On 2-colored graphs and partitions of boxes

Ron Holzman ${ }^{1}$
Department of Mathematics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

A R T I C L E I N F O

Article history:

Received 14 November 2018
Accepted 7 March 2019
Available online xxxx

Abstract

We prove that if the edges of a graph G can be colored blue or red in such a way that every vertex belongs to a monochromatic k-clique of each color, then G has at least $4(k-1)$ vertices. This confirms a conjecture of Bucic et al. (0000), and thereby solves the 2-dimensional case of their problem about partitions of discrete boxes with the k-piercing property. We also characterize the case of equality in our result.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, a 2-colored graph will be a simple graph with edges colored blue or red. Bucic et al. [2] asked the following: Given an integer $k \geq 2$, what is the smallest possible number of vertices in a 2 -colored graph having the property that every vertex belongs to a monochromatic k-clique of each color?

They gave the following construction, showing that $4(k-1)$ vertices suffice. First, for $k=2$, take a 4 -cycle with edges colored alternatingly. Now, for general k, blow up this 4 -cycle, replacing each vertex by a monochromatic ($k-1$)-clique, with colors alternating along the 4 -cycle (all edges between two adjacent ($k-1$)-cliques get the same color as the edge in the underlying 4 -cycle). It is easy to verify that this 2 -colored graph has the required property.

Bucic et al. [2] conjectured that this construction is optimal, and proved a lower bound of the form $\left(4-o_{k}(1)\right) k$ on the number of vertices in any 2 -colored graph with the required property. Here we prove exact optimality.

Theorem 1. Let $k \geq 2$ be an integer, and let $G=(V, E)$ be a 2 -colored graph so that every vertex in V belongs to a monochromatic k-clique of each color. Then $|V| \geq 4(k-1)$.

[^0]Our proof, given in Section 2, combines counting arguments with a linear algebraic trick similar to one used by Tverberg [7]. In Section 3 we characterize the case of equality in Theorem 1. Perhaps surprisingly, for $k \geq 3$ it turns out that the above example on $4(k-1)$ vertices is not the only extremal one. In Section 4 we discuss some generalizations and reformulations of the above question. These involve, in particular, partitions of a box into sub-boxes and decompositions of a bipartite graph into complete bipartite subgraphs. (The discussion of the latter clarifies the relation to Tverberg's above-mentioned proof.)

2. Proof of Theorem 1

Let $G=(V, E)$ be a 2-colored graph so that every vertex in V belongs to a monochromatic k-clique of each color. Instead of working directly with the graph, we store the information we have in the following form: We have a vertex set V and two families $\mathcal{B}=\left\{B_{1}, \ldots, B_{b}\right\}, \mathcal{R}=\left\{R_{1}, \ldots, R_{r}\right\}$ of subsets of V satisfying:

$$
\begin{align*}
& \left|B_{i}\right| \geq k \text { and }\left|R_{j}\right| \geq k \quad \forall i \in[b], j \in[r], \tag{1}\\
& \left|B_{i} \cap R_{j}\right| \leq 1 \quad \forall i \in[b], j \in[r], \tag{2}\\
& \bigcup_{i=1}^{b} B_{i}=\bigcup_{j=1}^{r} R_{j}=V \tag{3}
\end{align*}
$$

Indeed, given G we can construct \mathcal{B} and \mathcal{R} as the families of vertex sets of blue (resp. red) cliques witnessing that every vertex belongs to a monochromatic clique of each color.

Next, we claim that we can keep the same vertex set V and possibly make some adjustments to the families \mathcal{B} and \mathcal{R}, so that the following will be satisfied in addition to (1)-(3):

$$
\begin{align*}
& B_{i} \backslash \bigcup_{i^{\prime} \neq i} B_{i^{\prime}} \neq \emptyset \text { and } R_{j} \backslash \bigcup_{j^{\prime} \neq j} R_{j^{\prime}} \neq \emptyset \quad \forall i \in[b], j \in[r], \tag{4}\\
& \left|B_{i} \cap R_{j}\right|=1 \quad \forall i \in[b], j \in[r] . \tag{5}
\end{align*}
$$

Indeed, if $B_{i} \subseteq \bigcup_{i^{\prime} \neq i} B_{i^{\prime}}$, say, then we can discard B_{i} from \mathcal{B} while retaining properties (1)-(3). Iterating this operation we end up with families satisfying (1)-(4). At this point, if $B_{i} \cap R_{j}=\emptyset$ then we can choose a vertex $v \in B_{i} \backslash \bigcup_{i^{\prime} \neq i} B_{i^{\prime}}$ and replace R_{j} by $R_{j} \cup\{v\}$ while retaining properties (1)-(3). It may happen that this change causes a violation of (4), namely when we had $R_{j^{*}} \backslash \bigcup_{j^{\prime} \neq j^{*}} R_{j^{\prime}}=\{v\}$ for some $j^{*} \neq j$ before the change; in this case, after adding v to R_{j} we discard $R_{j^{*}}$. Iterating this operation we end up with families satisfying (1)-(5).

Thus, we may assume that the set V and the two families $\mathcal{B}=\left\{B_{1}, \ldots, B_{b}\right\}, \mathcal{R}=\left\{R_{1}, \ldots, R_{r}\right\}$ of subsets of V satisfy (1)-(5). For every $v \in V$ we write

$$
I_{v}=\left\{i \in[b]: v \in B_{i}\right\}, \quad J_{v}=\left\{j \in[r]: v \in R_{j}\right\} .
$$

Note that the properties of V, \mathcal{B} and \mathcal{R} may be expressed in terms of the subsets I_{v} of $[b]$ and J_{v} of $[r]$, for $v \in V$, as follows: (1) says that every $i \in[b]$ is covered by the subsets I_{v} at least k times, and similarly for $[r]$ and the subsets J_{v}; (3) says that $I_{v}, J_{v} \neq \emptyset$; (4) says that for every $i \in[b]$ there is $v \in V$ such that $I_{v}=\{i\}$, and similarly for $[r]$ and J_{v}; (5), which implies (2), says that the product sets $I_{v} \times J_{v}$ partition $[b] \times[r]$.

Proposition 1. If V, \mathcal{B} and \mathcal{R} satisfy (4) and (5) then $|V| \geq b+r-1$.
Proof. We introduce for each $i \in[b]$ a variable x_{i}, and for each $j \in[r]$ a variable y_{j} (these variables take real values). By (5) we have the identity

$$
\begin{equation*}
\sum_{v \in V}\left(\sum_{i \in I_{v}} x_{i}\right) \cdot\left(\sum_{j \in I_{v}} y_{j}\right)=\left(\sum_{i=1}^{b} x_{i}\right) \cdot\left(\sum_{j=1}^{r} y_{j}\right) . \tag{6}
\end{equation*}
$$

Now we consider the following system of homogeneous linear equations:

$$
\begin{align*}
& \sum_{i \in I_{v}} x_{i}-\sum_{j \in J_{v}} y_{j}=0, \quad v \in V, \tag{7}\\
& \sum_{i=1}^{b} x_{i}=0 . \tag{8}
\end{align*}
$$

It suffices to show that the system has only the trivial solution, because this implies that the number of equations $|V|+1$ is at least as large as the number of variables $b+r$. Let $\left(x_{i}\right)_{i \in[b]},\left(y_{j}\right)_{j \in[r]}$ satisfy (7) and (8). By (7) we know that for each $v \in V$ there is a real number α_{v} so that $\sum_{i \in I_{v}} x_{i}=\sum_{j \in J_{v}} y_{j}=$ α_{v}. The identity (6) implies, using (8), that $\sum_{v \in V} \alpha_{v}^{2}=0$ and hence $\alpha_{v}=0$ for all $v \in V$. Now, given $i \in[b]$ we can find by (4) some $v \in V$ such that $x_{i}=\sum_{i \in I_{v}} x_{i}=\alpha_{v}=0$, and a similar argument shows that $y_{j}=0$ for every $j \in[r]$, as required.

Returning to the proof of Theorem 1, we may henceforth assume that $b+r \leq 4(k-1)$, otherwise $|V| \geq 4(k-1)$ follows from Proposition 1 . We also know that $b \geq k$, because the sets $I_{v}, v \in R_{1}$, are k or more disjoint nonempty subsets of [b]; similarly $r \geq k$. Thus, the relevant domain for $b+r$ in the rest of the proof is

$$
\begin{equation*}
2 k \leq b+r \leq 4(k-1) . \tag{9}
\end{equation*}
$$

Using (1) we have

$$
\begin{equation*}
\sum_{v \in V}\left|I_{v}\right|+\left|J_{v}\right| \geq k(b+r), \tag{10}
\end{equation*}
$$

and using (5) we have

$$
\begin{equation*}
\sum_{v \in V}\left|I_{v}\right| J_{v} \mid=b r . \tag{11}
\end{equation*}
$$

Since $\left|I_{v}\right|$ and $\left|J_{v}\right|$ are nonzero by (3), their product is smallest (given their sum) when one of them is 1 . Hence

$$
\begin{equation*}
\left|I_{v}\right|\left|J_{v}\right| \geq\left|I_{v}\right|+\left|J_{v}\right|-1 \quad \forall v \in V \tag{12}
\end{equation*}
$$

Using (10)-(12) we can write

$$
\begin{align*}
|V| & =\sum_{v \in V}\left|I_{v}\right|+\left|J_{v}\right|-\left(\left|I_{v}\right|+\left|J_{v}\right|-1\right) \\
& \geq k(b+r)-\sum_{v \in V}\left(\left|I_{v}\right|+\left|J_{v}\right|-1\right) \\
& \geq k(b+r)-\sum_{v \in V}\left|I_{v}\right| J_{v} \mid \tag{13}\\
& =k(b+r)-b r \\
& \geq k(b+r)-\frac{(b+r)^{2}}{4} .
\end{align*}
$$

The latter is a decreasing function of $b+r$ in the domain (9), and is therefore bounded from below by its value at $b+r=4(k-1)$, which is $4(k-1)$. This proves that $|V| \geq 4(k-1)$, as required.

3. Characterization of extremal graphs

If $G=(V, E)$ is a 2-colored graph having the property that every vertex in V belongs to a monochromatic k-clique of each color, then adding any edges to G (between existing vertices) and coloring them arbitrarily results in a graph with the same property. Therefore we can restrict attention to those graphs having this property which are edge-critical, in the sense that removing any edge entails the loss of this property.

Here is a construction of an edge-critical 2-colored graph on $4(k-1)$ vertices, so that every vertex belongs to a monochromatic k-clique of each color, which generalizes the one from [2] described in the introduction. Let $k \geq 2$ be an integer, let X and Y be two disjoint sets of $2(k-1)$ vertices each, and let $B(X, Y)$ and $R(X, Y)$ be two complementary $(k-1)$-regular bipartite graphs on the bipartition (X, Y). Our graph $G=G(X, Y, B, R)$ has $X \cup Y$ as its vertex set. It has the complete bipartite graph on (X, Y) as a subgraph, with edges in $B(X, Y)$ colored blue and edges in $R(X, Y)$ colored red. We refer to $B(X, Y)$ and $R(X, Y)$ as the blue and red graphs, respectively. In addition, any two vertices in X which have a common neighbor in the blue graph are joined by a blue edge in G, and any two vertices in Y which have a common neighbor in the red graph are joined by a red edge in G. It is easy to verify that this 2 -colored graph has the required property and is edge-critical.

For $k=2$ we have $|X|=|Y|=2$ and the blue and red graphs must be two complementary perfect matchings, resulting in the 2-colored 4 -cycle described in the introduction. But for higher values of k, we have more freedom in choosing $B(X, Y)$ and $R(X, Y)$. For example, consider $k=3$, so $|X|=|Y|=4$. We may choose $B(X, Y)$ and $R(X, Y)$ so that each of them is the disjoint union of two 4-cycles, resulting in the blown-up 4-cycle graph from the introduction. But we can also choose $B(X, Y)$ and $R(X, Y)$ to be 8 -cycles, resulting in a new example, not isomorphic to the previous one.

Note that the construction described in the introduction corresponds to the following choice of $B(X, Y)$ and $R(X, Y): X$ is equi-partitioned into X_{1} and X_{2}, Y is equi-partitioned into Y_{1} and $Y_{2}, B(X, Y)$ consists of all edges between X_{1} and Y_{1} and between X_{2} and Y_{2}, and $R(X, Y)$ consists of all edges between X_{1} and Y_{2} and between X_{2} and Y_{1}. For this choice, the resulting graph $G(X, Y, B, R)$ induces blue cliques on X_{1} and X_{2} and red cliques on Y_{1} and Y_{2}, and has a total of $2(k-1)(3 k-4)$ edges. Among all graphs of the form $G(X, Y, B, R)$ for a given value of k, the latter uniquely minimizes the number of edges. To see this, observe that in the graph induced on X (and similarly for Y) each vertex must have degree at least $k-2$, and the only way to have these degrees equal to $k-2$ is by using $X_{1}, X_{2}, Y_{1}, Y_{2}$ as above.

The next result shows that all edge-critical extremal examples for Theorem 1 are of the form $G=G(X, Y, B, R)$, thus characterizing the case of equality in that theorem.

Theorem 2. Let $k \geq 2$ be an integer, and let $|V|=4(k-1)$. Let $G=(V, E)$ be a 2 -colored graph so that every vertex in V belongs to a monochromatic k-clique of each color, and G is edge-critical with respect to this property. Then G is isomorphic to some $G(X, Y, B, R)$, where $B(X, Y)$ and $R(X, Y)$ are complementary $(k-1)$-regular bipartite graphs on (X, Y).

Proof. Let $G=(V, E)$ satisfy the assumptions of the theorem. In the case $k=2$, it is easy to check directly that G must be a 4 -cycle colored alternatingly, as claimed. We henceforth assume that $k \geq 3$.

As in the proof of Theorem 1, we associate with G two families $\mathcal{B}=\left\{B_{1}, \ldots, B_{b}\right\}, \mathcal{R}=$ $\left\{R_{1}, \ldots, R_{r}\right\}$ of subsets of V satisfying (1)-(3). Clearly, the blue edges of G are those pairs $\{u, v\}$ contained in some B_{i}, and the red edges are those pairs $\{u, v\}$ contained in some R_{j} (by edgecriticality, there can be no other edges in G). In the main part of the proof below, we assume that $V, \mathcal{B}, \mathcal{R}$ satisfy (4) and (5) as well; at the end of the proof we will justify this assumption. We also use the notations I_{v} and J_{v} for $v \in V$ as introduced in the proof of Theorem 1. According to that proof, the only values of $b+r$ which may result in $|V|=4(k-1)$ are $4(k-1)$ and $4(k-1)+1$ (if $b+r<4(k-1)$ then (13) forces $|V|$ to be larger, and if $b+r>4(k-1)+1$ then Proposition 1 does that).

Case $1 \quad b+r=4(k-1)$
Because $|V|=4(k-1)$, (13) must hold as an equality. This implies that (10) and (12) hold as equalities, and $b=r=2(k-1)$. Equality in (10) means that every B_{i} and every R_{j} is of size exactly k. Equality in (12) means that for every $v \in V$, at least one of I_{v}, J_{v} is a singleton. For $j \in[r]$, the sets I_{v}, $v \in R_{j}$, partition [b] into k nonempty subsets. This implies that $\left|I_{v}\right| \leq k-1$, and similarly $\left|J_{v}\right| \leq k-1$, for every $v \in V$. Therefore $\left|I_{v}\right|\left|J_{v}\right| \leq k-1$ for every $v \in V$, but since $\sum_{v \in V}\left|I_{v}\right| J_{v} \mid=4(k-1)^{2}$ we must have equality for every $v \in V$. This means that we can partition V into two sets:

$$
X=\left\{v \in V:\left|I_{v}\right|=k-1,\left|J_{v}\right|=1\right\}, \quad Y=\left\{v \in V:\left|I_{v}\right|=1,\left|J_{v}\right|=k-1\right\}
$$

As $\sum_{v \in V}\left|I_{v}\right|=k b=2 k(k-1)$, we must have $|X|=|Y|=2(k-1)$.

Now, consider a vertex $v \in X$. There is $j \in[r]$ such that $v \in R_{j}$. Since the sets $I_{u}, u \in R_{j}$, partition [b] into k subsets, one of which is I_{v} of size $k-1$, all other I_{u} must be singletons, so that $R_{j} \backslash\{v\} \subseteq Y$. This accounts for $k-1$ red edges from v into Y. As this holds for every $v \in X$, and similarly every $v \in Y$ must have at least $k-1$ blue edges into X, the complete bipartite graph on (X, Y) must appear in G and be colored so that the blue graph $B(X, Y)$ and the red graph $R(X, Y)$ are both ($k-1$)-regular. The above also implies that the neighbors of every $v \in X$ in the red graph must form a red clique in Y, and the neighbors of every $v \in Y$ in the blue graph must form a blue clique in X. This shows that $G(X, Y, B, R)$ is contained in G, and as G is edge-critical, they must coincide.

Case $2 \quad b+r=4(k-1)+1$
We will show that this case cannot occur. Consider the mapping from $\mathcal{B} \cup \mathcal{R}$ into V defined as follows. To each B_{i} we assign, using (4), an element u of B_{i} which belongs to no other $B_{i}{ }^{\prime}$; if among the possible choices of u for a given B_{i} there is one which belongs to more than one of the sets R_{j}, we assign to B_{i} such a u. Similarly, to each R_{j} we assign an element u of R_{j} which belongs to no other $R_{j^{\prime}}$, with priority to such u which belongs to more than one of the sets B_{i}. As $|\mathcal{B} \cup \mathcal{R}|>|V|$, the mapping is not injective, so we can find some $u \in V$ which was assigned to some B_{i} and to some R_{j}.

Assume w.l.o.g. that $b \geq 2(k-1)+1$. For the set R_{j} just found, there is no vertex v such that $\left|I_{v}\right|>1$ and $J_{v}=\{j\}$; indeed, if there were such v it would be given priority as the vertex assigned to R_{j}, over the actual assignment of u which belongs to a unique B_{i}. It follows that we can partition R_{j} into two sets:

$$
S=\left\{v \in R_{j}:\left|I_{v}\right|=1\right\}, \quad T=\left\{v \in R_{j}:\left|I_{v}\right|,\left|J_{v}\right| \geq 2\right\} .
$$

Write $\left|R_{j}\right|=k+\ell$, where $\ell \geq 0$, and $|S|=s$.
Due to the size of R_{j}, the difference between the two sides of (10) is at least ℓ. Hence the first inequality in (13) holds with a slack of at least ℓ.

For each $v \in T$, the difference between the two sides of (12) is at least

$$
2\left(\left|I_{v}\right|+\left|J_{v}\right|-2\right)-\left(\left|I_{v}\right|+\left|J_{v}\right|-1\right)=\left|I_{v}\right|+\left|J_{v}\right|-3 \geq\left|I_{v}\right|-1 .
$$

Since $|T|=k+\ell-s$, the second inequality in (13) holds with a slack of at least $\sum_{v \in T}\left|I_{v}\right|-(k+\ell-s)$. The sets $I_{v}, v \in R_{j}$, partition [b], and therefore $\sum_{v \in T}\left|I_{v}\right|=b-s \geq 2(k-1)+1-s$, so the slack in the second inequality in (13) is at least $k-\ell-1$.

Adding up the two slacks, we obtain

$$
\begin{aligned}
|V| & \geq k(b+r)-b r+k-1 \\
& \geq k(4(k-1)+1)-2(k-1)(2(k-1)+1)+k-1 \\
& =4(k-1)+1,
\end{aligned}
$$

which contradicts our assumption on $|V|$.
It remains to address the possibility that the families \mathcal{B}, \mathcal{R} associated with G do not satisfy (4) and (5). In this case, by performing the steps indicated in the proof of Theorem 1 , we obtain modified families $\mathcal{B}^{\prime}, \mathcal{R}^{\prime}$ which do satisfy (4) and (5) as well as (1)-(3). By the foregoing proof, \mathcal{B}^{\prime} and \mathcal{R}^{\prime} must be as described in Case 1 above, and the graph corresponding to them is isomorphic to some $G(X, Y, B, R)$. In particular, all sets in $\mathcal{B}^{\prime} \cup \mathcal{R}^{\prime}$ are of size k exactly. It follows that in passing from \mathcal{B}, \mathcal{R} to $\mathcal{B}^{\prime}, \mathcal{R}^{\prime}$, the step of adding a vertex to a set could never occur. Thus, the only steps performed were deletions of sets. Therefore the original graph G contains a graph of the form $G(X, Y, B, R)$, and by edge-criticality they must coincide.

4. Generalizations and reformulations

4.1. More than two colors

It is natural to generalize the question treated here to t-colored graphs, i.e., simple graphs with edges colored in one of t colors.

Question 1 (Bucic et al. [2]). Given integers $k, t \geq 2$, what is the smallest possible number of vertices in a t-colored graph having the property that every vertex belongs to a monochromatic k-clique of each color?

Bucic et al. noted that their construction for $t=2$ on $4(k-1)$ vertices can be adapted to one for general t using $2 t(k-1)$ vertices. In fact, our more general construction in Section 3 can also be adapted as follows. Let X_{1}, \ldots, X_{t} be t disjoint sets of $2(k-1)$ vertices each. For any pair of colors i, j, take the complete bipartite graph on (X_{i}, X_{j}) and color its edges i or j so that both color graphs are ($k-1$)-regular. In addition, for each color i, any two vertices in X_{i} which have a common neighbor in the color i graph (in any $X_{j}, j \neq i$) are joined by an edge colored i. This yields an edge-critical graph with the required property.

It is natural to conjecture that the above construction is optimal for any fixed number of colors t and large enough k. As observed by Bucic et al. [2], their proof of an asymptotic lower bound for the case of two colors extends to general t, yielding a lower bound of $\left(2 t-o_{k}(1)\right) k$ in Question 1. Unfortunately, it seems that our proof of the exact lower bound does not extend to general t.

We note that the above construction is not optimal if k is fixed and t is suitably large. For example, 4 vertices suffice for $k=2, t=3$. More generally, for any fixed k and large enough t congruent to $1(\bmod k)$, the answer to Question 1 is $t(k-1)+1$. Indeed, by the existence result of Ray-Chaudhuri and Wilson [6] for resolvable block designs, for such k and t the complete graph on $t(k-1)+1$ vertices can be t-colored so that each color class is a disjoint union of k-cliques spanning all vertices.

While the above generalization looks interesting in its own right, the intended application of Bucic et al. [2] suggests a different generalization. This will be explained in the following subsections.

4.2. Partition of a box into sub-boxes

A set of the form $A=A_{1} \times \cdots \times A_{d}$, where A_{1}, \ldots, A_{d} are finite sets with $\left|A_{i}\right| \geq 2$, is called a d-dimensional discrete box. A set of the form $B=B_{1} \times \cdots \times B_{d}$, where $B_{i} \subseteq A_{i}$ for all $i \in[d]$, is a sub-box of A; it is said to be nontrivial if $\emptyset \neq B_{i} \neq A_{i}$ for all $i \in[d]$. It is easy to partition a d-dimensional discrete box into 2^{d} nontrivial sub-boxes, by cutting each A_{i} into two parts. The following theorem answered a question of Kearnes and Kiss [4].

Theorem 3 (Alon et al. [1]). Let A be a d-dimensional discrete box, and let $\left\{B^{1}, \ldots, B^{m}\right\}$ be a partition of A into m nontrivial sub-boxes. Then $m \geq 2^{d}$.

Instead of requiring the sub-boxes B^{1}, \ldots, B^{m} to be nontrivial, one may equivalently require that every axis-parallel line (i.e., set of the form $\left.\left\{\left(x_{1}, \ldots, x_{d}\right) \in A: x_{j}=a_{j} \forall j \in[d] \backslash\{i\}\right\}\right)$ intersects at least two of them. This observation led Bucic et al. [2] to consider families of sub-boxes $\left\{B^{1}, \ldots, B^{m}\right\}$ with the k-piercing property, namely: every axis-parallel line intersects at least k sub-boxes in the family. Generalizing the question of Kearnes and Kiss, they asked the following.

Question 2 (Bucic et al. [2]). Let $d \geq 1$ and $k \geq 2$ be integers, and let $A=A_{1} \times \cdots \times A_{d}$ be a d-dimensional discrete box with all $\left|A_{i}\right|$ sufficiently large. What is the smallest possible number m of sub-boxes in a partition $\left\{B^{1}, \ldots, B^{m}\right\}$ of A having the k-piercing property?

They denoted the answer to Question 2 by $p_{\text {box }}(d, k)$. The case $k=2$ is solved by Theorem 3: $p_{\text {box }}(d, 2)=2^{d}$. For larger k, it is natural to consider first the 2 -dimensional case ($d=1$ is trivial). Here, cutting each A_{i} into k parts gives a construction with $m=k^{2}$ sub-boxes. But Bucic et al. [2] showed that in fact $m=4(k-1)$ is enough. Their construction is illustrated in Fig. 1.

Bucic et al. conjectured that this construction is optimal, that is, $p_{\text {box }}(2, k)=4(k-1)$. They observed that this is the case if one restricts attention to sub-boxes which are bricks, i.e., products of intervals. In an attempt to prove optimality among partitions into general sub-boxes, they associated with any such partition of a 2 -dimensional box a 2 -colored graph as follows: the vertices are the sub-boxes in the partition, and two sub-boxes are joined by a blue (resp. red) edge if there is

Fig. 1. A k-piercing partition of a 2 -dimensional box, showing that $p_{\text {box }}(2, k) \leq 4(k-1)$. Each quarter of the box consists of $k-1$ parallel sub-boxes. The illustration corresponds to $k=4$.
a horizontal (resp. vertical) line which intersects both of them. The k-piercing property implies that every vertex belongs to a monochromatic k-clique of each color. This led them to ask for the minimum number of vertices in such a graph. Note that the 2 -colored graph with $4(k-1)$ vertices constructed by them (and presented in the introduction) corresponds to the partition shown in Fig. 1.

The asymptotic lower bound that Bucic et al. [2] obtained for the question about 2-colored graphs enabled them to deduce that $p_{\text {box }}(2, k) \geq\left(4-o_{k}(1)\right) k$. Our full solution of the question (Theorem 1) allows us to confirm their conjecture: $p_{\text {box }}(2, k)=4(k-1)$. In fact, since the reduction described in the previous paragraph does not depend on the sub-boxes being a covering of the given box, but only on their disjointness, we have the following more general statement, which is also tight.

Corollary 1. Let $k \geq 2$ be an integer, let A be a 2-dimensional discrete box, and let $\left\{B^{1}, \ldots, B^{m}\right\}$ be a family of m disjoint sub-boxes of A having the k-piercing property. Then $m \geq 4(k-1)$.

The question of determining $p_{\text {box }}(d, k)$ when both d and k are greater than 2 remains wide open. Bucic et al. [2] attempted a reduction to colored graphs similar to the above, but it led to a less natural and less tractable question than in the case $d=2$. Their best bounds for general d and k are of the form $e^{\Omega(\sqrt{d})} k \leq p_{\text {box }}(d, k) \leq 15^{d / 2} k$ (of course, when k is small relative to d, the bounds $2^{d}=p_{\text {box }}(d, 2) \leq p_{\text {box }}(d, k) \leq k^{d}$ may be better).

4.3. Decomposition of a bipartite graph into complete bipartite subgraphs

A well-studied parameter of a graph $G=(V, E)$ is the minimum number of edge-disjoint complete bipartite subgraphs of G which cover the edge set E. The best known result is that of Graham and Pollak [3], saying that any such decomposition of the complete graph $G=K_{n}$ must consist of at least $n-1$ complete bipartite subgraphs. For more general results about decomposition of an arbitrary graph G, see e.g. Kratzke et al. [5]. The case when G itself is complete bipartite is of course uninteresting, because there is a decomposition into one subgraph. But it becomes interesting under some constraints on the decomposition, as we will see below.

A 2-dimensional discrete box $A=A_{1} \times A_{2}$ (discussed in the previous subsection) may be viewed as the edge set of a complete bipartite graph on $\left(A_{1}, A_{2}\right)$. A partition of A into sub-boxes is then a decomposition of a complete bipartite graph into complete bipartite subgraphs. We can restate

Corollary 1 from this point of view, as follows. (The notation $G=\left(A_{1}, A_{2} ; E\right)$ refers to a bipartite graph with vertex bipartition $\left(A_{1}, A_{2}\right)$ and edge set E.)

Corollary 2. Let $k \geq 2$ be an integer. Let $G=\left(A_{1}, A_{2} ; E\right)$ be a bipartite graph, and let $\left\{G^{i}=\right.$ $\left.\left(B_{1}^{i}, B_{2}^{i} ; E^{i}\right)\right\}_{i[[m]}$ be a decomposition of G into m complete bipartite subgraphs. Assume that every vertex in $A_{1}\left(\right.$ resp. A_{2}) belongs to B_{1}^{i} (resp. B_{2}^{i}) for at least k values of $i \in[m]$. Then $m \geq 4(k-1)$.

Proposition 1 may also be reformulated in this terminology, as follows.
Corollary 3. Let $G=\left(A_{1}, A_{2} ; E\right)$ be a complete bipartite graph, and let $\left\{G^{i}=\left(B_{1}^{i}, B_{2}^{i} ; E^{i}\right)\right\}_{i \in[m]}$ be a decomposition of G into m complete bipartite subgraphs. Assume that for every vertex x in A_{1} (resp. A_{2}) there is $i \in[m]$ such that $B_{1}^{i}=\{x\}$ (resp. $B_{2}^{i}=\{x\}$). Then $m \geq\left|A_{1}\right|+\left|A_{2}\right|-1$.

Indeed, Tverberg's [7] proof of Graham and Pollak's theorem inspired the proof of Proposition 1.
This point of view on partition problems for 2-dimensional discrete boxes suggests a generalization to higher dimensions expressed in terms of d-partite hypergraphs. (Recall that in such a hypergraph H there is a partition $\left(A_{1}, \ldots, A_{d}\right)$ of the vertex set, so that every edge contains exactly one vertex from each A_{j}. We use the notation $H=\left(A_{1}, \ldots, A_{d} ; E\right)$. We say that H is complete d partite if every d-tuple meeting each A_{j} is an edge.) In particular, the following question asks for a d-partite version of Corollary 2.

Question 3. Let $d, k \geq 2$ be integers. Let $H=\left(A_{1}, \ldots, A_{d} ; E\right)$ be a complete d-partite hypergraph, and let $\left\{H^{i}=\left(B_{1}^{i}, \ldots, B_{d}^{i} ; E^{i}\right)\right\}_{i \in[m]}$ be a decomposition of H into m complete d-partite subhypergraphs. Assume that for every $\ell \in[d]$ and for every ($d-1$)-tuple of vertices $x_{j} \in A_{j}, j \in[d] \backslash\{\ell\}$, there are at least k values of $i \in[m]$ such that $x_{j} \in B_{j}^{i}$ for all $j \in[d] \backslash\{\ell\}$. If all $\left|A_{j}\right|$ are sufficiently large, what is the smallest possible number m of subhypergraphs in such a decomposition?

This is a reformulation of Question 2, so the answer is the same $p_{\text {box }}(d, k)$ investigated by Bucic et al. [2]. Hopefully, this interpretation of the question may suggest a useful approach, but we were unable to extend the methods of this paper to handle it.

References

[1] N. Alon, T. Bohman, R. Holzman, D.J. Kleitman, On partitions of discrete boxes, Discrete Math. 257 (2002) 255-258.
[2] M. Bucic, B. Lidický, J. Long, A.Z. Wagner, Partition problems in high dimensional boxes, arXiv:1805.11278v2 [math.CO].
[3] R.L. Graham, H.O. Pollak, On embedding graphs in squashed cubes, in: Graph Theory and Applications (Proc. 2nd Internat. Conf. Graph Theory, Kalamazoo 1972), in: Lecture Notes in Math., vol. 303, Springer-Verlag, 1973, pp. 99-110.
[4] K.A. Kearnes, E.W. Kiss, Finite algebras of finite complexity, Discrete Math. 207 (1999) 89-135.
[5] T. Kratzke, B. Reznick, D. West, Eigensharp graphs: Decomposition into complete bipartite subgraphs, Trans. Amer. Math. Soc. 308 (1988) 637-653.
[6] D.K. Ray-Chaudhuri, R.M. Wilson, The existence of resolvable block designs, in: Survey of Combinatorial Theory (Proc. Internat. Sympos., Fort Collins 1971), North-Holland, 1973, pp. 361-375.
[7] H. Tverberg, On the decomposition of K_{n} into complete bipartite subgraphs, J. Graph Theory 6 (1982) 493-494.

[^0]: E-mail address: holzman@technion.ac.il.
 1 Research supported in part by ISF Grant No. 1162/15. Helpful comments from Joseph Briggs and Matija Bucic are gratefully acknowledged.

