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Abstract. This paper introduces and studies the question of balancing the load on processors
participating in a given quorum system. Our proposed measure for the degree of balancing is the
ratio between the load on the least frequently referenced element and on the most frequently used
one.

We give some simple sufficient and necessary conditions for perfect balancing. We then look at
the balancing properties of the common class of voting systems and prove that every voting system
with odd total weight is perfectly balanced. (This holds, in fact, for the more general class of ordered
systems.)

We also give some characterizations for the balancing ratio in the worst case. It is shown that for
any quorum system with a universe of size n, the balancing ratio is no smaller than 1/(n − 1), and
this bound is the best possible. When restricting attention to nondominated coteries (NDCs), the
bound becomes 2/

(
n−log2 n+o(logn)

)
, and there exists an NDC with ratio 2/

(
n−log2 n−o(logn)

)
.

Next, we study the interrelations between the two basic parameters of load balancing and quorum
size. It turns out that the two size parameters suitable for our investigation are the size of the largest
quorum and the optimally weighted average quorum size (OWAQS) of the system. For the class of
ordered NDCs (for which perfect balancing is guaranteed), it is shown that over a universe of size
n, some quorums of size d(n + 1)/2e or more must exist (and this bound is the best possible). A
similar lower bound holds for the OWAQS measure if we restrict attention to voting systems. For
nonordered systems, perfect balancing can sometimes be achieved with much smaller quorums. A
lower bound of Ω(

√
n) is established for the maximal quorum size and the OWAQS of any perfectly

balanced quorum system over n elements, and this bound is the best possible.
Finally, we turn to quorum systems that cannot be perfectly balanced, but have some balancing

ratio 0 < ρ < 1. For such systems we study the trade-offs between the required balancing ratio ρ
and the quorum size it admits in the best case. It is easy to get an analogue of the result for perfect
balancing, yielding a lower bound of

√
nρ. We actually get a better estimate by a refinement of the

argument.
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1. Introduction.

1.1. Motivation. Quorum systems serve as a basic tool providing a uniform
and reliable way for achieving coordination between processes in a distributed system.
Quorum systems are defined as follows. Suppose that the system is composed of n
elements u1, . . . , un, taken from a universe U , representing sites, nodes, processors,
or other abstract entities. A set system is a collection S of sets over the universe
U . A set system S is said to satisfy the quorum intersection requirement if for every
two sets Si and Sj in S, the intersection Si ∩ Sj is not empty. A quorum system is
a collection of sets that enjoys the quorum intersection property. The sets of S are
referred to as the quorums of the system.
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Applications for quorum systems in distributed systems include control and man-
agement problems such as mutual exclusion (cf. [R86]), name servers (cf. [MV88]),
and replicated data management (cf. [H84]). In all of these cases, the use of quorum
systems is centered on the following basic idea. The application requires that certain
information items be stored in the network in a reliable and consistent way. Storing
the information at a single central site is problematic in case that site crashes. Stor-
ing the information at one particular set of sites may overcome this problem, but will
prevent working in the system if a communication failure causes a partition in the
network, since if users at different parts of the network continue working separately,
the information can no longer be guaranteed to be consistent.

The conceptual solution based on quorum systems is to make use of a large
collection of possible sets of sites in the system. Each such set forms a quorum in the
sense that any query or update operation concerning the information at hand can be
performed by accessing the elements of this single set alone, and the choice of the
particular quorum to be used can be made arbitrarily (i.e., all quorums are equally
adequate).

In particular, in order to perform an update to the information, the user selects
one quorum Si in the quorum system S, and records the update in every one of the
elements that compose Si. Likewise, a potential consumer of this information may
choose any quorum Sj ∈ S, and query the elements of Sj for the needed informa-
tion. Note that the consumer must query each of the elements of Sj in order to be
certain of obtaining the latest version. The reason for this is that a sequence of k
updates, performed by a number of different users, may make use of different quorums
Si1 , . . . , Sik , and therefore the elements of a quorum Sj used in a subsequent query
may contain different information. Specifically, if the element x ∈ Sj does not belong
to Sik then the information stored in it will not be the most recent one. Moreover, it
is impossible to tell, just by inspecting the data stored at x, whether this is the last
version. Luckily, since the intersection of every two quorums in a quorum system is
not empty, the consumer is guaranteed to encounter at least one element that is able
to supply the most up-to-date version (namely, the element at the intersection of Sj
and Sik).

This type of solution is capable of withstanding crashes and network partitions
(up to a point), due to the greater degree of freedom the user has in choosing the
quorum. In particular, in the case of crashes, the consumer can choose a quorum that
does not include the crashed elements, and in the case of a partition, it may still be
possible for one part of the network to contain a complete quorum. (Of course, it is
quite impossible for two disconnected parts of the system to both contain complete
quorums!)

Considerable attention is given in the literature to a special type of quorum system
called a coterie (see [GB85] and [IK90]). A coterie is a quorum system in which the
quorums are not allowed to fully contain each other. A subclass of special interest
is that of nondominated coteries (or NDCs), which are better than other coteries in
terms of fault tolerance and communication cost. This subclass is defined as follows.
Given two coteries S1 and S2 over the same universe U , we say that S2 dominates S1

if S2 6= S1 and for every quorum S ∈ S1 there is a quorum T ∈ S2 such that T ⊆ S.
An NDC is a coterie which is not dominated by any other coterie (see [GB85]).

1.2. Load balancing. There are many types of quorum systems, and many
parameters of quorum systems affecting the applications using them. Such parameters
include quorum sizes (affecting communication costs) and the number of quorums
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(affecting immunity to partitioning).

Of special interest are parameters for evaluating the distribution of workload
over the system, and measuring the degree of balancing possible for a given quorum
system. If all the users of the system prefer to use one particular quorum while
possible (e.g., in a failure-free execution), then the elements participating in this
quorum will be overloaded compared to others. So it makes sense to try to use a
more uniform distribution for selecting the quorum to be accessed. Formally, given
a quorum system S = {S1, . . . , Sm}, a quorum load vector (QLV) is a vector v =
(v1, v2, . . . , vm) expressing the distribution of relative loads placed on the quorums of
S. (That is, in a long sequence of quorum accesses, a vi fraction of the accesses is
directed at quorum Si.)

This distribution induces an access rate for each element uj , which is the sum of
the access frequencies of the quorums it belongs to, aj =

∑
uj∈Si vi. Thus the element

load vector (ELV) a = (a1, a2, . . . , an) induced by the QLV v expresses the relative
loads placed on the elements of U when using the QLV v.

Our proposed measure for the degree of balancing is the ratio between the rate
of accesses to the least frequently used element in the quorum system and the rate
of accesses to the most frequently used one. Formally, given a QLV v for S and the
induced ELV a, we let ρS,v = min{aj}/max{aj}, and define the balancing ratio ρS
of S as the maximum ρS,v over all QLVs v. A system is said to be perfectly balanced
if all the elements are accessed at the same rate, namely, ρS = 1.

This paper focuses on issues related to balancing. In current technologies, a
common and promising way to increase computing power is by connecting many
fast processors together into compound systems. Quorum systems can be used for
coordination in such systems. For small systems, the effect of the particular quorum
system used on the communication cost is not significant. However, when the systems
become larger, the importance of choosing a good quorum system may significantly
increase. In particular, some quorum systems may be well adapted to the demand of
load balancing, while for others, such a demand may impose heavy communication
costs. Worse yet, certain types of quorum systems may be incapable of providing
perfect or even partial balancing, regardless of the cost.

In this paper we introduce and address this issue, defining the fundamental notions
and concepts relevant to load balancing, and developing some basic results on the
balancing properties of a variety of quorum system classes.

Let us remark that to the best of our knowledge, currently existing systems do
not address the issue of load balancing at all. Consequently, the quorum selection
mechanisms used in existing systems typically do not provide such balancing, as they
base the selection on some arbitrary choice, or worse, on a fixed search pattern,
perpetuating the imbalance.

However, even though current quorum systems do not provide any means for
balancing the load on the processors, it should be clear that there is no inherent reason
that prevents them from doing so. In fact, given a desirable QLV v for the quorum
system S at hand (i.e., a QLV v for which ρS,v = ρS), it is rather straightforward
to develop a simple randomized protocol for quorum selection, based on interpreting
v as a probability distribution over the quorums, and drawing a quorum at random
according to v. Such a protocol will in fact enforce an actual load distribution close
to the optimal one, with high probability. For many natural quorum system classes
(including most of the specific classes discussed in what follows), this protocol will
also enjoy an efficient (and fast) distributed implementation.
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1.3. Related work. Synchronization and coordination are central issues in the
area of distributed systems. Many types of synchronization protocols rely on variants
of quorum systems. In [H84] quorum intersection is defined between read quorums and
write quorums, and also between other abstract types of quorums. In [MV88] aspects
of distributed control are examined and lower bounds are presented for certain types
of quorum systems. The issues of fault tolerance and availability of quorum systems
are studied in [PW93]. For more on the applicability of quorum-based techniques in
distributed systems, and on the examples mentioned above, the reader is referred to
[H84, GB85] and the references therein. We are unaware of previous discussion of
load balancing issues in the context of quorum systems in the literature.

Set systems in general (including intersecting hypergraphs in particular) were
studied extensively in recent years (cf. [B86]). The terms coterie and nondominated
coterie (NDC) are defined in [GB85], and many properties of coteries and NDCs
are presented. Some interesting properties of NDCs are derived in [L73]. In [IK90]
a relationship is established between coteries and boolean functions. Properties of
coteries and NDCs are derived from properties of the appropriate functions.

1.4. Contributions. This paper focuses on a number of questions related to the
issue of balancing the load on processors participating in a given quorum system.

We begin by giving some simple sufficient and necessary conditions for perfect bal-
ancing. (One trivial necessary condition is that the system is nonredundant; namely,
that every element participates in some quorum.)

We then look at the balancing properties of the common class of voting systems.
(A voting system is based on assigning a number of “votes” to each element of the
universe; the votes induce a quorum system by taking as a quorum any collection of
elements that holds a “minimal” majority of all the votes.) We define the class of
ordered NDCs, which is an extension of voting systems, and prove that every ordered
NDC is perfectly balanced. It follows, in particular, that every voting system with
odd total number of votes is perfectly balanced.

Next we turn to characterizations for the balancing ratio in the worst case. We
show that for any quorum system with a universe of size n, the balancing ratio is no
smaller than 1/(n−1), and this bound is the best possible. When restricting attention
to NDCs, the bound becomes 2/

(
n− log2 n+o(logn)

)
, and there exists an NDC with

ratio 2/
(
n− log2 n− o(logn)

)
.

Next, we study the interrelationships between the two basic parameters of load
balancing and quorum size. It turns out that the two size parameters suitable for our
investigation are the size of the largest quorum and the optimally weighted average
quorum size (OWAQS) of the system (corresponding to an optimal load vector).

For the class of ordered NDCs (for which perfect balancing is guaranteed), it
is shown that over a universe of size n, some quorums of size d(n + 1)/2e or more
must exist (and this bound is the best possible). A similar lower bound holds for the
OWAQS measure if we restrict attention to voting systems.

For nonordered systems, perfect balancing can sometimes be achieved with much
smaller quorums. A lower bound of Ω(

√
n) is established for the maximal quorum

size and the OWAQS of any perfectly balanced quorum system over n elements, and
this bound is the best possible.

Finally, we turn to quorum systems that cannot be perfectly balanced, but have
some balancing ratio 0 < ρ < 1. For such systems we study the trade-offs between
the required balancing ratio ρ and the quorum size it admits in the best case. It is
easy to get an analogue of the result for perfect balancing, yielding a lower bound of
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√
nρ. We actually get a better estimate, by a refinement of the argument.

2. Basic notions.
Definition. A quorum system is a pair (U,S), where U is a nonempty finite set

and S is a set of nonempty subsets of U such that the intersection of every two sets
in S is nonempty. We refer to the set U as the universe and to the sets in S as the
quorums of the system.

It is sometimes convenient to represent a quorum system by a matrix of 0’s and
1’s.

Definition. The quorum matrix of a quorum system (U,S) is the m×n matrix
Ŝ = (ŝij) obtained as follows: the elements of U are enumerated as u1, u2, . . . , un, the
quorums in S are enumerated as S1, S2, . . . , Sm, and

ŝij =
{

1 if uj ∈ Si,
0 otherwise.

We shall usually be interested in quorum systems in which no quorum contains
another, since in the case of containment the larger quorum is redundant for our
purposes.

Definition. A coterie is a quorum system in which no quorum contains another
quorum.

In order to describe and analyze a coterie, it is often convenient to refer to the
set of subsets of the universe which contain some quorum. This is facilitated by the
following definition.

Definition. A monotone quorum system (MQS) is a quorum system (U,M)
such that S ∈ M and S ⊆ T ⊆ U imply T ∈ M. Given a coterie (U,S), a superquo-
rum is any subset of U that contains a quorum of S. The MQS generated by (U,S)
is the collection of superquorums of (U,S), namely, the system (U, S̄), where T ∈ S̄
if and only if T ⊇ S for some S ∈ S. Conversely, if we are given a MQS (U, S̄) then
the coterie (U,S) is determined uniquely (S ∈ S if and only if S ∈ S̄ and no proper
subset of S is in S̄) and is called the coterie derived from (U, S̄).

Example 2.1. Minimal Majority Coterie. Let |U | = n and let S̄ =
{
S ⊆ U : |S| >

n
2

}
; that is, the superquorums are the sets containing a majority of elements. The

coterie derived from (U, S̄) is that in which the quorums are all subsets of U of size⌈
n+1

2

⌉
.

Notation. When U = {u1, u2, . . . , un} and x1, x2, . . . , xn are real numbers, we
denote the x-weight of a subset S ⊆ U by

x(S) =
∑
uj∈S

xj .

Example 2.2. Voting Coterie. Let U = {u1, u2, . . . , un} and assume that to
each uj ∈ U we assign a nonnegative integer wj , called the weight of uj . Then we

define the MQS S̄ =
{
S ⊆ U : w(S) > w(U)

2

}
. The coterie derived from (U, S̄) is

that in which the quorums are those subsets of U which carry a majority of the
total weight and are inclusion-minimal with respect to this property. A coterie (U,S)
obtained in this manner is called a voting system. Observe that the minimal majority
coterie of Example 2.1 is a special case of a voting system, in which all weights are
equal.

Example 2.3. Star Coterie. Let U = {u1, u2, . . . , un} and let S consist of the
n− 1 quorums {u1, u2}, {u1, u3}, . . . , {u1, un}. Then (U,S) is a coterie. We call such
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a coterie a star . Observe that a star is also a voting system (take w1 = n − 1,
w2 = · · · = wn = 1).

Voting systems play a distinguished role in the study of quorum systems because
of the natural and simple way in which they are specified. The defining weights
also supply a ranking of the elements of U in terms of their importance for forming
quorums. This notion is captured by the following definition.

Notation. Let U = {u1, u2, . . . , un}, and let S ⊆ U with ui /∈ S, uj ∈ S. We
denote by Sij the replacement set

(
S \ {uj}

)
∪ {ui}.

Definition. Let (U,S) be a coterie. We say that (U,S) is ordered if it is possible
to enumerate the elements of U as u1, u2, . . . , un so that the following holds: if 1 ≤
i < j ≤ n and S is a superquorum with ui /∈ S, uj ∈ S, then Sij is also a superquorum.

Intuitively, the above property means that if i < j then ui is at least as useful as
uj for forming quorums. The reason that the definition refers to superquorums rather
than quorums is that it may happen that S is a quorum but Sij is a nonminimal
superquorum. It is straightforward to check, and we will do so now.

Fact 2.4. Every voting system is ordered.

Proof. This is proved by enumerating the elements so that w1 ≥ w2 ≥ · · ·
≥ wn.

The converse is known to be false; that is, there exist ordered coteries that cannot
be obtained as a voting system [Os85]. There are also coteries that are not ordered,
as witnessed by the following class of examples.

Example 2.5. FPP. Let U and S be the sets of points and lines, respectively, of a
finite projective plane (see [H86]). We recall that in a finite projective plane of order
q (abbreviated FPP(q)) there are n points and n lines, where n = q2 + q + 1. Each
line contains q+ 1 points and there are q+ 1 lines going through each point. Any two
lines have exactly one point in common, and through any two points there is exactly
one line. A FPP(q) is known to exist for every q which is a prime power. Clearly,
if (U,S) is a FPP(q), q ≥ 2, then (U,S) is not ordered, since no point can replace
another in a line.

A special class of coteries arises from a concept of domination among coteries (see
[GB85]).

Definition. Let (U,S1) and (U,S2) be coteries. We say that (U,S2) dominates
(U,S1) if S2 6= S1 and for every quorum S ∈ S1 there is a quorum T ∈ S2 such that
T ⊆ S. A nondominated coterie (NDC) is a coterie which is not dominated by any
other coterie.

The following fact (cf. Cor. 2.1 in [IK90]) can be used as a convenient alternative
definition of an NDC.

Proposition 2.6. Let (U,S) be a coterie. Then (U,S) is an NDC if and only
if for every partition of U into two parts S1 and S2, one of the Si (i = 1, 2) is a
superquorum.

We now record a simple but useful property of NDCs.

Proposition 2.7. Let (U,S) be an NDC, and let u ∈ U be in ∪S (that is, u
belongs to at least one quorum). Then:

(a) There exist two quorums S and T such that S ∩ T = {u}.
(b) If, moreover, (U,S) is ordered with corresponding enumeration u1, u2, . . . , un

of U and u = uj, then there are two quorums S and T such that S∩T = {uj}
and S ∪ T ⊇ {u1, . . . , uj}.

Proof. Let S be a quorum containing u. Applying the property given in Propo-
sition 2.6 to the partition S \ {u}, (U \ S) ∪ {u}, we conclude that (U \ S) ∪ {u} is a
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superquorum. Let T be a quorum contained in it. Then S ∩ T ⊆ {u}, and since the
intersection of two quorums is nonempty we have S ∩ T = {u}, establishing part (a).

To prove part (b), assume that i < j and ui /∈ S∪T . By the property of an ordered
coterie it follows that the replacement set T ij is a superquorum. This, however, is a

contradiction since T ij is disjoint from S.
Let us examine the above examples of coteries to see whether they are NDCs.
Fact 2.8.

(a) The minimal majority coterie of Example 2.1 is an NDC if and only if n
is odd.
(b) A sufficient condition for a voting system (Example 2.2) to be an NDC is
that the total weight be odd.
(c) A star coterie (Example 2.3) is dominated.
(d) A finite projective plane FPP(q) (Example 2.5) is an NDC for q = 2 but
is dominated for all q > 2.

Proof. Parts (a) and (b) [GB85] are seen easily from Proposition 2.6. Part
(c) follows since neither {u1} nor {u2, . . . , un} is a superquorum. For Part (d) see
[P70, C93].

We remark that despite Fact 2.8(d), FPP(q) satisfies the property of Proposition
2.7(a) for all q.

The central concept of this research deals with load balancing.
Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij), i =

1, . . . ,m, j = 1, . . . , n. A quorum load vector (QLV) is a vector v = (v1, v2, . . . , vm)
whose components are real nonnegative numbers (not all zero) expressing the relative
loads that are to be placed on the quorums of S. The element load vector (ELV)
induced by the QLV v is the vector a = a(S,v) = (a1, a2, . . . , an) computed by a = vŜ
and expressing the relative loads placed on the elements of U when using the QLV v.

Definition. Let (U,S) be a quorum system. Given a QLV v = (v1, v2, . . . , vm)
which induces the ELV a = (a1, a2, . . . , an), we define the balancing ratio for S and
v as

ρS,v =
minj=1,...,n{aj}
maxj=1,...,n{aj}

.

The balancing ratio of (U,S) is defined as

ρS = max{ρS,v: v is a QLV}.

A straightforward continuity and compactness argument shows that ρS is well
defined. We have associated with each quorum system (U,S) a parameter 0 ≤ ρS ≤ 1,
which tells us how evenly we can spread the load among the elements of U if we are
allowed to assign the relative loads to the quorums optimally. The higher the ρS , the
better behaved the quorum system is from the point of view of load balancing.

We note the following basic fact regarding the balancing ratio.
Fact 2.9. If U 6= ∪S then ρS = 0.
Proof. If U 6= ∪S, then there is some element ui ∈ U that does not participate

in any quorum of S. Hence, no matter which QLV v we choose, ai will be zero, and
thus the balancing ratio ρS,v will be zero too.

Consequently, in studying the balancing ratio it is natural to make the assumption
that each element appears in some quorum.

Definition. A quorum system (U,S) is nonredundant if each element of U
appears in some quorum; i.e., U = ∪S.
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Once this assumption holds, we have ρS > 0. The most pleasing situation is when
all element loads can be made equal; that is, ρS = 1.

Definition. A quorum system (U,S) is perfectly balanced if ρS = 1.

3. Perfect balancing. We begin with a simple sufficient condition for perfect
balancing.

Definition. Let (U,S) be a quorum system and let u ∈ U . The degree of u in S
is dS(u) =

∣∣{S ∈ S: u ∈ S}
∣∣. We say that (U,S) is regular if all elements of U have

the same degree in S.
Proposition 3.1. Every regular quorum system is perfectly balanced.
Proof. The proposition is proved by assigning equal loads to all quorums.
As an application of Proposition 3.1, we note that the minimal majority quorum

systems of Example 2.1 and the FPP coterie of Example 2.5 are regular, and hence
perfectly balanced. The star coterie (Example 2.3), on the other hand, is not perfectly
balanced (when n ≥ 3), since it can be seen that the load on the center of the star is
the sum of the loads on the other elements.

In trying to determine when a given quorum system is perfectly balanced, the
following characterization is useful.

Proposition 3.2. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un}.
Then (U,S) is perfectly balanced if and only if there exists no x = (x1, x2, . . . , xn) ∈ Rn
satisfying

x(S) ≥ 0 for all S ∈ S,(1)

x(U) < 0.(2)

(Recall the x-weight notation.)
Proof. The quorum system (U,S) is perfectly balanced if there exists a real

nonnegative vector v solving the equation system vŜ = 1, where 1 denotes the n-
dimensional vector of 1’s. By the Minkowski–Farkas Lemma ([F01]; cf. [C83]), this is
equivalent to the condition that the system of inequalities xŜ> ≥ 0, x·1> < 0 has
no solution.

Our main result in this section is concerned with ordered NDCs. It will be derived
from the following lemma.

Lemma 3.3. Let (U,S) be a nonredundant NDC. Suppose that (U,S) is ordered
with corresponding enumeration u1, u2, . . . , un of U . Let x = (x1, x2, . . . , xn) ∈ Rn
and α ∈ R satisfy

x(S) ≥ α for all S ∈ S,(3)

x(U) ≤ 2α.(4)

Then xj ≥ 0 for j = 1, 2, . . . , n.
Proof. Suppose, for contradiction, that xj < 0 for some j, and let J be the

largest such j. By Proposition 2.7(b) there exist two quorums S and T such that
S ∩T = {uJ} and S ∪T ⊇ {u1, . . . , uJ}. By the choice of J , we have xi ≥ 0 for every
ui ∈ U \ (S ∪ T ), and hence x(U)− x(S ∪ T ) = x

(
U \ (S ∪ T )

)
≥ 0. Therefore, using

(3) and xJ < 0, we get

x(U) ≥ x(S ∪ T ) = x(S) + x(T )− xJ > 2α,

which contradicts (4).
Theorem 3.4. Every ordered nonredundant NDC is perfectly balanced.
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Proof. For the sake of contradiction, let (U,S) have the properties stated, but fail
to be perfectly balanced. By Proposition 3.2 there exists x ∈ Rn satisfying (1) and (2).
We may apply Lemma 3.3 with α = 0 and conclude that xj ≥ 0 for j = 1, 2, . . . , n.
But this is inconsistent with (2).

By Facts 2.4 and 2.8(b) we have the following corollary.
Corollary 3.5. Every nonredundant voting system (Example 2.2) with odd total

weight is perfectly balanced.
We remark that none of the assumptions made in Theorem 3.4 is superfluous.

Indeed, the nonredundancy assumption is necessary for perfect balancing by Fact
2.9. If we drop the assumption of nondomination, the star coterie is an example that
satisfies the other assumptions but not the conclusion. A class of examples indicating
that the assumption of being ordered cannot be dispensed with will be presented in
the following section (Example 4.3).

4. The balancing ratio in the worst case.

4.1. Characterization for the balancing ratio. The following proposition
gives a dual formulation for the balancing ratio in the case when it is less than 1; it
complements Proposition 3.2, which dealt with the case when the balancing ratio is
1.

We shall use the following notation: if U = {u1, u2, . . . , un} and x = (x1, x2, . . .,
xn) ∈ Rn then

P = {uj ∈ U : xj > 0},
N = {uj ∈ U : xj < 0}.

The expressions x(P ) and x(N) will be used following our x-weight notation.
Proposition 4.1. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un} and

ρS < 1. Then

ρS = min{x(P )},

where the minimum is taken over all x = (x1, x2, . . . , xn) ∈ Rn satisfying

x(S) ≥ 0 for all S ∈ S,(5)

x(N) = −1.(6)

Proof. The balancing ratio ρS can be defined as the optimal value of ρ in the
linear programming problem

ρS = max
v,ρ
{ρ},

subject to

vŜ ≤ 1,

ρ− vŜ ≤ 0,

v ≥ 0,

ρ ≥ 0,

where Ŝ is the quorum matrix, α denotes (for α ∈ R) the vector of appropriate
dimension with all components equal to α, vector inequalities are understood com-
ponentwise, and the maximum is taken over all QLVs v and ρ ∈ R. Note that this
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formulation is equivalent to the definition of ρS , since the QLV v can always be nor-
malized so that the largest component of the induced ELV a becomes 1. By linear
programming duality, we can express ρS in the form

ρS = min
y,z
{y(U)}

subject to

z(U) ≥ 1,(7)

y(S)− z(S) ≥ 0, for all S ∈ S,(8)

y ≥ 0,(9)

z ≥ 0,(10)

where the minimum is taken over all vectors y, z ∈ Rn.
We begin by showing that there exists a vector x satisfying (5) and (6) and

also x(P ) ≤ ρS . The inequality ρS ≥ min{x(P )} then follows. Suppose now that
y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) satisfy (7)–(10), and yield the optimal
value in the dual linear programming problem. We may assume that z(U) = 1, since
we can achieve this by decreasing the values of the components of z without affecting
the value of the solution or the validity of the constraints. Let x = y − z, and let
N ⊆ U be defined with respect to x as in the statement of the proposition.

We observe first that x(U) < 0. Indeed,

x(U) = y(U)− z(U) = ρS − 1

and ρS < 1 by assumption. It follows in particular that N 6= ∅, and therefore
x(N) < 0. On the other hand, by (9) and (10),

x(N) =
∑
uj∈N

yj − zj ≥ −
∑
uj∈N

zj ≥ −
∑
uj∈U

zj = −1.

Therefore, we can find a real number α ≥ 1 so that αx(N) = −1; hence the vector
αx satisfies (6). It follows from (8) that x, and hence also αx, satisfies (5). Thus αx
satisfies both (5) and (6). We have

αx(P ) = αx(U)− αx(N) = αx(U) + 1 ≤ x(U) + z(U) = y(U) = ρS

(where the inequality relies on x(U) < 0 and α ≥ 1, and on (7)).
It remains to show, in the other direction, that any x = (x1, x2, . . . , xn) ∈ Rn

which satisfies (5) and (6) has x(P ) ≥ ρS . The inequality ρS ≤ min{x(P )} follows
immediately. Let x be such a vector. We define the vectors y = (y1, y2, . . . , yn) and
z = (z1, z2, . . . , zn) by

yj =

{
xj if xj > 0,
0 otherwise,

zj =
{−xj if xj < 0,

0 otherwise.

It can be checked that y and z satisfy (7)–(10). It follows that y(U) ≥ ρS . Since
y(U) = x(P ), we are done.
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4.2. A lower bound for the balancing ratio. We now address the following
question: within the class of all nonredundant quorum systems with a universe of size
n, how low can the balancing ratio be in the worst case?

Theorem 4.2. Let (U,S) be a nonredundant quorum system with U = {u1, u2,
. . . , un}, n ≥ 2. Then ρS ≥ 1/(n− 1). This bound is the best possible.

Proof. We may assume that ρS < 1. By Proposition 4.1, we have to prove that
any x = (x1, x2, . . . , xn) ∈ Rn which satisfies (5) and (6) has x(P ) ≥ 1/(n− 1). Since
x(N) = −1 (by (6)) and |N | ≤ n − 1 (due to (5)), there exists some uj ∈ N with
xj ≤ −1/(n − 1). Using the nonredundancy assumption, let S be a quorum with
uj ∈ S. Then

x(P ) ≥ x(S ∩ P ) ≥ −x(S ∩N) ≥ −xj ≥ 1/(n− 1)

(where the second inequality is due to (5) again).
A candidate for attaining the worst case is the star coterie of Example 2.3, whose

balancing ratio is easily seen to be 1/(n− 1).

4.3. A lower bound for the balancing ratio on NDCs. The worst case for
the balancing ratio occurs for the star, which is a dominated coterie. What happens
if we restrict attention to NDCs? The following construction, taken from [EL74],
exhibits a low balancing ratio.

Example 4.3. Nucleus Coterie. Let r ≥ 2 be an integer and let U be the disjoint
union of the sets K and L, where |K| = 2r − 2 and |L| =

(
2r−2
r−1

)
/2. Let the elements

of L be put in a one-to-one correspondence with the halvings of K. That is, to every
unordered pair A,B of disjoint subsets of K of size r − 1 each there corresponds an
element uA,B of L. Let S consist of all sets of the form A ∪ {uA,B} and B ∪ {uA,B},
where A,B is a halving of K, as well as all subsets of K of size r. It is easy to verify
that (U,S) is an NDC (using Proposition 2.6) and it is nonredundant. The number
of elements is n = 2r − 2 +

(
2r−2
r−1

)
/2. The balancing ratio is 1 when r = 2 and is

ρS = 4/
(

2r−2
r−1

)
when r ≥ 3. The latter can be verified by noting that (a) the QLV v

assigning zero load to the quorums contained in K and load 1 to every other quorum
satisfies ρS,v = 4/

(
2r−2
r−1

)
, and (b) the vector x = (x1, x2, . . . , xn) defined by

xj =


2

(r−1)(2r−2
r−1 )

if uj ∈ K,

− 2

(2r−2
r−1 )

if uj ∈ L,

satisfies (5) and (6) and x(P ) = 4/
(

2r−2
r−1

)
.

We observe that for r = 3 the above construction gives a nonredundant NDC
(U,S) with |U | = 7 which has balancing ratio ρS = 2/3. It is therefore an example
showing that Theorem 3.4 does not remain true if the assumption of being ordered
is removed. No such example with universe of size smaller than 7 exists. Indeed,
for n ≤ 5 it is known that every NDC is a voting system and hence ordered [GB85].
For n = 6, an exhaustive search shows that all nonredundant NDCs are perfectly
balanced.

For large r, the above construction gives almost the worst case as will be proved
next.

Theorem 4.4. For every nonredundant NDC (U,S) with U = {u1, u2, . . . , un},
ρS ≥ 2/

(
n − log2 n + o(logn)

)
. Furthermore, there exists such an NDC (U,S) with

ρS = 2/
(
n− log2 n− o(logn)

)
.
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Proof. Let (U,S) satisfying the assumptions be given, and let us write

ρS =
2

n− α

for a suitable real number α. We have to prove that α ≥ log2 n− o(logn).
Let x = (x1, x2, . . . , xn) ∈ Rn be a vector which satisfies (5) and (6) and has

x(P ) =
2

n− α.(11)

Given any uj ∈ N we can find, using Proposition 2.7(a), two quorums Sj and Tj such
that Sj ∩ Tj = {uj}. We have then (relying on (5) for the second inequality)

x(P ) ≥ x(Sj ∩ P ) + x(Tj ∩ P )

≥ −x(Sj ∩N)− x(Tj ∩N) ≥ −2xj .(12)

It follows now from (11) and (12) that

xj ≥ −
1

n− α for all uj ∈ N.(13)

Before continuing the proof, let us note that at this stage we could easily deduce
that α ≥ 2. Indeed, in (12) it must be the case that Sj ∩P and Tj ∩P are nonempty
(since both Sj and Tj contain uj ∈ N , yet by (5) both x(Sj), x(Tj) ≥ 0). As these
sets are disjoint, we know that |P | ≥ 2 and hence |N | ≤ n− 2. It follows by (6) that
there exists uj ∈ N with xj ≤ −1/(n − 2). In view of (13), this implies that α ≥ 2.
Thus we have a simple proof of the estimate ρS ≥ 2/(n − 2). In order to get the
slightly better estimate stated in the theorem, some more work is needed.

Assume without loss of generality (w.l.o.g.) that x1 ≥ x2 ≥ · · · ≥ xn. Split U
into three disjoint parts by setting the boundary values

M1 = − 1√
log2 n (n− α)

and M2 = − 2

3(n− α)
,

and defining

A = {u1, u2, . . . , u`} =

{
uj ∈ U : xj ≥M1

}
,

B ={u`+1, u`+2, . . . , up}=

{
uj ∈ U : M2 ≤ xj < M1

}
,

C ={up+1, up+2, . . . , un}=
{
uj ∈ U : xj < M2

}
.

Note that P ⊆ A. Hence using these definitions plus (13) and (6), we can deduce

M1`+M2(p− `)− 1

n− α (n− p) ≤M1 · |P |+ x(A∩N) + x(B) + x(C) ≤ x(N) = −1.

This can be rewritten as

α ≥ 1

3
p+

(
2

3
− 1√

log2 n

)
`.(14)
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For each uj ∈ C, let us choose as above two quorums Sj and Tj such that
Sj ∩ Tj = {uj}. Let us write S′j = Sj \ {uj}, T ′j = Tj \ {uj}. We now establish some
properties of these sets.

First, we claim that

S′j , T
′
j ⊆ A ∪B for j = p+ 1, . . . , n.(15)

To see this, suppose for instance that uk ∈ S′j ∩ C for some k 6= j. Then we may
sharpen (12) to get

x(P ) ≥ −2xj − xk >
2

n− α,

which contradicts (11).
Second, we estimate the B portion of each set S′j by

|S′j ∩B| <
2

3

√
log2 n for j = p+ 1, . . . , n.(16)

This is seen again by sharpening (12) in the form

x(P ) ≥ −2xj − x(S′j ∩B) >
4

3(n− α)
+

|S′j ∩B|√
log2 n (n− α)

and comparing with (11).
Third, we argue that

S′j 6= S′k for j 6= k, p+ 1 ≤ j, k ≤ n.(17)

Indeed, if S′j = S′k then S′j ∩ T ′k = ∅ which implies, by (15), that Sj ∩ Tk = ∅, in
contradiction to the quorum intersection property.

It follows from (15)–(17), by considering the mapping j 7→ S′j , that

n− p ≤ 2`
∑

i< 2
3

√
log2 n

(
p− `
i

)
.(18)

Going back to (14) we see that if p ≥ 3 log2 n we are done. So we assume that
p < 3 log2 n and then obtain from (18) that

n− 3 log2 n < 2`(3 log2 n)
2
3

√
log2 n.

Taking logarithms we get ` > log2 n− o(logn). Using (14) and p ≥ ` we have

α ≥
(

1− 1√
log2 n

)
` >

(
1− 1√

log2 n

)(
log2 n− o(logn)

)
= log2 n− o(logn)

as required.
An example of a coterie nearly matching the bound is the nucleus coterie of

Example 4.3, which for large r has ρS = 2/
(
n− log2 n− o(logn)

)
.

We add two comments concerning Theorem 4.4 and its proof:
1. By some finer tuning of the proof it is possible to replace the o(logn) term
by 4

3

√
log2 n. Details are omitted.

2. The theorem remains true, with the same proof, if instead of an NDC we
consider any quorum system having the property given in Proposition 2.7(a).
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5. Load balancing and quorum size.

5.1. Measures for quorum size. In this section we study the extent of compat-
ibility of two desirable goals: having a high balancing ratio and having small quorum
sizes. The general theme will be that a high balancing ratio cannot be obtained with
small quorum sizes.

Definition. A quorum system is r-uniform if every quorum has r elements.
If a quorum system is r-uniform then clearly we should use r as the parameter

describing the quorum size. But for more general quorum systems, the question arises
as to which parameter should be used for evaluating quorum sizes. Two conceivable
parameters that do not serve our purposes well are the minimum quorum size and
the average quorum size. This is illustrated by the following example.

Example 5.1. Wheel Coterie. Let U = {u1, u2, . . . , un} and let S consist of the n−
1 quorums {u1, u2}, {u1, u3}, . . . , {u1, un} and the additional quorum {u2, u3, . . . , un}.
This differs from the star coterie (Example 2.3) only in the addition of the last quorum.
It is easy to check that (U,S) is perfectly balanced. Yet the minimum quorum size is
2 and the average quorum size is 3(n− 1)/n, both low numbers. We remark also that
(U,S) is a voting system and an NDC.

It turns out that two other parameters are more suitable for our investigation.
Definition. Let (U,S) be a quorum system. The rank of (U,S) is defined as

rS = max
{
|S|: S ∈ S

}
.

Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij),
i = 1, . . . ,m, j = 1, . . . , n. Let v = (v1, v2, . . . , vm) be a QLV. The weighted average
quorum size (WAQS) of (U,S) corresponding to v is

gS,v =
1∑m
i=1 vi

m∑
i=1

vi|Si| =
∑n
j=1 aj∑m
i=1 vi

,

where a = (a1, a2, . . . , an) is the ELV induced by v, that is, a = vŜ. In the case
when v is an optimizing QLV (that is, ρS,v = ρS), we refer to gS,v as an optimally
weighted average quorum size (OWAQS).

As an illustration, let us apply these notions to the wheel coterie of Example
5.1. The rank there is n − 1. The unique (up to proportionality) optimizing QLV is
v = (1, 1, . . . , 1, n − 2), which gives the OWAQS gS,v = n(n − 1)/(2n − 3), which is
slightly more than n/2.

In our context of load balancing, it seems that the notion of an OWAQS is the
suitable way to measure quorum size. The rank is also interesting as a worst case
measure. If the quorum system is r-uniform then all approaches give r as the answer.
In general, the WAQS and even the OWAQS are not unique, as they depend on v.
Clearly, for every QLV v we have gS,v ≤ rS .

5.2. Quorum size bounds for ordered NDCs. In the first part of our anal-
ysis we shall focus on ordered nonredundant NDCs. This is a natural class of quorum
systems for which we know that perfect balancing is guaranteed (Theorem 3.4). So it
is interesting to ask what quorum sizes this class admits, or more precisely, how low
we can make the rank and the OWAQS within this class.

Theorem 5.2. Let (U,S) be an ordered nonredundant NDC with universe of size
n. Then rS ≥

⌈
(n+ 1)/2

⌉
. This bound is the best possible.
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Proof. Let u1, u2, . . . , un be an enumeration of U with respect to which (U,S) is
ordered. Applying Proposition 2.7(b) with u = un, we obtain two quorums S and T
such that S ∩ T = {un} and S ∪ T = U . Then |S| + |T | = n + 1, so at least one of
them has size ≥

⌈
(n+ 1)/2

⌉
.

For odd n, the optimality of the bound is shown by the minimal majority co-
terie of Example 2.1. For even n this is shown by a slight modification of that
example.

We note that no assumption of the theorem is redundant. The nucleus coterie of
Example 4.3 is an r-uniform nonredundant NDC with r ∼ 1

2 log2 n. The star (Example
2.3) is a 2-uniform ordered nonredundant coterie. If the nonredundancy assumption
is removed then n may be made arbitrarily large without affecting anything else.

A similar lower bound on the OWAQS holds if we restrict attention to voting
systems, a subclass of ordered coteries.

Theorem 5.3. Let (U,S) be a perfectly balanced voting system with universe of
size n. Then for every optimizing QLV v, the OWAQS is greater than n/2.

Proof. Let Ŝ = (ŝij), i = 1, . . . ,m, j = 1, . . . , n, be the quorum matrix, and let
v = (v1, v2, . . . , vm) be a QLV such that ρS,v = 1. Then the ELV induced by v is

a = vŜ = (a1, a2, . . . , an) with all aj equal, say, to the common value a. Let w> be
a column vector whose components w1, w2, . . . , wn are weights which determine the
voting system (U,S). Then it follows from the definition of a voting system that every
component of Ŝw> is greater than w(U)/2. Therefore

vŜw> >
w(U)

2

m∑
i=1

vi.(19)

On the other hand, since every component of vŜ equals a, we have

vŜw> = aw(U).(20)

Combining (19) and (20) we get a > 1
2

∑m
i=1 vi. Therefore

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
na∑m
i=1 vi

>
n

2
.

Comparing the last two theorems, it is natural to ask whether the (stronger)
conclusion of Theorem 5.3 holds under the conditions of Theorem 5.2. The question
involves the class of ordered NDCs that are not voting systems (and therefore Theorem
5.3 does not apply to them). It is not easy to construct examples for this class, but
this has been done: two such examples with universe of size 13 are given in [Os85]. In
the following theorem we show not only that there is a member of this class for which
the conclusion of Theorem 5.3 fails, but that it fails for every member of this class.

Theorem 5.4. Let (U,S) be an ordered nonredundant NDC with universe of size
n. Suppose further that (U,S) is not a voting system. Then there exists an optimizing
QLV v whose OWAQS is equal to n/2.

Proof. Let (U,S) satisfy the assumptions of the theorem and assume that (U,S)
is ordered with corresponding enumeration u1, u2, . . . , un of U .

As the first step in the proof, we claim that there is no pair (x, α), where x =
(x1, x2, . . . , xn) ∈ Rn and α is a real number, such that

x(S) > α > x(U \ S) for all S ∈ S.(21)
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To prove the claim, suppose that such x and α exist. Then we may change the value
of α, if necessary, to be x(U)/2, and (21) will still hold. Indeed, x(S) > x(U \ S)
implies that x(S) > x(U)/2 > x(U \ S). So we shall assume that α = x(U)/2.
Applying Lemma 3.3 we deduce that xj ≥ 0 for j = 1, 2, . . . , n. Now, let T be
any subset of U . If T is a superquorum, say T ⊇ S ∈ S, then it follows from (21)
and the nonnegativity of the components of x that x(T ) ≥ x(S) > α. If T is not
a superquorum, then it follows from Proposition 2.6 that U \ T is a superquorum,
and therefore x(T ) = x(U) − x(U \ T ) < x(U) − α = α. We have shown that
S̄ =

{
T ⊆ U : x(T ) > α

}
. This indicates that (U,S) is a voting system (strictly

speaking, our definition of a voting system requires the weights to be integers, but
this can be arranged by taking good enough rational approximations of the xj ’s and
clearing denominators). As this contradicts our assumption, we have proved the claim.

Let y1,y2, . . . ,ym ∈ {0, 1}n be the characteristic vectors of the quorums S1, S2,
. . . , Sm (S = {S1, . . . , Sm}). Let

Y = {y1,y2, . . . ,ym},
Z = {1− y1,1− y2, . . . ,1− ym},

where 1 is the all-1 n-dimensional vector. The claim asserts that there is no hyperplane
that separates the points of Y from those of Z. It follows that

A = conv(Y ) ∩ conv(Z) 6= ∅,

where conv(X) denotes the convex closure of X. The set A is convex and symmetric
about 1

2 (that is, a ∈ A implies 1 − a ∈ A). Hence 1
2 ∈ A, and in particular

1
2 ∈ conv(Y ). The latter means that there exists a QLV v = (v1, v2, . . . , vm) with∑m
i=1 vi = 1 which induces the ELV a = 1

2 . For this v we get

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
n · 1

2

1
=
n

2
.

Theorems 5.3 and 5.4 yield the following characterization of voting systems within
ordered NDCs.

Corollary 5.5. Let (U,S) be an ordered nonredundant NDC with universe of
size n. Then the following are equivalent:

(a) (U,S) is a voting system.
(b) Every OWAQS is greater than n/2.
(c) No OWAQS is equal to n/2.

Before leaving the ordered world, we want to mention without details two exam-
ples that we have constructed:

1. An ordered coterie which is perfectly balanced but whose rank is less than
n/2. (This shows that the nondomination assumption in Theorems 5.2 and
5.4 cannot be removed, even if we add the assumption of perfect balancing. It
also shows that relaxing “voting system” to “ordered” in Theorem 5.3 admits
examples where the theorem’s conclusion fails in a more essential sense than
indicated by Theorem 5.4.)
2. A quorum system satisfying all the assumptions of Theorem 5.4 for which
there is an OWAQS which is less than n/2. (This shows that the existential
quantifier in the theorem’s conclusion cannot be made universal.)
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5.3. Quorum size bounds for (nonordered) perfectly balanced quorum
systems. The foregoing theorems indicate that certain methods for constructing quo-
rum systems or certain properties of quorum systems which guarantee perfect balanc-
ing are costly in terms of quorum size. But perfect balancing can be achieved with
considerably smaller quorums. Indeed, a FPP(q) (Example 2.5) is (q + 1)-uniform
and has a universe of size n = q2 + q + 1, so its rank is roughly

√
n. It is perfectly

balanced by Proposition 3.1.
Our next goal is to prove the optimality (in terms of quorum size) of the finite

projective planes among all perfectly balanced quorum systems. For this purpose, we
first review some known concepts and results on fractional matchings in hypergraphs.
We express them using the terminology of the current paper.

Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij), i =
1, . . . ,m, j = 1, . . . , n. A fractional matching in (U,S) is a QLV v = (v1, v2, . . . , vm)
such that the induced ELV a = vŜ = (a1, a2, . . . , an) satisfies aj ≤ 1, j = 1, . . . , n.
The size of a fractional matching v = (v1, v2, . . . , vm) is defined as

|v| =
m∑
i=1

vi.

The fractional matching number of (U,S) is defined as

ν∗S = max
{
|v|: v is a fractional matching in (U,S)

}
.

It is easy to deduce the following from the quorum intersection property.
Proposition 5.6. Let (U,S) be a quorum system. Then for every quorum S ∈ S

we have ν∗S ≤ |S|. As a consequence, ν∗S ≤ gS,v for every WAQS gS,v.
The following finer estimate for ν∗S is due to Füredi.
Proposition 5.7 (see [F81]). Let (U,S) be a quorum system of rank rS = r.

Then ν∗S ≤ r − 1 + 1/r.
A FPP(r–1), if it exists, is an r-uniform quorum system with universe of size

r2 − r + 1 and fractional matching number r − 1 + 1/r. Thus Füredi’s bound is
attained for those values of r such that a FPP(r–1) exists. The following corollary of
Proposition 5.7 had been proved earlier by Lovász.

Proposition 5.8 (see [L75]). Let (U,S) be an r-uniform, regular quorum system.
Then |U | ≤ r2 − r + 1.

Note that this bound too is attained for those values of r such that a FPP(r–1)
exists.

We now return to our investigation of quorum size in perfectly balanced quorum
systems.

Theorem 5.9. Let (U,S) be a perfectly balanced quorum system with |U | = n.
Then every OWAQS is at least

√
n.

Proof. Let v = (v1, v2, . . . , vm) be a QLV with ρS,v = 1. Then the ELV induced
by v is a = (a1, a2, . . . , an) with all aj equal. By a suitable normalization, which does
not affect gS,v, we may assume that a1 = a2 = · · · = an = 1. With this assumption,
v is a fractional matching. We have

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
n

|v| ≥
n

ν∗S
,

and therefore

n ≤ gS,vν∗S .(22)
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Using Proposition 5.6 this implies

n ≤ g2
S,v,

which yields the desired lower bound on gS,v.
The foregoing theorem establishes the asymptotic optimality (in terms of OWAQS)

of the finite projective planes among all perfectly balanced quorum systems. We can
get exact optimality in terms of the rank, as follows.

Theorem 5.10. Let (U,S) be a perfectly balanced quorum system of rank rS = r.
Then |U | ≤ r2 − r + 1.

Proof. We obtain (22) as in the proof of the previous theorem. Then, from
gS,v ≤ r and Proposition 5.7, we get |U | = n ≤ r(r − 1 + 1/r) = r2 − r + 1.

The last theorem is seen to be a generalization of the result of Lovász (Proposi-
tion 5.8): the uniformity assumption is dispensed with, as the rank suffices, and the
regularity assumption is relaxed to perfect balancing.

5.4. Size-balancing trade-offs for unbalanced quorum systems. We have
seen that if we insist on perfect balancing then the best we can do is to use quorums
of size ∼

√
n. What if we relax perfect balancing and are willing to accept a balancing

ratio not worse than some number ρ, 0 < ρ < 1? Is there a trade-off between the
required level ρ and the quorum size it admits in the best case?

It is easy to get an analogue of Theorem 5.9 (or 5.10) by observing that when
ρS,v ≥ ρ one obtains an adaptation of (22) in the form nρ ≤ gS,vν

∗
S . From this

it follows that gS,v ≥
√
nρ. We shall get a better estimate by a refinement of the

argument, based on the following lemma.
Lemma 5.11. Let ρ, a1, a2, . . . , an be real numbers such that 0 < ρ ≤ 1 and

ρ ≤ aj ≤ 1 for j = 1, . . . , n. Then∑n
j=1 a

2
j(∑n

j=1 aj

)2 ≤
(1 + ρ)2

4nρ
.

Proof. Given ρ and n, consider the problem of maximizing

f(a1, a2, . . . , an) =

∑n
j=1 a

2
j(∑n

j=1 aj

)2

subject to ρ ≤ aj ≤ 1, j = 1, . . . , n. For any 1 ≤ i ≤ n we have

∂f

∂ai
=

2
∑n

j=1
j 6=i

(ai − aj)aj(∑n
j=1 aj

)3 .

Since the numerator in the above expression is an increasing function of ai, it follows
that the maximum under consideration is attained when ai = ρ or ai = 1. Indeed, if
ρ < ai < 1 and ∂f

∂ai
= 0, then ∂f

∂ai
is negative for smaller values of ai and positive for

larger values of ai, so we are looking at a minimum of f as a function of ai.
Thus, it suffices to consider points (a1, a2, . . . , an) where k of the aj ’s equal ρ and

the other n− k equal 1. Letting x = k/n we have for such points

f(a1, a2, . . . , an) =
ρ2k + n− k

(ρk + n− k)2
=

1− (1− ρ2)x

n
(
1− (1− ρ)x

)2 .
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One can show by elementary analysis that this expression is maximized in the interval
0 ≤ x ≤ 1 when x = 1/(1 + ρ), and attains there the value (1 + ρ)2/4nρ.

Theorem 5.12. Let (U,S) be a quorum system with |U | = n. Let 0 < ρ ≤ 1 and
let v be a QLV such that ρS,v ≥ ρ. Then

gS,v ≥
2
√
nρ

1 + ρ
.

Proof. Let Ŝ = (ŝij), i = 1, . . . ,m, j = 1, . . . , n, be the quorum matrix. By
a normalization which does not affect ρS,v or gS,v, we may assume that the ELV

a = vŜ = (a1, a2, . . . , an) induced by v satisfies ρ ≤ aj ≤ 1, j = 1, . . . , n. We observe

that by the quorum intersection property we have ŜŜ> ≥ 1̂, where 1̂ denotes the
m×m all-1 matrix, and the inequality holds entry-by-entry. Therefore,

n∑
j=1

a2
j = a · a> = vŜŜ>v> ≥ v1̂v> = |v|2.

Using this and Lemma 5.11 we have

g2
S,v =

(∑n
j=1 aj

)2

|v|2 ≥

(∑n
j=1 aj

)2

∑n
j=1 a

2
j

≥ 4nρ

(1 + ρ)2
.

Upon taking square roots we obtain the required result.
We now describe a construction showing that the bound given in Theorem 5.12

is rather tight.
Example 5.13. Ext-FPP. Let 0 < ρ < 1

2 and let r be a positive integer such
that a FPP(r–1) exists. Let P and L be the sets of points and lines, respectively, of
a FPP(r–1). Let K be a set of size

[
(1 − 2ρ)/ρ

]
(r2 − r + 1), disjoint from P , and

let M be the set of all subsets of K of size (1 − 2ρ)r. (We ignore adjustments that
need to be made when these numbers are not integers. The effect of such adjustments
is negligible when r is large.) Let U = P ∪ K and let S consist of all sets of the
form L ∪M , where L ∈ L and M ∈ M. Then S satisfies the quorum intersection
requirement, because any two lines in L intersect. Since P has r2 − r + 1 points and
each line in L contains r points, we see that |U | = n = [(1− ρ)/ρ] (r2 − r + 1) and
each quorum in S has size 2(1− ρ)r.

Let v be a QLV assigning equal load to all the quorums in S. Then it can be
verified that ρS,v = ρ. Indeed, it follows from considerations of symmetry that the
induced ELV is constant over K and over P , and the ratio between the two constants
can be computed as

|M | · |P |
|L| · |K| =

(1− 2ρ)r · (r2 − r + 1)

r · 1−2ρ
ρ (r2 − r + 1)

= ρ

(here M ∈M and L ∈ L). To evaluate the performance of this construction, we have
to compare

gS,v = 2(1− ρ)r

with the bound of Theorem 5.12:

2
√
nρ

1 + ρ
=

2
√

1− ρ
√
r2 − r + 1

1 + ρ
.
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It is readily seen that the ratio between the two quantities approaches 1 as ρ→ 0 and
r →∞. The ratio is in general less than

(
1 + ρ/2)(1 + 1/(2r)

)
.

The theorem and the construction delineate with a good degree of precision a
trade-off between the required level of balancing ρ (when 0 < ρ < 1

2 ) and the quorum
size it admits in the best case. We remark that we do not know how to handle
profitably the case when 1

2 ≤ ρ < 1: if the required level of balancing is in this
interval, the construction with smallest quorum size that we know is the same as for
perfect balancing (namely, the finite projective plane).

5.5. Size-balancing trade-offs for NDCs. In view of the distinguished role
played by NDCs among quorum systems, it is interesting to investigate the relation
between the level of balancing and the quorum size within this special class. We start
by describing a construction, borrowed from [EL74], of an NDC with quorums of size
O(
√
n) which is, as we shall show, perfectly balanced.
The method of construction is inductive. In the inductive step, we are given an

(r − 1)-uniform quorum system (U ′,S ′). We take a set R of size r, disjoint from U ′,
and form the new universe U = U ′ ∪ R. We define the collection S by: S ∈ S if and
only if S = S′ ∪ {u} for some S′ ∈ S ′ and u ∈ R, or S = R. We thus obtain a new
system (U,S).

Proposition 5.14. Let (U,S) be obtained from the quorum system (U ′,S ′) as
above. Then:

(a) (U,S) is an r-uniform quorum system.
(b) If (U ′,S ′) is an NDC then so is (U,S).
(c) If (U ′,S ′) is perfectly balanced then so is (U,S).

Proof. Part (a) is straightforward. Part (b) can be verified using Proposition
2.6. Indeed, let S1, S2 be a partition of U . Since (U ′,S ′) is an NDC and S′1, S

′
2 is

a partition of U ′ (where S′i = Si ∩ U ′), we may assume that S′1, say, contains some
S′ ∈ S ′. Then, if S1 ∩ R 6= ∅ we conclude that S1 contains a quorum of the form
S′ ∪ {u}; if, on the other hand, S1 ∩R = ∅ then S2 contains the quorum R.

To prove part (c), let v′ be a QLV for (U ′,S ′) which induces a load of 1 on each
element of U ′. Let v be the QLV for (U,S) defined by: the load of S′ ∪ {u}, where
S′ ∈ S ′ and u ∈ R, is 1/r of the load of S′ in v′, and the load of R is 1− |v′|/r (this
quantity is positive by virtue of Proposition 5.6). Then v induces a load of 1 on each
element of U .

Example 5.15. Triangular. Let (Ur,Sr) be an r-uniform quorum system obtained
by successive applications of the inductive step described above, starting from a system
of one element. We call (Ur,Sr) a triangular system. It follows from Proposition
5.14 that (Ur,Sr) is an NDC and is perfectly balanced. The size of its universe is
|Ur| = n = (r + 1)r/2.

We observe that the quorum size achieved in the above construction is about
√

2n
and is thus within a multiplicative constant factor of the lower bound of

√
n given in

Theorem 5.9 (for all perfectly balanced quorum systems, not just NDCs). It seems
plausible that the lower bound can be improved for the class of NDCs, but we are
unable to do this. On the other hand, we can achieve a (very) slight improvement on
the construction. Let

n(r) = max
{
|U |: (U,S) is an r-uniform, perfectly balanced NDC

}
.

Then the above construction gives n(r) ≥ (r+1)r/2. For r = 3 this becomes n(3) ≥ 6,
but the Fano plane (FPP(2)) shows that n(3) ≥ 7 (in fact, we can deduce from
Theorem 5.10 that n(3) = 7). When the inductive method described above is applied
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starting from the Fano plane, we obtain that n(r) ≥ (r+ 1)r/2 + 1 for r ≥ 3. In order
to introduce a further improvement we need the following definition and easy facts.

Definition. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un}. Let
(Uj ,Sj), j = 1, . . . , n, be quorum systems, with the Uj’s pairwise disjoint. The com-
posite quorum system (CQS) formed by substituting (Uj ,Sj), j = 1, . . . , n, for the
elements of (U,S), denoted CQS(S, {Sj}), has as its universe

⋃n
j=1 Uj and as its

quorums all sets obtained as follows: take any S = {uj1 , uj2 , . . . , ujk} ∈ S and for

each ji, i = 1, . . . , k, take any Sji ∈ Sji , and form the (composite) quorum
⋃k
i=1 Sji .

Proposition 5.16.

(a) If (U,S) is r-uniform and each (Uj ,Sj) is s-uniform, then the CQS is
rs-uniform.
(b) If (U,S) is uniform and regular, and all of the (Uj ,Sj) are regular with
the same common degree and the same number of quorums, then the CQS is
regular.
(c) If (U,S) and each of the (Uj ,Sj) are NDCs, then the CQS is an NDC.

Now, consider the CQS formed by substituting seven copies of the Fano plane for
the seven points of a Fano plane. By Proposition 5.16, this is a 9-uniform, regular
(hence perfectly balanced) NDC. This shows that n(9) ≥ 49, whereas (r+ 1)r/2 = 45
for r = 9. When the inductive method is applied successively starting from this CQS,
we obtain that n(r) ≥ (r + 1)r/2 + 4 for r ≥ 9.

Conjecture 5.17. n(r) = (r + 1)r/2 +O(1).

We observe that if (U,S) is an r-uniform, perfectly balanced quorum system with
|U | = n, then ν∗S = n/r. Thus, the above conjecture can be reformulated as saying
that if (U,S) is an r-uniform, perfectly balanced NDC then ν∗S ≤ (r+ 1)/2 +O(1/r).
We believe, in fact, that this holds even without the assumptions of uniformity and
perfect balancing. That is, we believe that the assumption of nondomination alone
should permit the following improvement on Füredi’s bound (Proposition 5.7).

Conjecture 5.18. Let (U,S) be an NDC of rank rS = r. Then ν∗S ≤ (r+1)/2+
O(1/r).

If we do not insist on perfect balancing, but continue to consider only NDCs, how
low can we make the quorum size? It follows from a more general result in [T85] that
any nonredundant NDC having rank r has universe of size smaller than

(
2r
r

)
. Recalling

the nucleus coterie of Example 4.3, where the size of the universe is larger than(
2r−2
r−1

)
/2, we see that Tuza’s bound is within a multiplicative constant factor of being

best possible. Stating the result differently, we can say that the smallest possible rank
among all nonredundant NDCs with universe of size n is 1

2 log2 n+ 1
4 log2 log2 n+O(1).

Suppose we require some level of balancing; that is, we consider NDCs with
balancing ratio not worse than some number ρ, 0 < ρ < 1. How low can we make the
quorum size then? We are unable to improve on the lower bound given in Theorem
5.12 (which is not restricted to NDCs). A construction that attempts to approach
that lower bound using NDCs is given next. It is not as good as the one (using
dominated coteries) given by the Ext-FPP coterie of Example 5.13.

Example 5.19. CQS (Triangular, Nucleus). Let (Ur,Sr) be an r-uniform tri-
angular NDC with |Ur| = (r + 1)r/2 which is perfectly balanced, as in Example
5.15. Let (Us,Ss) be an s-uniform nucleus NDC with |Us| = 2s − 2 +

(
2s−2
s−1

)
/2 and

ρSs = 4/
(

2s−2
s−1

)
, as in Example 4.3. Let (Urs ,Srs ) be the CQS formed by substituting

(r + 1)r/2 copies of (Us,Ss) for the elements of (Ur,Sr). It follows from Proposition
5.16 that (Urs ,Srs ) is an rs-uniform NDC. It is easy to see that ρSrs = ρSs . A rough
computation shows that in terms of the size n of the universe and the balancing ratio
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Table 1

Quorum systems Hypergraph theory Game theory

element vertex player

universe vertex-set player-set

quorum hyperedge minimal winning coalition

superquorum nonindependent set of winning coalition
vertices

quorum system intersecting hypergraph proper simple game

monotone quorum system intersecting filter monotone proper simple game

coterie intersecting antichain (minimal winning coalitions of a)
monotone proper simple game

nondominated coterie 3-chromatic intersecting (minimal winning coalitions of a)
antichain constant-sum game

rank rank size of a largest
minimal winning coalition

voting system threshold weighted majority game

ordered shifted having a complete
desirability relation

nonredundant no isolated vertices without dummies

quorum load vector fractional matching weight assignment to the
(up to normalization) minimal winning coalitions

perfectly balanced quasi-regularizable having a balanced collection of
minimal winning coalitions

ρ, the quorums of the CQS have size ∼ √nρ · 1
2 log2

1
ρ . The ratio of this to the lower

bound of Theorem 5.12 is O
(
log 1

ρ

)
.

Appendix: A polyglot dictionary. The motivation for the research reported
in this paper came from computer science, but the concepts involved have also been
studied in other areas of science, under various interpretations and using various
systems of terminology. To help overcome the language barriers, we thought it useful
to provide here translations of the concepts into the languages of two other areas:
hypergraph theory and game theory. Our little dictionary (Table 1) is only schematic,
and for more information we refer the reader to books such as [B89] and [Ow82]. We
should also mention that, due to scope limitations, our dictionary leaves out several
other areas in which these concepts have come up. These include Boolean functions
theory, reliability theory, neural networks, percolation theory, etc.

As an illustration of the possible appeal of our work to researchers in other areas,
we rephrase Theorem 3.4 in game-theoretic terms and Conjecture 5.18 in hypergraph
terms.

Theorem 3.4
∗
. Let G be a constant-sum game without dummies, having a com-

plete desirability relation. Then G has a balanced collection of minimal winning coali-
tions.

Conjecture 5.18
∗
. Let H be a 3-chromatic intersecting hypergraph of rank r.

Then ν∗H ≤ (r + 1)/2 +O(1/r).
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