Bi
2) for at least k values of i ∈ [m]. Then m ≥ 4(k − 1).

Proposition 1 may also be reformulated in this terminology, as follows.

Corollary 3. Let G = (A1, A2; E) be a complete bipartite graph, and let {Gi
= (Bi

1, B
i
2; E

i)}i∈[m] be a
decomposition of G into m complete bipartite subgraphs. Assume that for every vertex x in A1 (resp. A2)
there is i ∈ [m] such that Bi

1 = {x} (resp. Bi
2 = {x}). Then m ≥ |A1| + |A2| − 1.

Indeed, Tverberg’s [7] proof of Graham and Pollak’s theorem inspired the proof of Proposition 1.
This point of view on partition problems for 2-dimensional discrete boxes suggests a general-

ization to higher dimensions expressed in terms of d-partite hypergraphs. (Recall that in such a
hypergraph H there is a partition (A1, . . . , Ad) of the vertex set, so that every edge contains exactly
one vertex from each Aj. We use the notation H = (A1, . . . , Ad; E). We say that H is complete d-
partite if every d-tuple meeting each Aj is an edge.) In particular, the following question asks for a
d-partite version of Corollary 2.

Question 3. Let d, k ≥ 2 be integers. Let H = (A1, . . . , Ad; E) be a complete d-partite hypergraph,
and let {H i

= (Bi
1, . . . , B

i
d; E

i)}i∈[m] be a decomposition of H into m complete d-partite subhypergraphs.
Assume that for every ℓ ∈ [d] and for every (d − 1)-tuple of vertices xj ∈ Aj, j ∈ [d] \ {ℓ}, there are at
least k values of i ∈ [m] such that xj ∈ Bi

j for all j ∈ [d] \ {ℓ}. If all |Aj| are sufficiently large, what is the
smallest possible number m of subhypergraphs in such a decomposition?

This is a reformulation of Question 2, so the answer is the same pbox(d, k) investigated by Bucic
et al. [2]. Hopefully, this interpretation of the question may suggest a useful approach, but we were
unable to extend the methods of this paper to handle it.
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