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N etwork structure and strong equilibrium in route selection
games
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Abstract

In a route selection game on a network, every player chooses a route from the origin to the
destination, which are common to all players. Costs are assigned to road segments in the form of
monotone nondecreasing functions of the number of players who use them. Each player incurs a
total cost equal to the sum of the costs of the road segments in his route. It is known that such a
game always has a Nash equilibrium in pure strategies. Here we obtain a structural characteriza-
tion of those networks for which a strong equilibrium is guaranteed to exist regardless of the cost
assignment. The route selection games based on networks in this class enjoy more stability as well
as other desirable properties of equilibrium regarding uniqueness and efficiency.
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1 . Introduction

Networks are used in a large variety of areas, including transportation, communica-
2tion, computation, etc. The design of good networks is an important issue in all of these

applications. One aspect of this design problem is concerned with the fact that the users
of the network will typically act in a decentralized manner. In this context, the
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designer’s goal is to ensure that the strategic interaction between the users will lead to
stable and socially desirable outcomes.

Here we consider the following model of a two-terminal network and a game in
strategic form associated with it. The network is described by these ingredients:

• a finite set of verticesV;
• a finite set of arcsA, where each arca [ A has a tailt(a)[V and a headh(a)[V; we

think of a as a one-way road segment fromt(a) to h(a);
• two distinct verticeso (the origin) andd (the destination) inV.

We call D 5 (V, A, o, d) a network. A route in D is a sequence of the form

v , a , v , a , v , . . . ,v , a , v0 1 1 2 2 l21 l l

where v , v , . . . , v are distinct vertices,v 5 o and v 5 d, and a , . . . , a are arcs0 1 l 0 l 1 l

satisfyingt(a )5 v andh(a )5 v for i 5 1, . . . , l. In order to eliminate redundancies,i i21 i i

we always assume:

• every vertex inV and every arc inA belongs to at least one route inD.

A game associated with the networkD is described by the following ingredients:

• a finite set of players (users)N; the number of players isn and we usually let
N 5 h1, . . . , nj;

• an assignment of costs to arcs depending on the number of players who use them;
denoting byc (k) the cost to each user of arca if the total number of users ofa is k,a

we assume that the array of numbersC 5 (c (k)) satisfiesa a[A,1#k#n

0# c (1)# c (2)# ? ? ? # c (n) for all a [ A. (1)a a a

A natural interpretation ofc (k) in the context of a traffic network is that it represents thea

travel time for road segmenta when it is chosen byk users. We consider the game in
which every player has to get fromo to d. Thus, the strategy space of each player is the
set of routes inD. With every n-tuple of strategies (routes)r , . . . , r we associate a1 n

congestion vector (s (r , . . . , r )) wheres (r , . . . , r ) is the number of usersi sucha 1 n a[A a 1 n

that a belongs tor . The disutility function of playeri is defined byi

l

p (r , . . . ,r )5O c (s (r, . . . ,r ))i 1 n a a nj j
j51

wherer , . . . , r is the n-tuple of routes chosen by the players anda , . . . , a are the1 n 1 l
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arcs onr . This defines a gameG that we call aroute selection game based on thei
3network D, with player setN and cost assignmentC. We write G 5 (D, N, C).

It follows from a more general theorem ofRosenthal (1973a)on congestion games
(see Section 2) that every route selection game has a Nash equilibrium in pure strategies.
That is, there always exists ann-tuple of strategiesr , . . . , r such that for every playeri1 n

9and every router we havei

9p (r , r )$p (r , . . . ,r ).i i 2i i 1 n

9 9(Here r , r is the n-tuple obtained fromr , . . . , r by changingr to r .) This is ai 2i 1 n i i

pleasing result, but observe that the concept of Nash equilibrium ensures stability of the
outcome only with respect to unilateral deviations by players; the outcome may be
unstable with respect to joint deviations by coalitions of players. In fact it may even be
possible for all players to benefit by a joint deviation from a Nash equilibrium. We say
that a Nash equilibriumr , . . . , r is strictly inefficient if there exists ann-tuple of1 n

9 9strategiesr , . . . , r such that1 n

9 9p (r , . . . ,r ),p (r , . . . ,r ) for all i [N. (2)i 1 n i 1 n

The possible inefficiency of Nash equilibrium in a route selection game is an effect of
congestion externalities. A simple example where this occurs is given inFig. 1. In this
example, the unique Nash equilibrium is for both players to select the route formed byx,
z. Indeed, this is a dominant strategy. When this equilibrium is played, each player pays
6. However, if one player usesx, w and the other usesy, z, then each player pays 5.
Thus, the unique Nash equilibrium is strictly inefficient.

An n-tuple of strategiesr , . . . , r is called astrong equilibrium (Aumann, 1959) if1 n

there does not exist a nonempty coalition of playersS (subset ofN) that has a choice of
9strategies (r ) such thati i[S

9p (r , r ),p (r , . . . ,r ) for all i [ S.i S 2S i 1 n

9 9(Herer , r is then-tuple obtained fromr , . . . , r by changingr to r for eachi [ S.)S 2S 1 n i i

Thus, a strong equilibrium is stable with respect to deviations by any coalition. In
particular, it is a Nash equilibrium and it isweakly efficient, in the sense that it is not
strictly inefficient. The existence of a strong equilibrium is a very desirable, yet quite
rare phenomenon in general.

Our purpose in this paper is to characterize those networks for which the route
selection game always admits a strong equilibrium, regardless of the cost assignment.
Thus we identify the network structure that inherently guarantees the stability and
efficiency of the outcome of the strategic interaction among the users.

Formally, we call a networkD strong if every route selection gameG 5 (D, N, C)

3The model presented here is the one introduced byRosenthal (1973b),specialized to the case in which all
users have the same origin and destination. In most of the other models in the literature, the usage of the
network is represented by continuous variables, either by assuming a continuum of users or by allowing users
to split their demand among the various routes. SeeRosenthal (1973b)for a discussion of some drawbacks of
the continuous approach.
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Fig. 1. The inefficiency of Nash equilibrium (in this exampleN 5 h1, 2j and the first (second) coordinate of
the vector assigned to an arc represents its cost if used by one (resp. two) players).

based onD, with an arbitrary number of users and any assignment of costs to arcs
satisfying (1), has at least one strong equilibrium. We give two characterizations of
strong networks, one in terms of a forbidden substructure, the other in terms of a
recursive construction that produces all strong networks.

For the construction, we need to introduce three simple operations on networks. The
origin extension of a networkD is obtained by adding a new arc toD, whose tail is the
new origin and whose head is the old origin. Similarly, thedestination extension of a
network D is obtained by adding a new arc toD, whose tail is the old destination and
whose head is the new destination. Theparallel join of two networksD and D is1 2

formed by identifying their respective origins and destinations and taking their otherwise
disjoint union.

4We call a networkD extension-parallel if there exists a sequence of networksD ,1

D , . . . ,D with D 5D, in which everyD is either a single-arc network, or the origin2 m m i

or destination extension of someD with j , i, or the parallel join of someD and Dj j k

with j, k , i.
We are now ready to state our main result.

4This term suggests a comparison with the more standard class of networks called series-parallel. They are
defined by a similar recursive construction, in which networks may be joined in series as well as in parallel.
Thus, the class of extension-parallel networks is more restrictive, as it allows to join two networks in series
only in the special case when one of them is a single arc. For example, the network ofFig. 1 is series-parallel
but not extension-parallel. SeeMilchtaich (2001) for a result (in a somewhat different model) relating
series-parallel networks and the so-called Braess’s paradox.
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Theorem 1. Let D be a network. The following conditions are equivalent:

1. D is strong.
2. There do not exist two arcs a and b in D, such that some route in D includes a but

not b, another route in D includes b but not a, and yet another route in D includes
both a and b.

3. D is extension-parallel.

5To illustrate the forbidden substructure in part (2) of the theorem, note that in the
network of Fig. 1 arcs x and z admit routes including each one of them without the
other, as well as a route including both of them. On the other hand, it is easy to check
that the network inFig. 2, for instance, is extension-parallel. In general, the recognition
problem for strong networks is rendered easy by Theorem 1. Given a networkD, we can
either find two arcsa and b and three corresponding routes witnessing thatD is not
strong, or we can exhibit a construction sequence certifying thatD is strong.

It is interesting to note that the characterization given in Theorem 1 is robust with
respect to several possible variations in the requirements from a strong network. Suppose
thatD is a network satisfying the conditions of Theorem 1, and letG 5 (D, N, C) be any
route selection game based onD. Then it is true not only thatG has a strong
equilibrium, but also that every Nash equilibrium ofG is a strong equilibrium. Another
fact is thatG has a strong equilibriumr , . . . , r which is not just weakly efficient but1 n

9strictly efficient; this means that there does not even exist ann-tuple of strategiesr , . . . ,1

9r for which the inequalities in (2) hold as weak inequalities, and at least one of themn

 

Fig. 2. A strong network.

5The forbidden substructure is what we called a bad configuration inHolzman and Law-Yone (1997).The
relation between that paper and this one is discussed below.
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6holds strictly. Yet another remarkable fact is that for a generic route selection game
based onD, Nash equilibrium is unique up to a permutation of the players. Finally, the
existence of a strong equilibrium is preserved in a variant of the definition of a route
selection game based onD, which allows each player’s strategy space to be a possibly
different subset of the set of all routes.

In the converse direction, suppose thatD is a network violating the conditions of
Theorem 1. Then not only does there exist a route selection gameG 5 (D, N, C) based
on D which has no strong equilibrium, but such a game can be found for any given size
n $ 2 of the player set. Moreover, the game can be constructed so that no Nash
equilibrium of it is even weakly efficient.

The equivalence of (1) and (2) in Theorem 1, and the validity of the additional facts
mentioned in the last two paragraphs, essentially follow by specializing to the network
set-up the results that we obtained in earlier work (Holzman and Law-Yone, 1997) on
the more general class of congestion games. We recall the necessary concepts and results
in Section 2. Some extra work is needed though, because in the earlier paper the costs
were not required to be nonnegative. This is taken care of in Appendix A. The main
contribution of this paper is the constructive characterization given by condition (3) in
Theorem 1. We prove that conditions (2) and (3) are equivalent in Section 3.

To conclude the Introduction, we point out the similarities and differences between
7our work and that ofMilchtaich (2001). Like us, Milchtaich gives characterizations of

8two-terminal networks for which the equilibrium outcomes of the corresponding route
selection games have desirable properties, regardless of the cost structure. He focuses on
the efficiency of equilibrium, but also has a result implying strong equilibrium. The main
difference between his model and ours is that he considers games with a continuum of
players, each having a negligible effect on the congestion. He is able to extend some of
his results to the case in which costs are allowed to vary across users, whereas the

9analogous extension would not hold true in our discrete model.

6A property3 is said to hold for a generic route selection game based onD, if for every player setN, the route
selection gameG 5 (D, N, C) has property3 for all cost assignmentsC with the possible exception of some
Cs lying in the union of finitely many hyperplanes in the space of cost assignments.

7While our results were obtained before Milchtaich’s, the presentation in this paper benefited from reading his
preprint.

8Milchtaich considers undirected networks, as opposed to our directed networks. However, all his positive
results are for series-parallel networks, and in such networks an edge can be traversed in only one direction.
Milchtaich’s model also differs from ours in allowing more flexibility in the way route costs are determined.

9The following simple example illustrates the difference. The network consists of two parallel arcs from the
origin to the destination. There are two players, and they both prefer being the single user of any arc to
sharing an arc with the other player. The two players have opposite preferences over the two arcs. In addition
to the efficient equilibrium in which each player uses his preferred arc, there is another Nash equilibrium in
which each player uses the arc he likes less. Thus, in the discrete model the property that every Nash
equilibrium is weakly efficient (when the network is extension-parallel) is not preserved when the costs are
allowed to vary across users. In the continuum model this property does extend to the case of heterogeneous
costs. See alsoMilchtaich (2000)and Konishi (2002)for a sufficient condition for the uniqueness of each
user’s equilibrium cost in a continuum model with heterogeneous costs.
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2 . Congestion games

In this section we present the necessary facts about congestion games, a class of
games that contains the route selection games described in the Introduction.

A congestion game is specified by the following ingredients:

• a finite nonempty set of facilitiesM;
• a finite set of playersN, enumerated asN 5 h1, . . . , nj;
• for each playeri, a nonempty strategy spaceS ; every strategyS [S is a subset ofi i i

M;
• an assignment of costs to facilities depending on the number of players who use

them, given in the formC 5 (c (k)) .a a[M,1#k#n

With everyn-tuple of strategiesS , . . . , S we associate a congestion vector (s (S , . . . ,1 n a 1

S )) , wheres (S , . . . , S )5 uhi [N: a [ S ju. The disutility function of playeri isn a[A a 1 n i

defined by

p (S , . . . ,S )5O c (s (S , . . . ,S )).i 1 n a a 1 n
a[Si

This defines thecongestion game G 5 (M, N, S , . . . ,S , C). The cost assignmentC is1 n

called nonnegative if c (k)$0 for all a [M and every 1# k # n; it is positive if alla

these inequalities are strict.C is calledmonotone if

c (1)# c (2)# ? ? ? # c (n) for all a [M.a a a

Route selection games on networks are naturally embedded as congestion games, by
considering the arcs as facilities, and the arc set of every route as a possible strategy of
every player. Note that although the nonnegativity of costs is not required in the
congestion game model, we do need to assume nonnegativity of arc costs in the network
model in order for the embedding to make sense. If some of the arc costs were negative,
restricting attention to routes (with distinct vertices and arcs) would not be justified.

Rosenthal (1973a)introduced congestion games, and proved that they always have
Nash equilibria in pure strategies. InRosenthal (1973b)he developed the application to
route selection games.

10The existence of strong equilibrium in congestion games was studied inHolzman
and Law-Yone (1997).A preliminary observation made there was that in order to obtain
any positive results it is necessary to restrict attention to monotone cost assignments.
The key observation in that paper was that the existence of strong equilibrium crucially
depends on the absence of what we termed bad configurations in the strategy spaces. We
proceed now to recall this concept and the pertinent results.

10The model was presented inHolzman and Law-Yone (1997)in terms of utilitiesu (k) instead of costsc (k).a a

The two approaches are equivalent by settingu (k)5 2 c (k).a a
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Let S be a strategy space on the facility setM (that is,S is a nonempty family of
subsets ofM). A bad configuration in S is a tuple

(x, y; X, Y, Z)

where

x, y [M,

X, Y, Z [S,

and the following relations hold:

X > hx, yj5 hxj,
Y > hx, yj5 hyj,
Z > hx, yj5 hx, yj.

The following theorem was proved inHolzman and Law-Yone (1997).

Theorem 2. Let G 5 (M, N, S, . . . ,S, C) be a congestion game with a common strategy
space S to all players and a monotone cost assignment C. If S contains no bad
configuration then every Nash equilibrium of G is a strong equilibrium.

It follows immediately from this theorem (and the existence of Nash equilibrium) that
11condition (2) implies condition (1) in Theorem 1. The converse implication follows

from:

Theorem 3. Let M be a set of facilities, and let S be a strategy space on M such that no
set in S contains another. If S contains a bad configuration then for every integer n > 2
there exists a positive and monotone cost assignment C such that the congestion game
G 5 (M, N, S, . . . ,S, C) with uNu5 n has no weakly efficient Nash equilibrium.

In Holzman and Law-Yone (1997)we proved a version of Theorem 3 with a weaker
assumption (no condition on containments among sets inS ) and a weaker conclusion
(no positivity requirement on the cost assignment). The proof of the current version is
much more involved, and is given in Appendix A. Note that in the context of positive
cost assignments the condition that no set inS contains another entails no loss of
generality, because ifS containsT then the strategyS is dominated by the strategyT. In
the network application the condition of no containments among strategies (routes) is

12automatically satisfied.

11The additional statements made in the Introduction about properties of equilibria of route selection games for
networks satisfying the conditions of Theorem 1 follow similarly from corresponding results inHolzman and
Law-Yone (1997);see Theorems 6.2, 6.1 and Corollary 5.3 there.

12We note that there are some further properties of the strategy space that always hold in the network
application. These can be used to simplify the proof of Theorem 3 in the special case of networks. We prefer,
however, to state and prove the theorem for the general congestion game set-up, which admits many other
applications.
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3 . Proof of Theorem 1

As noted above, the equivalence between conditions (1) and (2) in Theorem 1 follows
from Theorems 2 and 3. Here we show that conditions (2) and (3) are equivalent,
thereby completing the proof of Theorem 1.

Suppose first that the networkD satisfies condition (3), with the construction
sequenceD , D , . . . , D 5D. Then everyD in this sequence, and in particularD,1 2 m i

satisfies condition (2). This can be shown by induction oni, based on the easily checked
facts that a single-arc network satisfies condition (2) and the condition is preserved
under the operations of origin /destination extension and parallel join.

Conversely, suppose that the networkD satisfies condition (2). We prove thatD is
extension-parallel by induction on the number of arcs inD. It suffices to show that ifD
has more than one arc then it is either the origin or destination extension of some
network, or the parallel join of some two networks. Once we have shown this, the
network (or networks) from whichD is obtained by one of these operations must also
satisfy condition (2), and we can apply the induction hypothesis to them to conclude the
proof.

So, we consider a networkD with more than one arc and analyze its structure going
through several possible cases; in each case we obtain either a decomposition ofD
corresponding to one of the three operations or a violation of condition (2).

If there is only one arc going out of the origin ofD, thenD is the result of an origin
extension. (Note that there can be no arcs going into the origin, since by assumption
every arc belongs to a route.) Similarly, if there is only one arc going into the destination
of D, then D is the result of a destination extension.

We assume henceforth that there are at least two arcs going out of the origino and at
least two arcs going into the destinationd. Let

A 5 the set of arcs going out ofo,o

A 5 the set of arcs going intod.d

We choose arcsx [ A andy [ A that belong together to some route inD. We considero d

the following sets of arcs:

X 5 the arcs inA that belong to some route starting withxd

Y 5 the arcs inA that belong to some route ending withy.o

If all the routes ending inX start with x, then the vertices and arcs of these routes
form one of two networks of whichD is the parallel join. (We omit the detailed
verification of this fact.) A similar decomposition exists if all the routes starting inY end
with y.

Thus, we assume that there exists a route that ends with some arcz in X but does not
start with x, and there exists a route that starts with some arcw in Y but does not end
with y. If w5x and z5y then x and y violate condition (2). (Recall thatx and y were
chosen so that some route contains both of them.) Ifw ± x then w and y violate
condition (2), and ifz ± y then x and z do so.
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A  ppendix A. Proof of Theorem 3

Let M be a set of facilities, letS be a strategy space onM with no containments
among its members and with a bad configuration, and letn $2 be a given integer. We
have to construct a positive and monotone cost assignmentC 5 (c (k)) so thata a[M, 1#k#n

in then-player congestion gameG 5 (M, N, S, . . . ,S, C) every Nash equilibrium will be
strictly inefficient. For simplicity of presentation, we will assign zero costs in some
cases; a slight perturbation making them positive will not affect the argument.

First we introduce some terminology pertaining to a bad configuration (x, y; X, Y, Z).
The setX < Y < Z is called thedomain of (x, y; X, Y, Z). We call (x, y; X, Y, Z)
separated if the setsX\(Y <Z) and Y\(X < Z) are both nonempty. We call itweakly
separated if at least one of these two sets is nonempty.

Among the bad configurations inS (there may be more than one) we choose one (x,
y; X, Y, Z) according to the following rules. Firstly, we restrict attention to bad
configurations with the smallest possible domain. Among these, we choose a separated
one if such exists. Failing that, we choose a weakly separated one if such exists, and
otherwise we choose an arbitrary one.

We will explicitly assign costs only to facilities in the domainX <Y < Z of the
chosen bad configuration. The costs of the other facilities are to be set sufficiently high
so that all strategies that are not contained in the domain become dominated. This allows
us, when looking for Nash equilibria, to restrict attention to strategies contained in the
domain, i.e. to the set of strategies

S * 5 hS [S : S #X < Y <Zj.

For a subsetI # hx, yj let

S 5 hS [S *: S > hx, yj5 Ij.I

Thus, the set of strategiesS * is partitioned into four subsets:S , S , S , S . (We omit5 x y xy

brackets and commas.)
We distinguish two possible cases.

Case 1. (x, y; X, Y, Z) is separated.

ˆ ˆIn this case, we choose elementsx [X\(Y < Z) andy [ Y\(X <Z). We establish a few
facts about strategies inS *.

ˆClaim 1. (a) EveryS in S containsx.x
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ˆ(b) Every S in S containsy.y

ˆ ˆ(c) Every S in S contains bothx and y.5

ˆProof. (a) SupposeS [S andx [⁄ S. Then (x, y; S, Y, Z) is a bad configuration with ax

smaller domain than (x, y; X, Y, Z), contradicting our choice of (x, y; X, Y, Z).
(b) Similar to (a).
(c) Let S [S . As there are no containments among strategies inS, we can choose an5

elements [ S\Z. BecauseS is contained inX < Y < Z, we haves [X <Y, and we may
ˆassume without loss of generality thats [X. Then we must havey [ S, for otherwise (x,

s; Z, S, X) would be a bad configuration with a smaller domain than (x, y; X, Y, Z). Now
ˆ ˆit follows also thatx [ S, for otherwise (y, y; Z, S, Y) would be a bad configuration with

a smaller domain than (x, y; X, Y, Z).
Now, consider the cost assignment given inTable A.1.Based on Claim 1, we check

that every strategy inS * \S is dominated by the strategyZ. Indeed, a player whoxy

switches from some strategyS in S <S to Z increases his cost onhx, yj by at most 2x y

ˆ ˆbut saves at least 3 onhx, y j. Similarly, a player who switches from a strategyS in S to5

Z reduces his cost from 6 to at most 4.
It follows that in every Nash equilibrium all players will use strategies inS ,xy

incurring costs of at least 4 each. But this is strictly inefficient, because if some players
switch to X and the other players switch toY they will only pay 3 each.

Case 2. (x, y; X, Y, Z) is not separated.

In this case, the following is true.

Claim 2. There is no strategy inS .5

Proof. By the assumption of Case 2, one of the setsX\Z, Y\Z contains the other. We
assume without loss of generality that

X\Z # Y\Z. (A.1)

Suppose, for the sake of contradiction, that the strategyS is in S . We choose an5

element s [ S\Z. BecauseS is contained inX < Y <Z, we haves [ (X < Y)\Z, and
therefore by (A.1) necessarilys [ Y\Z. Now, (y, s; Z, S, Y) is a bad configuration with
domain contained in (and hence equal to)X < Y < Z. Moreover, this bad configuration is
weakly separated, as witnessed by the elementx. It follows then, by our rules for

T able A.1
Cost assignment in Case 1 (the cost of every other facility inX < Y < Z is zero, and the cost of every facility
outsideX < Y <Z is prohibitively high)

ˆ ˆx y x y

Fewer thann users 0 0 3 3
n users 2 2 3 3
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choosing (x, y; X, Y, Z), that it, too, is weakly separated. Thus the containment in (A.1)
is strict.

Now, if S\Z #X then (x, s; Z, S, X) is a bad configuration with domainX < Z, which
is smaller thanX < Y < Z by strict (A.1). It follows thatS\Z≠X, and we assume without
loss of generality thats [⁄ X (otherwise we replaces by another element ofS\Z).

Next, we choose an elementt [ S\Y. If t [X, then (t, s; X, Y, S) is a bad configuration
with domain contained in (and hence equal to)X <Y <Z. Moreover, this bad
configuration is separated, as witnessed by the elementsx and y. By our rules for
choosing (x, y; X, Y, Z), this contradicts the assumption of Case 2. Thus, we assume that
t [⁄ X.

We further choose an elementu [X\Z. Now (x, u; Z, Y, X) is a bad configuration
(sinceu [ Y\Z by (A.1)) with domainX <Y <Z. This bad configuration is separated, as
witnessed by the elementst ands. Again, this contradicts the assumption of Case 2, and
completes the proof of Claim 2.

˜ ˜We now choose strategiesX and Y so that

˜ ˜X [ arg min uS\Zu and Y [arg min uS\Zu
S[S S[Sx y

˜ ˜We observe that (x, y; X, Y, Z) is a bad configuration with domain contained in (and
hence equal to)X <Y < Z. By the assumption of Case 2, it cannot be separated. We

˜ ˜assume without loss of generality thatX \Z #Y \Z. We have

˜ ˜uX \Zu5 p and uY \Zu5 q

for some positive integersp and q with p # q. Let

Ỹ \Z 5 hw , w , . . . ,w j.1 2 q

Note thatZ < hw , . . . , w j is the entire domain, every strategy inS contains at leastp1 q x

of the w ’s, and every strategy inS contains allq of them.i y

Now, consider the cost assignment given inTable A.2.We check that every strategy in
S * \S is dominated by the strategyZ. Indeed, a player who switches from somexy

strategyS in S to Z incurs a cost of at most 3p 2 1 for y but saves at least 3p onx

hw , . . . , w j. Similarly, a player who switches from a strategyS in S to Z incurs a cost1 q y

of at most 3q 21 for x but saves 3q on hw , . . . , w j. By Claim 2, this is all we need to1 q

check.
It follows that in every Nash equilibrium all players will use strategies inS and payxy

at least 3(p 1 q)2 2 each. But this is strictly inefficient, because if some players switch

T able A.2
Cost assignment in Case 2 (the cost of every facility inZ\hx, yj is zero, and the cost of every facility outside
Z < hw , . . . , w j is prohibitively high)1 q

x y w w ? ? ? w1 2 q

Fewer thann users 0 0 3 3 ? ? ? 3
n users 3q 2 1 3p 21 3 3 ? ? ? 3
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˜ ˜to X and the other players switch toY, the former will pay 3p each and the latter 3q
each.
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