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ABSTRACT

The Marica-Schonheim inequality states that the number of distinct differences of the form A\B, with
A, B taken from a given finite family si of sets is at least \st\. We prove that equality occurs essentially
if and only if si is the product of an ideal and a filter. We also prove an infinite version of the theorem,
conjectured (in weaker form) by Daykin and Lovasz. Finally, we note that a generalization (due to
Ahlswede and Daykin) of the inequality which considers two families si and & holds under a weaker
assumption on the relation between si and 28.

0. The Marica-Schonheim inequality

Given two families of sets $0 and 38, we write

(We should remark that by a ' family of sets' we really mean a set of sets, that is,
repetitions are not allowed.) Motivated by a problem of Graham in combinatorial
number theory, Marica and Schonheim proved the following inequality.

THEOREM 0.1 [5]. For every finite family stf we have that \s& ~ s#\ ^ \s#\.

This simple inequality turned out to be closely related to several more
sophisticated correlation inequalities in combinatorics, all subsumed by the Four
Functions Theorem of Ahlswede and Daykin [1]. In this paper we make a few separate
observations connected to the Marica-Schonheim inequality. The background for
each of them will be presented in the respective section of the paper. However, all our
remarks are based on a proof of the inequality which was given by Daykin and
Lovasz [4]. For the reader's convenience, and in order to establish notation, we
produce that proof here.

Let V be the ground set of the family j ^ , that is, A £ V for all Aestf. For xeV
we write

Given xe V, we consider two families of subsets of V\{x} derived from J / as follows:

Once x is fixed, we shall omit the subscript and write simply s/+, s#~. We also form
the following two families:

H = s/+ U s*-t d_ - J&
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For any B c V\{x}, we write B = B\) {x}. Thus, si consists of those B c V\{x) such
that either B or B is a member of .s/, while ̂  consists of those B c F\{x} such that
both B and 2? are in si.

The proof of Theorem 0.1 proceeds by induction on n = | V\. (We may assume that
Fis finite, because si is finite and we may identify points in the ground set which are
undistinguished by si.) If n ^ 1, fix some xe Kand apply the induction hypothesis to
each of the families si and s£, to obtain:

\si\ = \s7\ + \si_\^\si~sj\ + \si_~si\. (0.1)

Note that i ^ i c ^ ^ ^ and so the right hand side of (0.1) counts the
number of sets in si ~ si, with each set in ^_ ~ J / counted twice. Suppose that
D = B^B^esi ~ si. Then either Bx or Bx is a member of si and either B2 or ^2

is a member of si. Therefore either D or D is a member of «s/ ~ J / . Moreover, if
Z ) e ^ ~ ^ then 5l5 J§X and 2?2 are all members of si and so both of D and 2) are
members of si ~ si. It follows that

|jtf ~ !t\ + \sl ~ ̂ | ^ |J^ ~ ja |̂. (0.2)

Combining (0.1) and (0.2) yields the proof.

1. Characterizing equality

Which families si satisfy \si ~ si\ = \si\7 One class of examples is when si is an
ideal (that is, si is closed downwards, meaning that A esi, B c A imply that Be si).
In this case si ~ si = si.

Denoting {V\A\Aesi} by sic, we observe that sic ~ sic = si ~ si. Therefore,
another class of examples is when si is a filter (that is, closed upwards). In this case
si ~ si = sic.

Given two famines 3b and *€ on disjoint ground sets, we define their product as

^ x # = {B U C:Be@, Ce<$}.

We observe that if ^ = ̂  x # then si ~ J^ = (^ ~ ^ ) x (tf ~ #). This gives rise to
a new class of examples of equality, namely when si is a product of an ideal and a
filter on disjoint ground sets. The previous examples are special cases, where one of
the ground sets is empty. Note that the product of two ideals (filters) is an ideal (filter),
so we do not obtain new examples by iterating this operation. Also, this class is closed
under complementation si \-+ sic.

We shall prove that this class essentially exhausts all examples of equality. By
'essentially' we mean that any other example (such as si = {0, V}) can be reduced
to one in this class by identifying points in the ground set which are undistinguished
by si. The formal definition and statement of our result follow.

DEFINITION 1.1. We say that si is weakly separating if s/x = siy (where x,ye V,
x # y) implies that either six = si or six = 0 .

THEOREM 1.2. Let si be a weakly separating family of subsets of a finite set V.
Then \si ~ si\ = \si\ if and only if there exist a (possibly trivial) partition of V into sets
S and T, an ideal J on S and a filter & on T, so that si = / x ^ .

Proof. The ' if direction has been shown above. We prove the 'only if part by
induction on n = \V\. For definiteness, assume that V = [n] = {1,...,«} and that the
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arguments in the inductive step of the proof of Theorem 0.1 are performed with
respect to the element n of the ground set (that is, si+ = si+, si~ = si~). The equality
\si ~ $i\ = | j ^ | requires that equality hold in both (0.1) and (0.2). The first of these
requires that \si ~ si\ = \si\ and \si_ ~ si_\ = \si_\; the second requires that for no
D G ( i ~ si)\{si_ ~ M.) do both D and D belong to si ~ si. The latter entails in
particular that:

si+~si_^si_~si_, (1.1)

si ~ J^" c sL ~ jg/. (1.2)

It follows, since J?/ is weakly separating, that si is also weakly separating.

ASSERTION 1.2a. We also have that d_ is weakly separating.

Proof. Suppose that x, y witness the contrary. Then si_ has a set containing x and
y, and a set omitting them. This and (1.1) imply that if d* has a set containing one
of x,y and not the other, then so has d_~ jtf, contradicting the choice of x,y.
Similarly, si~ does not separate x and y. Thus xe B if and only if j>ei? for all Be si.
Since J^ is weakly separating, this means that either six = si or six = 0 . Hence, as
d_ £ si, we have that J^. = d_ or ̂  = 0 , a contradiction.

Since J^ and «#t are weakly separating and using the induction hypothesis, we have
that si and_^ are products of jdeals and filters. Thus si = J *SF where J is an
ideal on 5", 2F a filter on T, and (S, T) is a partition of [n — 1]; also si_ = «/ x 3F_ where
«/ is an ideal on 5, £ a filter on T, and (5, T) is a partition of [n— 1].

Assume first that s£ # 0 . Then J e ^ . By (1.1) and the fact that./ ~ £_ = £, this
implies that

A(]Se£ foralMe^+. (1.3)

Similarly, by (1.2) and the fact that £ ~ £_ = {T\B:Be^_}, it follows that

(1.4)

ASSERTION 1.2 b. Either si+ £ si~ or si~ s si*.

Proof. Suppose for contradiction that there exist Ax e si+\si~ and A2 e s/~\si+.
Let _ _ _

A = {AX n TO T) u (At n 5 n 5) u (5 n r ) .

Then ^_n 5 = A2 n 5 n 5 c ^2 n 5. But A2e j / ~ £ ^ , hence A^J) 5e^7, and thus
^ n Se J. _On the other hand̂ , A_0 T = (Ax 0 T 0 T)\J (§L0T)^A1(]T. Since
Axesi+ ^si_we have that 4̂X n TeJ^, and hence A 0 Te^. We have shown, in
fact, that AES/. By (1.3) and (1.4) this implies that either A(\SeJ_ (if Aesi+) or

Assume the first possibility, that is, assume that A (]S_eJ_. Since

A n s = (A2 n 5 n s) u (s n 7) 2 ̂ 2 n s,
this would imply that A2(]Se£. But by (1.4) A2 C\TE&L, which, together with the
above implies that A2e^_, a contradiction.

13-2
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Similarly, if A 0 TE&_ then, since A 0 T = Ax n f(] Z c A^ n Z, it would follow
that y4x n J e ^ . Together with (1.3) this would yield AXE^_, a contradiction again.

By passing, if necessary, to s#c, we may choose which of the two cases, sf+ £
or s4~ £ st+, we wish to consider. So, assume that ^_ = $$~ ^ j ^ + = $t. Let

= {Cc r" :Cn TE&_or (neCand

We shall show that s/ = «$/*. Suppose that AES&. Then ;4\{«}ej/ = s#+, and so
by (1.3) A n 56^/. NOW, AftS* ^AC\S, and therefore yl n S* is alsojn >, and hence
in f*. HUE A then KEAOT*, and since yl\{«}e J^, we have AnTE^.Ifn^A then,
since AES4~, we have ,4 nZe-Ei (by (1.4) or since s/~ = &). In both cases, the
definition of J5"* implies that A n T*E^*. Thus

Assume next that AES4*. By the definition of J*"* one of the two following cases
holds.

Case 1: A n TE&_. TO prove AEJ& we need to show in this case that
Since ^ej^*,_we have ^ n S Q j e , / . Hence_ (A n 5n 5)U J e ^ / c ^._Adding
elements from T to a member of J^ keeps it in J^. Hence also (A n 5) U
By (1.3) this implies that A 0 SEJ_.

Case 2: YIEA and A(]TE^ In this case we have to show that A n SEJ. AS

noted above, {A n 5 n 5) U Z e ^ , ajid hence (^ n 5 n S) U (Zfl 5 ) e 7 . But the last set
contains A[\S, and hence AOSeJ.

We turn now our attention to the remaining case when rf_ = 0. Recalling that
s/ = <f x $F and $4 = «s/+ U s#~, we see that if J^+ or sf~ is empty then sf is a product
of an ideal and a filter and we are done. We shall assume that «G/+ # 0 , s4~ # 0 and
derive a contradiction.

Since ^ ~ rf_ = 0 , equality in (0.2) requires that for no D e .a/ ~ J^ do both D
and .D belong to s# ~ JZ/. Thus,

[(^+ ~ J</+) u (J*- ~ J / - ) ] n (^+ ~ J^-) = 0 . (1.5)

ASSERTION 1.2C. We have that s£~ is closed downwards relative to s/, that is, if
AES/~, B C A and BE J^ then BES4~.

Proof. Otherwise, we would have 0 = B\A e s/+ ~ sf~, but also

0 = A\AEJ&- ~ sf~,
contradicting (1.5).

Clearly TES4. Either TES&+ or TES#~, and by considering stfc tf necessary, we
may choose which of the two cases we wish to handle. So, assume TES&~.
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ASSERTION 1.2d. For Bestf, membership ofB in s#+ or $$~ depends only onB(]S,
that is, Best' if and only if f

Proof. By Assertion 1.2c, we need only rule out the possibility that Bes#~ but
B U Test*. In this case 1\B = (B\J l')\Bes#+ ~ s/~, but since fest' we also have
T\Bed~ ~ s#-, contradicting (1.5).

By Assertion 1.2d, there is a_(non-trivial) partition of«/ into «/+ and S~ so that
stf+ = j+ x HF and sd~ = J~ x 3F. Then (1.5) induces

[{J+ ~ f+) U (S~ ~ S~)] O(S+~J-) = 0. (1.6)

By Assertion 1.2 c, </" is an ideal.

ASSERTION 1.2e. The ideal J~ is closed under unions relative to J, that is, if
715 72 G J~ and Ix\Sl2eJ then Ix U 72 e^".

. Suppose that Ix U 72e J+. Since ^ = (/x U /2)\(/2Vi) and /^ / j c
we have / ^ / ^ y~. On the other hand 7X = Ix\0eJ~ ~ */", contradicting (1.6).

ASSERTION 1.2f. We /wue f/ia? «/+ is intersecting, that is, if Ilt I^eJ+ then

Proo/. Suppose that /1D/2 = 0 . Then 7X = I^eJ* ~ J+, but also
~ ^~' contradicting (1.6).

How many singletons belong to J+1 By Assertion 1.2e, at least one (otherwise
J~ = . / ) . By Assertion 1.2f, at most one. Let {m} be the unique singleton in ,/+. By
the above, a set IeJ belongs to J+ or J~ according as me I or m$I. It follows
that a set in s& contains m if and only if it contains n. This fact and our assumptions
$4* T* 0 , $#~ T̂  0 yield a contradiction to s$ being weakly separating.

2. y4n infinite version

Let us call a function <j>:s? -> ^ goo^/if ^\0(^) # B\<f>(B) for SLWA^B in js/. We
say that a family $0 is good if there exists a good bijection 0: s$ -* s&. By a sharper
analysis of their proof for the Marica-Schonheim theorem, Daykin and Lovasz
proved the following strengthening of the theorem.

THEOREM 2.1 [4]. Every finite family s& is good. Moreover, if\s/\ ^ 2 then there
exists a good bijection such that <f>{A) # A for all A e s£.

This bijective version of the Marica-Schonheim inequality is meaningful in the
case of infinite J / as well. Unfortunately, as noted by Daykin and Lovasz, it fails in
the infinite case. Indeed, if s& = {At:i < oS) is an ascending chain (that is, Ai <= Ai+1),
then there is not even a good injection <j>:srf ~* st. Daykin and Lovasz conjectured
however that every countable family of sets of finitely bounded size (that is,
\A\ ^ k for all Aes/, with k < oo) has a good injection without fixed points (that is,
(f)(A) # A for all Aestf). They remarked that they had proved this for k = 2. Here we
confirm the conjecture for all k < oo, as we prove the following.
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THEOREM 2.2. Let stf be a family of sets so that, for some fc < oo, \A\ ^ kfor all
Aesf. Then J / is good.

Our result generalizes the Daykin-Lovasz conjecture in allowing uncountable s/
as well, and strengthens it by insisting on a bijection rather than an injection. The
requirement that the bijection have no fixed points can be added to our result, but we
shall not bother with it.

For the proof of Theorem 2.2 we shall need some notation. Let 38 be a family of
subsets of V. A matching in 38 is a subfamily of 38 consisting of non-empty mutually
disjoint sets. We set

v{38) — sup{ \J t \:Mis a matching in 28).

A cover of 38 is a subset of V meeting all non-empty members of 38. We set

x{38) = min{\C\: C is a cover of 38).

Clearly v{38) < x{38) < \38\.

LEMMA 2.3. Suppose that 38 is a family of finite sets and x{38) is infinite. Then there
exists a matching M in 38 such that \M\ = x{38) and M =\]M is a cover of 38. In
particular, v{38) = x{38) and the supremum defining v(08) is actually a maximum.

Proof Let i f be a matching in 38 which is not contained in any other
matching (it exists, for example, by Zorn's lemma). Then M = \]M is a cover of
38. If \M | < T{38) then, since x{38) is infinite and the sets in M are finite, also
\M\ < x{38), contradicting the definition of x{38). On the other hand, \J(\ > x{38)
would contradict v{38) < x{38). Hence \Jt\ = x{38) and the other statements follow.

LEMMA 2.4. Let K be an infinite cardinal, and let 38 and %> be families of sets of size
less than K satisfying \38\ = |#| = x(3S) — T (# ) = K. Then there exists a bijection
H:38-^^ such that B0^(B) = 0 for all Be38.

Proof Let 38 = {Bt:i < K}, <& = {C,:j < K}. We define// inductively. At each even
stage a < K we find the first Bt which is still unmatched, then find the first unmatched
Cj disjoint from Bt (such a C} exists because T(#) = K) and match them: fi(Bt) = Cv At
each odd stage a < K we find the first unmatched Cp then the first unmatched Bt

disjoint from CJ and match them: ^(i?() = Cy After K stages we have the required
bijection.

The proof of Theorem 2.2 is by induction on 0, where \sf\ = He. We remark that
our arguments in the countable case (0 = 0) are substantially different from those
required in the uncountable case.

Case I: \s4 \ — Ko. We distinguish two possible subcases.

Case I .I: T ( J / ) = Ko. In this case we apply Lemma 2.4 with 38 = <& = st to
obtain a good bijection.
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Case 1.2: r(si) < Xo. We proceed in this case by induction, with respect to the
lexicographic order, on the pair of positive integers (k, t) associated with si as
follows:

k = p(si) = ma.x {\A\: A e si},

t = t{si{k)), where si{k) = {A e si: \A\ = k).

Thus, we assume that every countable family 88 such that p(88) < k or p{88) = k and
T(88W) < t is good. The induction step is based on the following assertion, using the
notation introduced in the proof of Theorem 0.1.

ASSERTION 2.2 a. If si and s£ are good then si is good.

Before proving the assertion, we indicate how we apply it to obtain the inductive
proof that si is good. Let T be a cover of sim with \T\ = t. We choose some xeT
and form the families si+ = si+

x, si~ = si~x, j^_and si_. We have p(si+) < k. Since
si_ ^ s#+, this implies that s£ is_good. Also, si(k) = si~(k), implying that T\{x) is
a_cover of si(k) and therefore x{si(k)) < t. So the induction hypothesis tells us that
si is also good, and we can invoke Assertion 2.2 a to deduce that si is good.

Assertion 2.2 a is proved in [4] for the finite case, and the proof carries over to the
infinite case with only minor modifications. For the sake of completeness, we sketch
the argument. Let ^ be a good bijection for si and 0 be a good bijection for si_.
We define a mapping n: si -> si as follows :ifAes£ then n{A) = A, and if A e si\si_
then n(A) is the unique Be si such that B\{x} = A. We also define n:s£-+si by
n(A) = A (recall that A — A\] {x}). The pair of maps n and n serve to present si as
the disjoint union of a copy of si and a copy of ^._This presentation permits us
to define a bijection <f)\si->si as follows: for Aesi let <j)(n{A)) = n{(f){A)) and
for Aes£ let (j>{n{A)) = n(g(A)). For each subfamily 38 <=: si_ let om;si-+si be
defined as follows: if Be31 then aa{B) = B and ojji) = B, and otherwise aa is the
identity. Then 0# = cr^o0 is a bijection for each ^ £ s£. Let us call an ordered
pair (A,B) with As si and Besi_ dangerous if yl\0(y4) = B\<fi(B). It can be seen
that, for each As si, 7f(̂ )\0 (̂7f(y4)) is either^ A\$(A) or ^\0(^)- Similarly, for
each B es£, n(B)\^>a(n(B)) is either B\</>(B) or B\^(B). Therefore, since (f> and ^ are
good, it follows that <f>a is a good bijection if and only if for every dangerous pair
(A,B) exactly one of the differences n(A)\^>a(n(A)) and 7r(5)\0^(7r(5)) contains x.
Thus it suffices to show that there is a way to choose ^§ ^ si_ so that this condition is
satisfied.

Let us call a sequence ..., C_l5 Co, Cl5 C2,... of sets in si_ (which may terminate or
not on either side) a chain if for every (Ct, Ci+1) in the sequence the pair (0"1(C<),
^~\Ci+1)) is dangerous, and if the sequence terminates on either side then it cannot
be extended on that side so as to maintain the above condition. Clearly, two distinct
chains have no member in common. Considering each chain separately we decide
which of its members to include in 88, as follows:

(i) If the chain does not terminate on the left, we include all its members in 38.
(ii) Suppose that the chain terminates on the left, say at Co. Note that the chain

has no repetitions (otherwise it would be periodic and hence infinite on both sides).
We make our choice on whether or not Cts88 inductively, starting at Co. If there is
a dangerous pair (A, B) such that 0(i?) = Co (necessarily such a pair is unique and
<j>(A)$sf), make the choice C0e88 or C0$88 so as to render n(B)\<f)<g(n(B)) distinct
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from 7r(^4)\^(i(y4)); note that (/><g(n(A)) = n{(j){A)) is independent of $8 and thus
known in advance. If no such dangerous pair exists, make the choice for Co

arbitrarily. Having made the choice for Ci5 if C(+1 exists and (A, B) is the dangerous
pair so that <p{A) = Ct and <j>{B) = Ci+V make the choice for Ci+1 so as to render
K(B)\(/>a(n(B)) distinct from n(A)\</>^(A)).

It is easy to verify that this choice of ̂  satisfies the required condition.

Case II: \s/\ = Hg,6> 0. We shall construct a sequence 7a(a ^ 6) of subsets of
V — [js/, satisfying the following conditions:

1. TasTfifora<0;
2. Td=V;
3. T;. = \J{Ta:<x < 0 whenever £ < 0 is a limit ordinal;
4. |rj = Xa(a^).

For the fifth (and most important) condition, we need first some notation. Given
a family of sets ^ , a set T and a subset R of 71, we set

,R) = {B:B{\T= 0,B

For a < 0 we set jtf* = {Aesf: A s 7;+1 but ̂  £ TJ.

5. For all a < 0 and all Aerfa, T{h{sf«, T^A n ra)) =

Our construction of the sequence Ta (a ^ 6) relies on the following notion of
closure. We say that T £ V is c/osed if y4 e s/, A ^ T imply that

r(h(s/,T,A0T))>\T\.

ASSERTION 2.2 b. Let S be a subset of V of cardinality K ̂  Ko. Then there exists
a closed set T = cl (S) such that S^Tand\T\ = K.

Proof We define an ascending chain S1, (i < co) of subsets of V of cardinality K
as follows. Let So = S. Assuming St has been defined, let

and for each Re% choose a cover CR of h{s^tSitR) of minimal size. Let
S<+i = St U U{CR:i?e<^}. Finally, let T=\J{Si:i< co}. If Re% and |J?| > k then
CR = 0 and so it follows inductively that \Si+1\ = /c for each / < co. Thus |7] = K,
and clearly 5 £ f. To prove that T is closed, assume that A € sf and A £ 7". Let
i* = y4 n 71. Since \R\ <, k there exists i < co such that R c 5^ Since A\Reh(s/, Siy R)
and 5<+1 n (y4\i?) = 0 , it follows from the definition of Si+1 that R$% and thus,
from the definition of %, that x(h(s4,5O i?)) > /c. Because | r | = K: it follows also
that r(h(sf,T, R)) > K.

We define the sequence Ta (<x^6) inductively. The first step is to choose an
arbitrary subset So of V of size Ko, and let To = cl (SQ).

Once a set Ta is defined, we define an auxiliary system of sets K% (a ^ fi < 6); the
subscript a indicates that the set was defined from Ta, the superscript /? indicates that
it will be used later in the definition of 7^+1. Let
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For each Rei^, define £ = £(7?) > a by %{h{d, Ta,R)) = Kc. Applying Lemma
2.3 to the family h(s0,Ta,R), we find a matching MR such that |^f l | = X( and
Mfi = \]MR is a cover of h($t, Ta,R). Since K( = £ { i V i : a </?<£}, we can write
MR = \J{Jtfi

R:a ^p< C(R)} with \JtR\ = K,+1. Letting MP
R = [}JtRt we define for

p0

Since |i?| < k for each ReH^'ii follows that |Ti£| ̂  Ka, and so ^
Assuming that a ^ 0 and the sets Ty as well as the systems K^(y ^fi <9) have been

defined for all y < ct, we now define 7̂ . First, if a is a successor ordinal, say a = fi+1,
we choose a subset S1,, of V of size Ka which contains Tp\) U t ^ r ? ^$> anc* ^et

Ta = cl(Sa). Next, if a is a limit ordinal, we let Ta = \J{Ty:y < a}.
The sequence Ta (a ̂  0) defined above is immediately seen to satisfy our

conditions 1, 3 and 4. For the other conditions, we need the following.

ASSERTION 2.2C. The set Ta is closed (a ^ 0).

Proof. The only case that requires attention is when a is a limit ordinal.
Let A e s4, A £ Ta. Let R - A n Ta, and let y < a be the first such that R c Ty. Then
y is not a limit ordinal and so Ty is closed. Hence r(h(s^, Ty, R)) = Kf for some
C > y and i ? e ^ . Referring to the definition of the system Kfj, we see that a set
MR = \J{MPR:y ^fi <Q which covers h(s/,Ty,R) was introduced there. Since
Af£ e A j c 7^+1 whenever y ̂  /? < £ it follows that if we had £ < a then we would have
MR £ 7̂  and so Ta would have to meet A\R, which it does not. Hence £ > a
and so T(/I(J^, Ty,R)) > Ka; thus, since \TJ = Ka, it follows that r(h(s/, Ta,R)) > Ka.

By setting a = 6 in Assertion 2.2 c, it follows that A ^ Tg for all Aesf, and so
Condition 2 holds. To verify Condition 5, suppose that a < 6 and Aesf", and let
i? = A n 7;. Since Ta is closed, r(h(st, Ta, R)) > Ka. Referring to the definition of
the system K{, we see that a matching of size Xa+1 in h(s#, Ta, R) (namely JtR) was
thrown into K£ and therefore into Ta+1. This implies that r(/i(«^a, Ta, R)) ^ Xa+1;
since |7^+1| = Ka+1 we have equality.

Having constructed the sequence Ta(<x^0) it is easy to define a good bijection <j>.
By Conditions 1 to 3,

ri = ^o U U ( ^ a : a < 0). w n e r e ^o = {A£$t:A c 7;}

and the union is disjoint. We define 0 on «s/0 to be a good bijection of J^0 onto
itself (which exists by Case I or the finite case). Next, for each a < 6, we define <f>
on s#a as follows. Let $a = {A n T^^ej^1*}. By the induction hypothesis Theorem
2.2 holds for a < 6. Hence there exists a good bijection 0 a :^ a ->• ^ a . (We could use
here also an inductive assumption on k, since \R\ < k for all Ret%a.) By Condition
5, T(h(s#a, Ta, R)) = Ka+1 for each i?e^a . By Lemma 2.4 this implies that for
each ReMa there exists a bijection nR:/j(j/a, ra,R) -+ h(sfa, Ta,<pa(R)) such that
B n M 5 ) = 0 for all 5 e h(st\ Ta, R). For each set A e s/a let R = R(A) = A 0 ra

and let 0(^) = 0a(i?) U /iR(A\R). Then

^ \ ^ ) = (A0aW)U(^\ra). (2.1)
It is clear that <f> \ s#a is a bijection of .s/01 onto itself. Hence 0 is a bijection of si onto
itself, and it remains to show that it is good.
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If Aest\ Best' and, say p< a, then by (2.1) B\<f>(B) c Tp+1 s 7; while
i4\^(i4) 2 i4\7; # 0 , hence >*\0(i4) i- B\</>(B). A similar argument holds if ^6jafa

and Besi0. SO, assume that A,Best* for some a, and A^B. Then, either
^ n ra # 5 n Ta> in which case (A\(j>(A)) 0 Ta # (B\(j>(B)) n Ta, since 0a is a good
bijection; or ,4\7; ̂  1T\7;, in which case (A\<f>(A))\Ta * (B\<f>(B))\Ta, by (2.1).

We conclude this section with some remarks on other sufficient conditions for a
family si to be good. Clearly, if \si\ = x{si) = K and all sets in si have size less than
K then si is good (by an application of Lemma 2.4). In particular, if si is a family
of finite sets and each element of the ground set belongs to finitely many sets in si
then si is good. If si is uncountable then the latter conditions can be suitably
weakened.

We do not know any example of a non-good family si of finite sets which does
not contain an infinite ascending chain. We are inclined to guess that the absence of
such chains is a sufficient condition for a family s/ of finite sets to be good.

3. Differences formed by two families

Instead of looking at the differences formed by a family sf with itself, one may
look at s4 ~ $ for two families s4 and ̂ . Now, \s/ ~ $ | may be very small even if
|jtf| and |&| are large (for example, if A c B for all Aesf,Be!%). Yet, Ahlswede and
Day kin proved the following result which generalizes Theorem 0.1.

THEOREM 3.1 [2]. Let si and 8$ be finite families satisfying

VAesf 3Be@ such that A^B. (3.1)

Then\sf~a\Z\jf\.

Here we point out that a weaker condition than (3.1) already suffices.

THEOREM 3.2. Let si and 38 be finite families satisfying

VAx,A2esf 3Be@ such that (AM2) n B = 0 . (3.2)

Proof. Our proof, like the one in [2], essentially imitates the proof of the
Marica-Schdnheim inequality described at the beginning of this paper. We state the
argument briefly. If s4 = 0 then si ~ @ = 0 . If st = {0} then & # 0 by (3.2) and
so si ~ ̂  = {0}. So the result holds if V_= 0 (where V is the ground set̂ of si). If
V ^ 0 , we form the families J^+, J^~, si, d_ and similarly ^+,_^~J_^S, all with
respect to a fixed xeV. It is easy to verify that each of the pairs si,38 and si_,&~
satisfies (3.2). By the induction hypothesis and the counting argument preceding (0.2),
we obtain

\si\ = \si\+\si\ ^ \si ~ ~&\+\st ~ dt\ < \si ~ a\.

Clearly, (3.1) implies (3.2), and (3.2) holds in many examples where (3.1) fails (for
example, when AC\B = 0 for all Aesi, Be@). Admittedly, (3.2) looks a bit
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awkward, but we should perhaps mention that we have been able to apply Theorem
3.2 in a natural way to obtain an alternative proof of a theorem of Chvatal [3]. We
omit the details.

One could ask for conditions that guarantee \s# ~ @l\ ^ \8I\. Such a condition can
be obtained from (3.2), upon passing to complements (\sf ~ 0B\ ^ |^| is equivalent to
|^c ~ tfc\ ^ \<%c\).

We conclude with a version of Theorem 3.2 which extends it to infinite families
as well.

THEOREM 3.3. Let stf and $ be (possibly infinite) families of sets satisfying
(3.2). If \A\ < oo for all Aes/ then there exists a mapping <f>:sf -> 38 so that

%) for all Av

Proof. For each A e s/, let Q)A — {A) ~ 08. Our task is to show that the family
{3>A}, indexed by A erf, has a system of distinct representatives. Since each <2)A is
finite (|0J ^ 2MI), we need only check Hall's condition: for every finite subfamily
f c i , \(J{9A:Ae^}\ >\&\. But \J{2A:Ae&} = & - &, so the inequality
holds by Theorem 3.2.

Acknowledgement. We are grateful to a referee for comments which improved the
style and clarity of the presentation.
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