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Abstract

We consider the following dynamic process on the 0–1 colourings of the vertices of a graph.
The initial state is an arbitrary colouring, and the state at time t + 1 is determined by assigning
to each vertex the colour of the majority of its neighbours at time t (in case of a tie, the vertex
retains its own colour at time t). It is known that if the graph is �nite then the process either
reaches a �xed colouring or becomes periodic with period two. Here we show that an in�nite
(locally �nite) graph displays the same behaviour locally, provided that the graph satis�es a
certain condition which, roughly speaking, imposes an upper bound on the growth rate of the
graph. Among the graphs obeying this condition are some that are most common in applications,
such as the grid graph in two or more dimensions. We also extend the analysis to more general
dynamic processes, and compare our results to the seminal work of Moran in this area. c© 2000
Elsevier Science B.V. All rights reserved.

MSC: primary 93D20; 93D30; secondary 05C75

1. Introduction

The graphs considered in this paper are simple, undirected, connected and locally
�nite. A 2-colouring of a graph G is a map x :V → {0; 1}, where V is the set of
vertices of G. The set of all 2-colourings is denoted by 2V . Let N (v) denote the
neighbourhood of the vertex v, i.e., the set of vertices joined to v by an edge, and
let d(v) denote the degree of v (the cardinality of N (v)). The majority action on the
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2-colourings of G is the operator M : 2V → 2V de�ned by

(Mx)(v) =




1 if
∑

u∈N (v) x(u)¿
d(v)
2
; or

if
∑

u∈N (v) x(u) =
d(v)
2

and x(v) = 1;

0 otherwise:

(1.1)

Given an initial 2-colouring x ∈ 2V , we may consider the in�nite string of 2-colourings
de�ned by x0 = x and xt+1 =M (xt) for t¿0. We are interested in the behaviour of this
sequence.
This model (or close variants thereof) has proved to be useful in a large variety

of domains including immunologic system research, interaction between cells, pattern
recognition, etc. For a detailed survey see [1]. The underlying graph depends on the
application; typical examples are cycles, paths, planar grid graphs or higher-dimensional
analogues. Note that the latter examples are ‘naturally’ in�nite graphs. In the study
of this model, one is primarily interested in describing the steady states or periodic
behaviour of the system.
It is known (e.g. [2,4]) that if the graph G is �nite, then under the majority action (or

even some more general actions as will be mentioned below), any string {xt} reaches a
period of length one or two. That is, for all x ∈ 2V , there exists t ∈ N such that xt+2=xt .
To prove this, one usually associates an energy functional (Lyapunov functional) with
the 2-colourings. Such functionals are nonincreasing and strictly decrease if and only
if M 2(x) 6= x. The �niteness of the system implies that the energy reaches a quiescent
state and the result follows at once.
In [3] there is a generalization of this property to locally �nite connected graphs

under the majority action M .

De�nition 1.1. The graph G has the period-two-property (p2p) if for every x ∈ 2V
the following holds: if for some t¿0 there exists T ¿ 0 such that xt+T = xt , then
xt+2 = xt .

Moran gives a su�cient condition for a graph to have the p2p. In order to formulate
it, we de�ne the growth of a graph. Let �(u; v) denote the distance between vertices u
and v in the shortest-path metric induced by G. Let

Bn(v) = {u ∈ V |�(u; v)6n};
bn(v) = |Bn(v)|:

It is easy to show (see [3, Proposition 1:4]) that if u; v are two vertices in a locally
�nite connected graph, then

lim sup
n∈N

bn(u)1=n = lim sup
n∈N

bn(v)1=n:
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De�nition 1.2. The growth of a locally �nite connected graph G is

g(G) = lim sup
n∈N

bn(v)1=n;

where v is any vertex of G.

For example, the planar grid graph whose set of vertices is Z2 and whose edges are
the pairs (x1; y1); (x2; y2) such that either x1 = x2 and |y1 − y2| = 1, or y1 = y2 and
|x1 − x2|= 1, has growth 1. The in�nite binary tree has growth 2.
For every integer m, denote by m− the greatest even integer denote strictly less than

m. (E.g., 6− = 4; 7− = 6.)

Theorem. (Moran [3; Theorem 2]). Let G be a connected graph and let d¿3
be an integer. Suppose that all the vertices of G have degree at most d; and that
g(G)¡ 1 + 2=d−. Then G has the p2p.

Moran presents examples of graphs either with degrees bounded by d and growth
exactly 1 + 2=d−, or with growth 1 and unbounded degrees, which violate the p2p. In
fact, these graphs admit any period for appropriate initial 2-colourings.
We wish to emphasize that the p2p only excludes the existence of periods longer

than two; it does not guarantee that a string {xt} ultimately reaches a period. To
illustrate this point, consider the graph having the integers as its vertices and the pairs
of successive integers as its edges. This graph, which is really the simplest in�nite
graph, admits nonperiodic behaviour. For example, if

x(n) =

{
1 if n is odd or n= 0;

0 otherwise;

then the colour of any vertex n will alternate between 0 and 1 until stabilizing on the
colour 1 after |n| − 1 steps. We see that globally no period is reached, but locally
the colour of every vertex is eventually constant. This phenomenon is captured by the
following concept:

De�nition 1.3. The graph G has the local period-two-property (lp2p) at the vertex v
if for every initial 2-colouring x ∈ 2V there exists t0=t0(v; x) such that xt+2(v)=xt(v) for
every t¿t0. The graph G is a pointwise ultimately periodic with period two (puppet)
if it has the lp2p at every vertex.

Note that if G is a puppet and xt+T = xt for some t¿0; T ¿ 0, then obviously
xt+2 = xt , and hence a puppet satis�es the p2p. But as illustrated above the concept of
a puppet tells us more about the string of colourings {xt} than does the p2p.
Our main result, Theorem 1.4 (proved in the next section), gives a su�cient condition

for a graph to be a puppet. Our condition covers all the graphs satisfying Moran’s
condition (see Corollary 1.5) as well as a variety of other graphs. Given an in�nite,
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locally �nite connected graph G and a vertex v of it, we let

Sn(v) = {u ∈ V |�(u; v) = n};
dn(v) = max

u∈Sn(v)
d(u);

Dn(v) =
∑
u∈Sn(v)

d(u):

The condition in the following theorem makes sense if dj(v0)¿3 for all j∈N; essen-
tially this entails no loss of generality (see Section 3.1).

Theorem 1.4. Let G be an in�nite; locally �nite connected graph. Suppose there exists
a vertex v0 ∈V satisfying

∑
i

Di(v0)∏i−1
j=1(1 + 2=dj(v0)

−)
¡∞: (1.2)

Then G is a puppet.

Corollary 1.5. Let G be a connected graph and let d¿3 be an integer. Suppose that
all the vertices of G have degree at most d; and that g(G)¡ 1 + 2=d−. Then G is a
puppet.

Proof. By the period-two-property of �nite graphs, every �nite graph is a puppet
(see Fig. 1). Thus, we assume that G is in�nite. Let v0 be an arbitrary vertex of
G. We assume w.l.o.g. (see Section 3.1) that dj(v0)¿3 for all j∈N, and show that
the conditions of the corollary imply condition (1.2). Indeed, since g(G)¡ 1 + 2=d−,
we may choose q¡ 1 and n0 ∈ N such that bi(v0)1=i=(1+ 2=d−)6q for all i¿n0: The
convergence of the series in (1.2) follows from:

∑
i¿n0

Di(v0)∏i−1
j=1(1 + 2=dj(v0)

−)
6
∑
i¿n0

bi(v0)d
(1 + 2=d−)i−1

= d
(
1 +

2
d−

)∑
i¿n0

bi(v0)
(1 + 2=d−)i

6 d
(
1 +

2
d−

)∑
i¿n0

qi ¡∞:

In the literature on �nite graphs, the period-two-property has been established for
more general dynamic processes. This includes the case when weights are assigned to
the edges and majority is replaced by a required threshold, as well as the case when
there are more than two colours. The latter was also treated in [3] for in�nite graphs.
Although for the sake of simplicity we focus on the majority dynamics in this paper,
the ideas can be adapted to handle the more general situations (see Sections 3.3 and
3.4). It turns out that our conditions for an in�nite graph to be a puppet are quite
robust with respect to variations of the dynamic process under consideration.
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Fig. 1. A �nite graph is a puppet.

2. Proof of the main theorem

For the reader’s convenience, we begin by giving a proof of the period-two-property
for �nite graphs. Let G be a �nite graph. For x ∈ 2V and t¿0, we de�ne

Et(x) =
∑
u;v∈V

a(u; v) | xt+1(u)− xt(v)|;

where

a(u; v) =



1 if u; v are neighbours; or
if u= v and d(u) is even;

0 otherwise

and the summation is over all ordered pairs of vertices.

Claim 2.1. Et(x) is a Lyapunov functional; i.e.;

Et(x)6Et−1(x)

for all x ∈ 2V and t¿1.
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Proof. Let us rewrite Et(x) and Et−1(x) in the form:

Et(x) =
∑
u∈V

(∑
v∈V

a(u; v)
∣∣xt+1(u)− xt(v)∣∣

)
;

Et−1(x) =
∑
u∈V

(∑
v∈V

a(u; v)
∣∣xt−1(u)− xt(v)∣∣

)
:

It su�ces to show that for every u ∈ V∑
v∈V

a(u; v)
∣∣xt+1(u)− xt(v)∣∣6∑

v∈V
a(u; v)

∣∣xt−1(u)− xt(v)∣∣ : (2.1)

This holds with equality when xt+1(u) = xt−1(u). So, assume that xt+1(u) 6= xt−1(u).
Put

A1 =
{
v ∈ N (u) | xt(v) 6= xt+1(u)} ;

A2 =
{
v ∈ N (u) | xt(v) 6= xt−1(u)}= N (u)\A1

and (2.1) becomes

|A1|+ a(u; u)|xt+1(u)− xt(u)|6|A2|+ a(u; u)|xt−1(u)− xt(u)|: (2.2)

By the de�nitions of the majority action (1.1) and of a(u; u) we deduce that (i) when
d(u) is odd, |A1|¡ |A2| and a(u; u) = 0; (ii) when d(u) is even, either |A1|¡ |A2|, or
|A1|= |A2| and xt+1(u)= xt(u), and a(u; u)= 1. In either case we have strict inequality
in (2.2).

In fact, the proof just given shows that equality in Claim 2.1 holds if and only if
every u ∈ V satis�es xt+1(u) = xt−1(u): Now, {Et(x)} is a nonincreasing sequence of
nonnegative integers which stabilizes eventually, forcing xt+1=xt−1 for t large enough.
Thus, the period-two-property holds.

Proof of Theorem 1.4. Let G be an in�nite, locally �nite connected graph, and let v0
be a vertex satisfying (1.2). To simplify the notation, we shall henceforth omit v0 from
it. Thus, Bn; Sn; dn and Dn will stand for Bn(v0); Sn(v0); dn(v0) and Dn(v0), respectively.
For every integer l¿1, we construct a functional Etl(x) which is obtained from the

functional Et(x) used in the �nite case by truncation to the ball of radius l around
v0, and a modi�cation of the de�nition of a(u; u) which a�ects only vertices of even
degree on the boundary of that ball. The precise de�nition is: for x ∈ 2V and t¿0,

Etl(x) =
∑
u;v∈Bl

al(u; v)|xt+1(u)− xt(v)|;

where

al(u; v) =



1 if u; v are neighbours; or
if u= v; d(u) is even and |N (u) ∩ Bl|¿d(u)

2 ;
0 otherwise:
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As the initial 2-colouring x will be �xed throughout the proof, we omit it from our
notation and write Etl for E

t
l(x).

Due to the truncation, we do not expect Etl to be nonincreasing in t. However, we
shall estimate from above the di�erence �Etl = E

t
l − Et−1l . First, we rewrite it as

�Etl =
∑
u∈Bl

∑
v∈Bl

al(u; v)(|xt+1(u)− xt(v)| − |xt−1(u)− xt(v)|): (2.3)

Note that u contributes to the sum only if xt+1(u) 6= xt−1(u). Denote
Cti = {u ∈ Si | xt+1(u) 6= xt−1(u)}; cti = |Cti |;
�+(u) =

∑
v∈Bl

al(u; v)|xt+1(u)− xt(v)|;

�−(u) =
∑
v∈Bl

al(u; v)|xt−1(u)− xt(v)|:

With these notations (2.3) can be rewritten as follows:

�Etl =
∑
06i6l

∑
u∈Cti

(�+(u)− �−(u))

=
∑

06i6l−1

∑
u∈Cti

(�+(u)− �−(u)) +
∑
u∈Ctl

(�+(u)− �−(u)):

The sum above was separated to vertices u in Cti ; i¡ l, the neighbours of which are
all contained in Bl, and to vertices u in Ctl which may have neighbours outside Bl.
Let us handle the two summands separately.
If u ∈ Cti ; i¡ l, then the argument in the proof of Claim 2.1 can be carried out to

show that �+(u)¡�−(u). As these are integers, we have

�+(u)− �−(u)6− 1 (u ∈ Cti ; i¡ l): (2.4)

On Sl, this di�erence may be positive, but we prove that

�+(u)− �−(u)6
d(u)−

2
(u ∈ Ctl): (2.5)

In the proof of (2.5) we distinguish between three cases:
(i) d(u) is odd. In this case �+(u)6d(u)−=2 due to the majority rule, and we

are done.
(ii) d(u) is even and |N (u) ∩ Bl|¡d(u)=2: In this case the number of nonzero

summands in �+(u) is less than d(u)=2, and hence �+(u)6d(u)−=2.
(iii) d(u) is even and |N (u)∩Bl|¿d(u)=2: By the majority rule �+(u)6d(u)=2. Thus,

if �−(u)¿ 0 we are done. Otherwise, we have xt(v)=xt−1(u), and so xt(v) 6= xt+1(u),
for every v ∈ B1(u) ∩ Bl (recall that in this case al(u; u) = 1). The number of these
vertices is at least d(u)=2 + 1 (by the condition of case (iii) and taking into account
the vertex u itself), which is impossible.
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By (2.4) and (2.5) we have

�Etl6−
l−1∑
i=0

cti +
∑
u∈Ctl

d(u)−

2
: (2.6)

From (2.6) we obtain

�Etl6−
l−1∑
i=0

cti +
d−l c

t
l

2
: (2.7)

For n¿k¿0 we construct the functional Etn; k which is a weighted combination of
Etl, k + 16l6n, as follows:

Etn; k = E
t
n +

2
d−n−1

Etn−1 +

(
1 +

2
d−n−1

)
2
d−n−2

Etn−2

+

(
1 +

2
d−n−1

)(
1 +

2
d−n−2

)
2
d−n−3

Etn−3 + · · ·+
n−1∏
j=k+2

(
1 +

2
d−j

)
2
d−k+1

Etk+1:

(2.8)

These weights were chosen so that, when we apply (2.6) to Etn and (2.7) to the
other terms in (2.8), the quantities cti for k+16i6n−1 will be cancelled out. Indeed,
using the identity

1 + a1 + (1 + a1)a2 + (1 + a1)(1 + a2)a3 + · · ·+ (1 + a1) · · · (1 + am−1)am
=(1 + a1)(1 + a2) · · · (1 + am); (2.9)

we obtain

�Etn; k = �E
t
n +

2
d−n−1

�Etn−1 +

(
1 +

2
d−n−1

)
2
d−n−2

�Etn−2 + · · ·

+
n−1∏
j=k+2

(
1 +

2
d−j

)
2
d−k+1

�Etk+1

6−
n−1∑
i=0

cti +
∑
u∈Ctn

d(u)−

2
+

2
d−n−1

(
−
n−2∑
i=0

cti +
d−n−1c

t
n−1

2

)

+

(
1 +

2
d−n−1

)
2
d−n−2

(
−
n−3∑
i=0

cti +
d−n−2c

t
n−2

2

)
+ · · ·

+
n−1∏
j=k+2

(
1 +

2
d−j

)
2
d−k+1

(
−

k∑
i=0

cti +
d−k+1c

t
k+1

2

)

= −
n−1∏
j=k+1

(
1 +

2
d−j

)
k∑
i=0

cti +
∑
u∈Ctn

d(u)−

2
: (2.10)
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(Here and in the sequel we adopt the convention that a product of the form
∏n−1
j=n

equals one; a sum of the form
∑n−1

j=n equals zero.) If we follow the dynamic process
from time t to time t+ T and use (2.10), we obtain an upper bound on the increment
of En; k :

Et+Tn; k − Etn; k =
t+T∑
�=t+1

�E�n; k6−
n−1∏
j=k+1

(
1 +

2
d−j

)
t+T∑
�=t+1

k∑
i=0

c�i + T
∑
u∈Sn

d(u)−

2
:

(2.11)

In particular, setting t = 0 and recalling that Dn =
∑

u∈Sn d(u), we have

ETn; k − E0n; k6−
n−1∏
j=k+1

(
1 +

2
d−j

)
T∑
�=1

k∑
i=0

c�i + TDn: (2.12)

The next step is to give an upper bound on Etn; k , which will imply a lower bound
on ETn; k − E0n; k . First, by the majority rule, we have

Etl6
∑
u∈Bl

d(u)
2
: (2.13)

If we assume that l¿k¿0 and denote

D6k+1 =
k+1∑
i=0

Di;

we can deduce from (2.13), being generous about division by 2, that

Etl6D6k+1 +
l∑

i=k+2

Di (l¿k¿0): (2.14)

Using (2.14) to estimate the terms of (2.8), and applying identity (2.9), we get

Etn; k 6D6k+1 +
n∑

i=k+2

Di +
2
d−n−1

(
D6k+1 +

n−1∑
i=k+2

Di

)

+

(
1 +

2
d−n−1

)
2
d−n−2

(
D6k+1 +

n−2∑
i=k+2

Di

)
+ · · ·

+
n−1∏
j=k+2

(
1 +

2
d−j

)
2
d−k+1

D6k+1

=
n−1∏
j=k+1

(
1 +

2
d−j

)
D6k+1 +

n∑
i=k+2

n−1∏
j=i

(
1 +

2
d−j

)
Di:

Thus,

ETn; k − E0n; k¿− E0n; k¿−
n−1∏
j=k+1

(
1 +

2
d−j

)
D6k+1 −

n∑
i=k+2

n−1∏
j=i

(
1 +

2
d−j

)
Di:

(2.15)
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From (2.12) and (2.15) we get

−
n−1∏
j=k+1

(
1 +

2
d−j

)
D6k+1 −

n∑
i=k+2

n−1∏
j=i

(
1 +

2
d−j

)
Di

6−
n−1∏
j=k+1

(
1 +

2
d−j

)
T∑
�=1

k∑
i=0

c�i + TDn: (2.16)

Dividing by
∏n−1
j=k+1(1 + 2=d

−
j ) in (2.16) and rearranging the terms we obtain

T∑
�=1

k∑
i=0

c�i6D6k+1 +
n∑

i=k+2

Di∏i−1
j=k+1(1 + 2=d

−
j )
+

TDn∏n−1
j=k+1(1 + 2=d

−
j )
:

With the notation Rk =
∏k
j=1(1 + 2=d

−
j ) we get

T∑
�=1

k∑
i=0

c�i6D6k+1 + Rk
n∑

i=k+2

Di∏i−1
j=1(1 + 2=d

−
j )
+

RkTDn∏n−1
j=1 (1 + 2=d

−
j )
: (2.17)

We are ready now to make use of the theorem’s assumption (1.2). Let us denote
by S the sum of the series in (1.2). For �xed k and T and n→ ∞ (2.17) yields

T∑
�=1

k∑
i=0

c�i6D6k+1 + RkS; (2.18)

since the last term of (2.17) is a constant multiple of the general term of the convergent
series in (1.2).
The left-hand side of (2.18) represents the total number of occurrences of x�+1(u) 6=

x�−1(u) inside Bk(v0) during the �rst T iterations of the dynamic process. Thus, (2.18)
shows that for �xed k this number is bounded uniformly in T . Since any given vertex
v belongs to Bk(v0) for some k, the number of occurrences of x�+1(v) 6= x�−1(v) is
�nite. We conclude that there exists t0 = t0(v; x) such that x�+1(v) = x�−1(v) for all
�¿ t0; and the local period-two-property at the vertex v holds.

3. Remarks and extensions

3.1. Spheres with maximal degree two

In order to avoid dividing by zero in (1.2), we had to assume dj(v0)¿3 for all j.
Here we show how to adapt the condition to the case when dj(v0)=2 for some values
of j (obviously dj(v0)¡ 2 is impossible in an in�nite, locally �nite connected graph).
We distinguish between the two cases.
(i) dj(v0)=2 for �nitely many values of j. In this case, let j0 be such that dj(v0)¿3

for all j¿j0. Then if we replace the product
∏i−1
j=1(1 + 2=dj(v0)

−) in the denominator

of the general term of the series in (1.2) by
∏i−1
j=j0 (1 + 2=dj(v0)

−) and ignore the �rst
j0 terms of the series, the theorem remains true with essentially the same proof.
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(ii) dj(v0) = 2 for in�nitely many values of j. In this case the graph is a puppet
without any further assumptions. To see this, follow the argument in the proof up to
(2.7) which gives, for l such that dl(v0) = 2,

�Etl6−
l−1∑
i=0

cti : (3.1)

Thus, given a vertex v, we can choose l such that v belongs to Bl−1(v0) and (3.1)
holds. This permits to conclude that the lp2p holds at the vertex v.

3.2. A weaker condition for the p2p

Here we point out that the �rst part of the proof of the theorem su�ces for estab-
lishing the period-two-property, in fact, under a somewhat weaker condition than (1.2).
Suppose that the graph G and the vertex v0 satisfy

lim inf
n→∞

∑
u∈Sn(v0) d(u)

−∏n−1
j=1 (1 + 2=dj(v0)

−)
= 0: (3.2)

Then we claim that G has the p2p. Indeed, assume that xt+T = xt . Then, by (2.11) we
have for every n¿k¿0;

0 = Et+Tn; k (x)− Etn; k(x)6−
n−1∏
j=k+1

(
1 +

2
dj(v0)−

) t+T∑
�=t+1

k∑
i=0

c�i + T
∑

u∈Sn (v0)

d(u)−

2
:

It follows that
t+T∑
�=t+1

k∑
i=0

c�i6
T
2
·

∑
u∈Sn(v0) d(u)

−∏n−1
j=k+1(1 + 2=dj(v0)

−)
: (3.3)

Hence, given a vertex v, we can choose k such that v ∈ Bk(v0) and then let n tend
to in�nity along a sequence realizing the lim inf in (3.2), thereby concluding that the
left-hand side of (3.3) is zero. This implies that x�+1(v)= x�−1(v) for t+16�6t+ T:
As this holds for every v, we have xt+2 = xt :

3.3. General threshold dynamics

The majority action (1.1) is a special case of the symmetric threshold dynamics
M̃ : 2V → 2V de�ned by

(M̃x)(v) =

{
1 if

∑
u∈B1(v)

�(u; v)x(u)¿�(v);

0 otherwise;
(3.4)

where �(u; v) and �(v) are real-valued coe�cients of the dynamics, satisfying the sym-
metry condition �(u; v)=�(v; u); recall that our graphs are locally �nite, and hence the
sum that appears in (3.4) is always a �nite one. This framework is rather exible and
permits to express, inter alia, majority rule with di�erent tie breaking provisions, as
well as minority rule (note that negative weights are allowed).
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For any �xed system of coe�cients �(u; v); �(v) the action M̃ de�ned in (3.4) gives
rise, for every initial 2-colouring x, to a string of colourings {M̃ t

(x)} generated by
repeated applications of M̃ to x. We say that G is an M̃ -puppet if it satis�es the
analogous condition to De�nition 1.3.
By suitably modifying the proof of Theorem 1.4 we can obtain a su�cient condition

for G to be an M̃ -puppet, expressed as the convergence of an appropriate series, the
terms of which depend on the graph G and on the coe�cients �(u; v); �(v). Instead of
giving this rather complicated condition, we state here a simpler condition, expressed in
terms of the graph G alone. A graph obeying this condition is an M̃ -puppet for a whole
class of ‘nicely behaved’ threshold dynamics. Denote by � the class of symmetric
threshold dynamics M̃ satisfying the following two conditions:
Weight boundedness: There exists W =W (M̃)¡∞ such that |�(u; v)|6W for all

u; v ∈ V with u ∈ B1(v).
Uniform separation: There exists � = �(M̃)¿ 0 such that for all v∈V and all

A; A′ ⊆B1(v),∑
u∈A

�(u; v)¡�(v)6
∑
u∈A′

�(u; v)⇒
∑
u∈A′

�(u; v)−
∑
u∈A

�(u; v)¿�:

The proof of the following theorem goes along the general lines of the proof of
Theorem 1.4, and is therefore omitted.

Theorem 3.1. Let G be a connected graph of bounded degree with growth g(G) = 1.
Then G is an M̃ -puppet for every M̃ ∈�.

3.4. Multiple colours

Here we consider the case when {0; 1} is replaced by a �nite set of r colours. An
r-colouring of a graph G is a function x : V → {0; 1; : : : ; r − 1}, where V denotes, as
usual, the set of vertices of G. For updating r-colourings the majority rule is naturally
replaced by the plurality rule, but we need a di�erent tie breaking rule. The precise
de�nition of the plurality action Pr : {0; 1; : : : ; r − 1}V → {0; 1; : : : ; r − 1}V is

(Prx)(v) = i ⇔
|{u ∈ N (v) | x(u) = i}|¿|{u ∈ N (v) | x(u) = j}|
for all j; with strict inequality for all j¿ i:

For every initial r-colouring of x this generates a string {Ptr(x)} of r-colourings.
We say that G is an r-puppet if the analogous condition to De�nition 1.3 holds. Note
that we still require the period to be two, even though the number of colours may be
higher. In order to state a su�cient condition for G to be an r-puppet, we need the
following notation. For an integer m let

m(r) =

{
m−1
2 if m is odd;

m
2 − 1

r if m is even:
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Theorem 3.2. Let G be an in�nite; locally �nite connected graph and let r¿2. Sup-
pose there exists a vertex v0 ∈ V satisfying∑

i

Di(v0)∏i−1
j=1(1 + 1=(rdj(v0)

(r)))
¡∞:

Then G is an r-puppet.

The proof of this theorem is in the spirit of the proof of Theorem 1.4 and is therefore
omitted. Similar to Corollary 1.5, we have here the following.

Corollary 3.3. Let G be a connected graph and let r; d¿2. Suppose that all the
vertices of G have degree at most d; and that

g(G)¡ 1 +
1
rd(r)

: (3.5)

Then G is an r-puppet.

Moran [3, Theorem 4] proved that if G is a connected graph with degrees bounded
by d¿2, and

g(G)¡
(
1 +

2
d− 1

)1=r
; (3.6)

then G has the period-two-property under the plurality action Pr . Note that (3.5) is
a weaker condition than (3.6) if d is odd, whereas for even values of d the relative
strength of the two conditions depends on d and r.
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