
http://www.econometricsociety.org/

Econometrica, Vol. 81, No. 1 (January, 2013), 173–196

IMPARTIAL NOMINATIONS FOR A PRIZE

RON HOLZMAN
Technion—Israel Institute of Technology, 32000 Haifa, Israel

HERVÉ MOULIN
Rice University, Houston, TX 77251, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded,
printed and reproduced only for educational or research purposes, including use in course
packs. No downloading or copying may be done for any commercial purpose without the
explicit permission of the Econometric Society. For such commercial purposes contact
the Office of the Econometric Society (contact information may be found at the website
http://www.econometricsociety.org or in the back cover of Econometrica). This statement must
be included on all copies of this Article that are made available electronically or in any other
format.

http://www.econometricsociety.org/


Econometrica, Vol. 81, No. 1 (January, 2013), 173–196

IMPARTIAL NOMINATIONS FOR A PRIZE

BY RON HOLZMAN AND HERVÉ MOULIN1

A group of peers must choose one of them to receive a prize; everyone cares only
about winning, not about who gets the prize if someone else. An award rule is impartial
if one’s message never influences whether or not one wins the prize. We explore the
consequences of impartiality when each agent nominates a single (other) agent for the
prize.

On the positive side, we construct impartial nomination rules where both the influ-
ence of individual messages and the requirements to win the prize are not very different
across agents. Partition the agents in two or more districts, each of size at least 3, and
call an agent a local winner if he is nominated by a majority of members of his own
district; the rule selects a local winner with the largest support from nonlocal winners,
or a fixed default agent in case there is no local winner.

On the negative side, impartiality implies that ballots cannot be processed anony-
mously as in plurality voting. Moreover, we cannot simultaneously guarantee that the
winner always gets at least one nomination, and that an agent nominated by everyone
else always wins.

KEYWORDS: Impartiality, plurality, positive and negative unanimity, monotonicity.

1. INTRODUCTION

1.1. Impartiality

THE POSSIBILITY OF AN IMPARTIAL JUDGMENT is a cornerstone of modern
theories of justice, from Harsanyi’s impartial observer (Harsanyi (1955)), to
Rawls’ veil of ignorance (Rawls (1971)), and Sen’s transpositional objectiv-
ity (Sen (2009)). In the more mundane context of committees and elections,
impartial evaluations are a desirable but elusive ingredient of group decision
making. When individual opinions are aggregated into a collective outcome,
an agent may be tempted to corrupt her valuable disinterested opinion (which
influences the final decision) to serve her selfish preferences. Thus corrupted,
the profile of messages may yield a suboptimal decision. Avoiding such con-
flicts of interest is a tall order, particularly in the context of evaluation by peers,
a central institution in many communities of experts.

Here we study nomination rules to award a prize among peers. A group of
agents must choose one of them to receive a prize (or undertake a task); each
agent is asked to nominate someone (other than self) as the most worthy of
the prize (or the best qualified for the task), and the profile of nominations

1Stimulating conversations with Anna Bogomolnaia, Salvador Barberà, Geoffroy De Clippel,
John Duggan, Marco Mariotti, Xavier Mora, Ariel Procaccia, and Shinji Ohseto have been very
helpful. We are also grateful to three anonymous referees and the editor for their constructive
comments. Part of Holzman’s work was done while visiting the Department of Mathematical
Sciences, Carnegie Mellon University. Moulin’s research was earlier supported by MOVE at the
Universitat Autonoma de Barcelona, and currently by the NSF under Grant CCF 1101202.

© 2013 The Econometric Society DOI: 10.3982/ECTA10523

http://www.econometricsociety.org/
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA10523


174 R. HOLZMAN AND H. MOULIN

determines the final winner. The key assumption is that an agent’s selfish pref-
erences bear on whether or not she gets the prize/task,2 and nothing else, while
she has a disinterested opinion about who should get it if not herself.3

We call a nomination rule impartial if reporting one’s disinterested opinion
never affects whether or not one wins the prize/task. In the absence of selfish
incentives to distort such reports, the outcome aggregates information that is
not corrupted by any conflict of interest.

Our assumption on selfish preferences is an extreme restriction to a domain
of size 3 (full indifference, or exactly two indifference classes of size 1 and
n− 1). Our modeling approach is that the decision rule should ignore by de-
sign these simple binary preferences, so that, for instance, whether or not the
outcome of the nomination game is Pareto inferior with respect to selfish pref-
erences (Jack wins but prefers not to, while Jill would like to win) is deemed
irrelevant. In the noncooperative nomination game of an impartial rule, ev-
ery strategy of every player is dominant, so we can ignore incentives and focus
on the normative analysis of the rule, pertaining to the way it aggregates the
disinterested opinions of the agents.

Our goal is to find “reasonable” impartial nomination rules. The examples
discussed in the next subsection illustrate the difficulty of reaching this goal.

1.2. Examples and Main Axioms

Given the finite set of agents N , |N| = n ≥ 2, we write NN
− for the set of

nomination profiles: NN
− = {x ∈NN |xi ∈N \ {i} for each i}.

DEFINITION 1: A nomination rule is a function ϕ :NN
− →N .

We use the following notational conventions. Given a profile of nominations
x ∈NN

− , we write δ(x)= s for the profile of scores at x:

si =
∣∣{j ∈N|xj = i}

∣∣�
A profile of nominations by all agents except i is written x−i, and the set of
all such profiles is NN\i

− . Given x−i ∈NN\i
− , we can specify i’s nomination xi ∈

N \ {i} and obtain (xi� x−i) ∈NN
− .

Our central axiom is the following:
• Impartiality: for all i ∈N , xi�x′

i ∈N \ {i}, and all x−i ∈NN\i
− ,

ϕ(xi�x−i)= i ⇔ ϕ
(
x′
i� x−i

) = i�

2Some agents may relish to be assigned the task while others view it as a painful chore.
3In a more general context, Sen (1977) proposed a taxonomy of social choice problems when

agents are endowed with two orderings over outcomes, one representing their honest opin-
ion/views, the other their selfish interest.
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The most natural nomination rule is plurality rule, defined by ϕ(x) ∈
arg maxi∈N{si} for all x, with some tie-breaking rule. While i’s vote xi does
not influence i’s score si, it does influence other agents’ scores and thereby i’s
relative standing. Hence plurality rule, irrespective of the way ties are broken,
is not impartial.4

To achieve Impartiality with a rule “close” to plurality, we choose a fixed
default agent i∗ and write si(−j�k) for the score of i in N \ {j�k} (i.e., not
counting j and k’s votes). Then we define the rule plurality with default, Plui

∗
,

as follows:

if for some i �= i∗:
{
si
(−j� i∗)> sj(−i� i∗) for all j �= i}�

then Plui
∗
(x)= i�otherwise Plui

∗
(x)= i∗�

This rule is clearly well defined; it is impartial because agent i does not influ-
ence either score si(−j� i∗) or sj(−i� i∗), and i∗ has no influence at all on the
outcome. But it is unpalatable for three reasons:

(1) the message of the default agent i∗ is ignored;
(2) the default i∗ can win without any support (si∗ = 0);5

(3) additional votes for i∗ can turn him from a winner to a loser.6
We introduce three axioms that rule out these three undesirable features, re-
spectively:

• No Dummy: for all i ∈ N , there exist xi�x′
i ∈ N \ {i} and x−i ∈ NN\i

− such
that

ϕ(xi�x−i) �= ϕ(
x′
i� x−i

)
�

• Negative Unanimity: for all x ∈NN
− and all i ∈N ,

si = 0 ⇒ ϕ(x) �= i�
• Monotonicity: for all i� j ∈N , xj�x′

j ∈N \ {j}, and all x−j ∈NN\j
− ,

{
ϕ(xj�x−j)= i and x′

j = i
} ⇒ ϕ

(
x′
j� x−j

) = i�

A simple modification of Plui
∗

turns it into a monotonic and impartial rule,
majority with default, denoted Maji

∗
. A nondefault agent i wins if and only if he

4To check this, consider a profile x, where si = 1 for all i, and let ϕ(x)= j. Then by switching
his vote to k �= xj , agent j makes k the unique plurality winner, in contradiction of Impartiality.

5This happens, for instance, when, ignoring i∗’s vote, everyone in N \ {i∗} gets one vote.
6For example, suppose N = {1� � � � �5} and i∗ = 5; if x−5 = (2�1�2�1), we have Plui

∗
(x) = i∗

because agents 1 and 2 are tied; but for x′
−5 = (2�1�5�1), we have Plui

∗
(x′)= 1. It should be clear

that we can construct similar examples for any n≥ 6.
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gets a strict majority of the votes that are counted:

Maji
∗
(x)= i for some i �= i∗ if si

(−i∗) ≥
⌈
n

2

⌉
�

otherwise Maji
∗
(x)= i∗

(where 
z� is the smallest integer weakly above z). Clearly, majority with de-
fault i∗ selects i∗ more often than plurality with default i∗ (Plui

∗
(x) = i∗ ⇒

Maji
∗
(x) = i∗), so it is even more biased in favor of i∗ (and No Dummy and

Negative Unanimity still fail).
To achieve simultaneously No Dummy, Negative Unanimity, and Mono-

tonicity, we use a variant of Maji
∗
, majority with default-maker, denoted Maji0 .

Here the role of the special agent i0 is to choose the default agent xi0 = j who
wins if no one in N \ {i0} garners an absolute majority:

Maji0(x)= i for some i �= i0� j if si(−j)≥
⌈
n

2

⌉
�

otherwise Maji0(x)= j�
Agent i0 is clearly not a dummy, and everyone else can be pivotal to create an
absolute majority winner. The default agent j is supported by i0, implying Neg-
ative Unanimity, and Monotonicity is equally clear. But Impartiality forbids to
ever make i0 a winner, no matter how much support he receives: i0’s message
affects si0(−j), because it neutralizes a vote inN \ {i0}. Therefore, the range of
Maji0 is N \ {i0}, and this rule violates the following axiom:

• No Exclusion: for all i ∈N , there exists x ∈NN
− such that ϕ(x)= i.

In the same spirit, we consider also the following compelling axiom:
• Positive Unanimity: for all x ∈NN

− and all i ∈N ,

si = n− 1 ⇒ ϕ(x)= i�
Positive Unanimity strengthens No Exclusion, but for a monotonic impartial

rule the two properties are equivalent.

1.3. Outline

In Section 2, we construct a family of monotonic impartial nomination rules
excluding no one, dubbed the partition methods. In those, both the influence
of individual messages and the requirements to win the prize are much more
evenly spread across agents than in plurality with default, majority with default,
or majority with default-maker. In particular, every agent i influences every
other agent j, in the sense that, at some profile of nominations, j wins or loses
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depending on i’s vote.7 See Theorem 1. Theorem 2, also in Section 2, proposes
a family of more complex rules in the same vein, where each participant can
be pivotal over any pair of other agents: for any triple i� j�k, at some profile of
messages, i’s ballot can change j’s win to k’s win.

Section 3 uncovers two systematic limitations of impartial nomination rules.
First, individual ballots cannot be processed in an anonymous urn as in plural-
ity voting (Theorem 3). We regard our second impossibility result (Theorem 4)
as more severe; it is also much harder to prove. No impartial nomination rule
simultaneously guarantees that the winner always gets at least one nomination
(Negative Unanimity), and that an agent nominated by everyone else always
wins (Positive Unanimity). For instance, majority with default meets Positive,
but not Negative Unanimity, while majority with default-maker does the oppo-
site.

The theorem implies that any monotonic, nonexcluding, and impartial nom-
ination rule must sometimes give the prize to an agent who is not nominated
by anybody (Corollary to Theorem 4). This explains the inevitable occurrence
of winning by default in all our constructions, including the partition methods.

The difficult proof of Theorem 4 involves a symmetrization argument in the
more general model of randomized nomination rules; it is the subject of Sec-
tion 4.

Section 5 briefly discusses impartial rules to award the prize where each
agent sends an abstract message, rather than a nomination. Some concluding
comments are gathered in Section 6.

1.4. Related Literature

This paper is the first, to our knowledge, to explore impartiality in the setting
of nomination rules. There do exist earlier studies of impartiality in different
but related models. We comment on three such works here.

1. The concept of impartial decision making appears first in de Clippel,
Moulin, and Tideman (2008), applied to the division of a cash surplus within a
group of partners. Each partner cares selfishly about his share, not about the
distribution among others of the money he does not get. Partners report their
subjective opinion about the relative contributions of the other partners to the
surplus; Impartiality requires that one’s report has no impact on one’s final
share. With four or more partners, there exist symmetric impartial rules with
the additional property that if there is a consensual division compatible with all
reports, it is implemented. The prize award problem is clearly the indivisible
counterpart of the “division of a dollar” problem; however, the rules there are
not similar to those in Section 2 below.

7This implies a bossy decision method: i can change j’s welfare without affecting his own.
Bossiness is a desirable feature in our context, contrary to the standard view in mechanism design
literature, going back to Satterthwaite and Sonnenschein (1981).
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2. Alon, Fischer, Procaccia, and Tennenholtz (2011) studied a model of “se-
lection from the selectors” conceptually related to the present paper. Each
agent can “approve” of an arbitrary subset of other agents, and the rule must
choose a fixed number k of winners. Noting that approval voting, that is, se-
lecting k agents with the highest approval scores, is not impartial, Alon et al.
sought impartial rules that approximate it (guarantee that the total approval
scores of the k winners be at least a fixed fraction of the optimal one). There
is an essential difference in approach between this work and ours: rather than
fixing a target rule and trying to approximate it subject to impartiality, we ex-
plore impartial rules axiomatically. In spite of this difference, Alon et al.’s im-
possibility theorem for impartial approximation of approval voting (their The-
orem 3.1) may be rephrased axiomatically: No rule for selecting k agents in
the model of Alon et al. (2011) satisfies the analogs of Impartiality and Nega-
tive Unanimity. This statement is similar to our Theorem 4, but the two results
are not logically comparable. On the one hand, Alon et al.’s impossibility ap-
plies to any number k of winners; ours—only to k = 1. On the other hand,
our impossibility uses a more restricted domain of messages, from the agents
(just single nominations, not arbitrary subsets of other agents), which renders
it stronger and more difficult. It is stronger because, on our domain of mes-
sages, Impartiality and Negative Unanimity are compatible, and impossibility
is reached only when Positive Unanimity is also required. It is more difficult
because Alon et al.’s proof of Theorem 3.1 depends crucially on abstentions—
messages approving no one.8 On the positive side, we note that the nomination
rules we describe in Section 2 (as well as the examples in Section 1.2, except
majority with default-maker) work just as well when we allow abstentions: the
definition is identical, and the only difference is that the sum of all scores is no
longer a constant.

Finally, we remark that Alon et al. also considered randomized selection
rules, and obtained a positive result for them; we use randomized nomination
rules in the proof of our negative result—Theorem 4.

3. It is possible to interpret impartial nomination rules in the context of
the sizeable literature9 on strategyproof allocation of private goods in Arrow–
Debreu economies, going back to Hurwicz’s seminal work. Fix a bundle of
resources ω to be allocated between our n agents, each one endowed with a
(private) strictly monotonic preference Ri chosen in some preference domain

8To see how abstentions facilitate the proof, consider, in the case k= 1, the profile where all
agents abstain, and say that i is the winner. If i changes his message and nominates j, Impartiality
requires that i still wins. But in the new profile, some agent (j) has a positive score, yet an agent
with score zero (i) wins, contradicting Negative Unanimity. This trivial observation covers the
common ground of Alon et al.’s Theorem 3.1 and our Theorem 4. Their result extends it nontriv-
ially by considering any number k of winners; ours uncovers a deeper impossibility by precluding
abstentions.

9See, in particular, Dasgupta, Hammond, and Maskin (1979), Satterthwaite and Sonnenschein
(1981), Zhou (1991), Serizawa (2002), Serizawa and Weymark (2003).
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Ri. Pick a nomination rule ϕ and attach to each preference Ri ∈ Ri an arbi-
trary message xi inN \{i}, so that the mapping from preferences to messages is
onto. At a preference profile R, give all the resources ω to the agent ϕ(x): this
(direct revelation) mechanism is strategyproof10 if and only if ϕ is impartial.
This is the viewpoint of Kato and Ohseto (2002, 2004), except that they worked
in a more general model with abstract messages that convey no opinion about
who should get the prize. The impartial mechanisms they constructed meet
No Dummy and No Exclusion as well, thus disproving an earlier conjecture
in Zhou (1991): with four or more agents, strategyproofness and efficiency do
not imply, as Zhou conjectured, that one of them is never allocated anything.
Proposition 2 in Section 5 presents (a variant of) their interesting mechanisms.

2. MUTUAL INFLUENCE AND THE PARTITION METHODS

In the two monotonic and impartial rules Maji
∗

and Maji0 , the role of the
designated agent is very special. In the former, i∗ wins the prize much more
often than any other agent, but he is an entirely passive dummy. In the latter
rule, i0 is very influential because he chooses the default, but he can never win.

In this section, we construct two large families of monotonic and impartial
nomination rules where the treatment of the “special agent” is much less ex-
treme on both counts.11 They satisfy both No Dummy and No Exclusion, and
in fact stronger properties that we introduce below. These properties assure in
a limited sense a fair distribution of the ability to influence the final outcome.

Given a nomination rule ϕ and three distinct agents i� j� j′, we say that agent
i is pivotal for the pair j� j′ if, for some profile x−i ∈ NN\i

− , there exist xi�x′
i ∈

N \ {i} such that

ϕ(xi�x−i)= j� ϕ
(
x′
i� x−i

) = j′�
For two distinct agents i� j, we say that i influences j if there exists j′ so that i is
pivotal for j� j′. These notions lead to the following properties of a nomination
rule ϕ, taking it closer to a symmetric distribution of the decision power:

• Full Pivots: for all distinct i� j� j′ ∈N , agent i is pivotal for j� j′.
• Full Influence: for all distinct i� j ∈N , agent i influences j.
Clearly, for n≥ 4, Full Pivots is stronger than Full Influence, which in turn is

a common strengthening of No Exclusion and No Dummy.
The rest of this section is devoted to the construction of monotonic impartial

nomination rules satisfying Full Influence (Theorem 1) or Full Pivots (Theo-
rem 2). We give first an intuitive description of those rules, called partition

10Note, however, that strategyproofness cannot be interpreted in the usual way to mean the
elicitation of sincere preferences, for these preferences are entirely clear: everyone wants ω.

11Note that fully equal treatment of all agents is impossible for nomination rules, regardless
of impartiality. Requiring that the winner determination should not depend on the names of the
agents leads to an immediate contradiction for a cyclic profile of nominations.
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methods, as constituency-based single-winner voting systems. The agents are
partitioned into districts (or constituencies). Every agent may nominate any
other agent, inside or outside his district. The winner is determined by a two-
step procedure. In the first step, for each district, we check if there is a mem-
ber who was nominated by an absolute majority12 of that district; such an agent
is designated as a local winner. In the second step, the various local winners
become the candidates and all other agents become the voters in a plurality
vote (using the original nominations) that determines the final winner. Because
there may be no local winner anywhere, we need to pre-assign one agent as the
default agent who wins in that case, and to preserve impartiality the default
agent’s vote is ignored in the first step.13

The grouping of candidates in districts and two-tier structure of the decision
process is often natural: think of awarding a scientific prize among scholars
from different fields of research. Our rules check first in each field for a strong
candidate, gathering on her name an absolute majority of that field; then al-
most everyone is involved in the selection of the overall winner among these
strong field specialists.

In the formal definition, we use the notation si(B) to mean the number of
nominations agent i gets from the agents in B.

DEFINITION 2—Partition Methods: Assume n ≥ 7 and fix a partition
N = ⋃K

k=1Nk with K ≥ 2� |N1| ≥ 4� |Nk| ≥ 3 for k = 2� � � � �K. We refer to
N1� � � � �NK as districts 1� � � � �K, respectively. Assign a particular member of
district 1, i∗ ∈N1, as the default agent. Given a profile of nominations x ∈NN

− ,
the winner ϕ(x) is determined in two steps.

Step 1. Set the absolute majority quota qk in district k to be

qk =
⌈ |Nk| + 1

2

⌉
� k= 2� � � � �K�

q1 =
⌈ |N1|

2

⌉
�

Call agent i ∈Nk a local winner if k ∈ {2� � � � �K} and si(Nk) ≥ qk, or if k = 1
and si(N1 \ {i∗})≥ q1.

12By using absolute majority (rather than plurality), we make sure that an agent cannot affect
his own status as a local winner. Certain other variants would work as well, such as some special
majority or relative quota (e.g., an agent must get at least two more nominations from his district
than any other district member, not counting his own vote). To keep the presentation simple, we
stick to absolute majority.

13Note that the default agent is still a member of one of the districts, and may win in the same
way as other agents, as well as by default. A variant of the method, leaving the default agent
outside the partition into districts, would also work; but it would single out that agent in more
ways than in the version presented here.
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Let X be the set of local winners in the various districts. If X = ∅, then
ϕ(x)= i∗. If |X| = 1, say X = {i}, then ϕ(x)= i.

Step 2. If |X| ≥ 2, let Y = arg maxi∈X si(N \ X). Using a fixed priority or-
dering of the set of districts to break ties, the winner ϕ(x) is the member of
Y coming from a district with the highest priority among members of Y (the
priority ordering is arbitrary, except for the following provision: if K = 2 and
exactly one of the districts has qk = 2, then that district should have priority).14

THEOREM 1: Partition methods satisfy Monotonicity, Impartiality, and Full In-
fluence.

PROOF: We start with Impartiality. Obviously, there is at most one local win-
ner in each district. Suppose agent i� i �= i∗, wins the prize. By changing his vote,
he cannot affect the fact that he is the unique local winner in his district, or al-
ter the set of local winners in other districts, and his victory in the vote among
local winners, if such arises, is also independent of his own message. Suppose
next i∗ wins. If i∗ is the local winner in district 1, the above argument applies.
If i∗ wins by default, that is, there is no local winner anywhere, he cannot move
to create a local winner because his vote is ignored in step 1.

To verify Full Influence, it suffices to show that whenever i and j are distinct
members of one district, and j′ is in another district, agent i is pivotal for the
pair j� j′. For this, we prescribe a profile x−i of nominations by the agents in
N \ {i}, so that: (a) j′ is a local winner (the only one outside i’s district), (b) if i
nominates j, then j is a local winner and beats j′ in step 2, (c) if i nominates j′,
then either j is not a local winner anymore (so j′ wins in step 1) or j remains a
local winner but loses to j′ in step 2. The fact that this can be arranged is easily
checked: care is required only in tipping the scales in step 2, which is facilitated
by the special provision on the priority ordering of the districts.

Finally, we check Monotonicity. Suppose that initially agent i wins, and then
j changes his vote to i. If i= i∗ and he won by default, the change cannot make
anyone else a local winner; either it makes him the only local winner or there
is still no local winner, and he continues to win either way. If i won by being
a local winner, he remains a local winner, and the set of local winners either
remains the same or loses a member, say j′, from j’s district as a result of the
change. In the former case, the change clearly cannot hurt i in step 2. In the
latter case, the change results in agent j′ turning from candidate to voter in
step 2. His vote may go to an opponent of i, but i now gets the vote of j in
addition to those he got earlier, so he still wins. Q.E.D.

14This provision is designed to ensure that any agent may prevail over an agent from any other
district in situations where they both are local winners. For example, with two districts of size
4 each, and local winners in both, the one in district 2 (having q2 = 3) must be getting at least
three nominations, so district 1 (having q1 = 2) should have priority so as to give its local winner
a chance to prevail.
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Just like in Maji
∗
, in a partition method there is a single agent i∗ who can

win without any support: this happens only if there is no local winner in any
district. It may be argued that under certain plausible assumptions, this default
case is highly unlikely to happen. If the partition into districts is natural, it
is reasonable to assume that agents are more likely to vote for “one of their
own.” In a given district, the likelihood of there being a local winner is then at
least nonnegligible. If we further assume a large number of districts, it becomes
highly unlikely that all of them will be deadlocked. We can then expect to resort
to the default option only very rarely.

Partition methods meet all the requirements discussed so far, with two ex-
ceptions. They violate Negative Unanimity, as the default agent can win with
no support. They do not meet Full Pivots, because an agent is not pivotal for a
pair of agents in a different district than his own. To see this, say i is in district 1
and j �= j′ are in district 2. If, for a certain profile of nominations, j wins, then
he must be the local winner in district 2. No matter how i changes his vote, j
remains a local winner in district 2, so j′ cannot be a local winner there, and
hence cannot win as a result of the change. In addition, it may be the case that
an agent is not pivotal for a pair of agents in his own district (this depends on
parity).

The failure of Full Pivots for partition methods can be fixed, at the cost of a
more complicated definition, as follows.

DEFINITION 3—Cross-Partition Methods: Assume n≥ 13, and partition the
agents into K ≥ 3 districts Nk of nearly equal size15 (at least 4 each), and the
singleton {i∗}. For each k= 1� � � � �K, letΠk be a partition of Nk into two com-
ponents of nearly equal size, and let Λk be another such partition, so that the
two are orthogonal (in the sense that each component of one intersects each
component of the other). Given a profile of nominations x, the winner ϕ(x) is
determined in two steps.

Step 1. Call agent i ∈Nk an outer hero if he gets the votes of an entire com-
ponent of Πl for every l other than k− 1 and k, and of an entire component
of Λk−1 (with subscripts taken modulo K). Call agent i ∈Nk an inner hero if he
gets the votes of all members of Nk \ {i}.

Define the setX of eligible agents as follows. If there exists at least one outer
hero, it is the set of outer heroes. If there is no outer hero, it is the set of inner
heroes.

If X = ∅, then ϕ(x)= i∗. If |X| = 1, say X = {i}, then ϕ(x)= i.
Step 2. If |X| ≥ 2, let Y = arg maxi∈X si(N \X). Using a fixed priority order-

ing of the set of agents N to break ties, the winner ϕ(x) is the member of Y
with the highest priority among members of Y .

15By this we mean that the sizes differ by at most 1.



IMPARTIAL NOMINATIONS FOR A PRIZE 183

We give an example16 that illustrates the above definition. Say there are 14
agents, partitioned into three districts N1 = {1�2�3�4�5}, N2 = {6�7�8�9}, and
N3 = {10�11�12�13}, with agent 14 serving as the default i∗. The agents in each
district are further partitioned according to two attributes, age and gender.
These partitions are represented in the following table:

N1 Male Female N2 Male Female N3 Male Female

Young 1�2 3 Young 6 7 Young 10 11
Old 4 5 Old 8 9 Old 12 13

Here, in each district k, Πk is the partition into the young and the old mem-
bers, and Λk is the partition into the male and the female members of that
district. The orthogonality of the partitions is witnessed by the fact that all en-
tries in the table are nonempty. Consider now an agent inN1, say. To qualify as
an outer hero, he needs the votes of an entire age-group in N2, and an entire
gender-group in N3 (e.g., if agents 6�7�11, and 13 all vote for 1, then 1 is an
outer hero). To qualify as an inner hero, he needs the votes of all other mem-
bers of his district (so, if agents 2�3�4, and 5 all vote for 1, then 1 is an inner
hero).

THEOREM 2: Cross-partition methods satisfy Monotonicity, Impartiality, and
Full Pivots.

PROOF: We note first some useful facts about heroes. Suppose there is an
outer hero in district k. Then there can be no heroes outside Nk: outer heroes
are ruled out by the orthogonality of the Πl�Λl, and inner heroes are impossi-
ble since an outer hero needs the votes of a full component (hence at least two
votes) from every other district. On the other hand, in district k itself, there
may be one other outer hero and/or an inner hero. But, by definition, such an
inner hero is not considered eligible.

To illustrate the above, consider the 14-agent example just given, and sup-
pose that agent 1 is an outer hero by getting the votes of 6�7�11, and 13. Then
there can be no outer hero in N2, because the votes of 11 and 13 are already
accounted for, and without them one cannot form an entire age-group in N3.
Similarly, there cannot be an outer hero inN3, because the votes of 6 and 7 are
not available, and without them one cannot form an entire gender-group inN2.
Furthermore, there can be no inner hero in eitherN2 orN3, because in each of
these districts, two votes are already committed to agent 1. On the other hand,
another member of N1, say agent 5, may be a hero as well as 1 (she can be an
outer hero due to the votes of 8�9�10, and 12, or she can be an inner hero due
to the votes of 1�2�3, and 4).

16We are indebted to an anonymous referee for suggesting this example.
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Impartiality for i∗ is obvious: if she wins, this is determined in step 1, in
which her vote plays no role. Next, note that, for agent i in Nk, being eligible
does not depend upon her own vote. This is clear if she is an outer hero, and if
she is an inner hero it is because, regardless of her vote, there can be no outer
hero outside Nk. Moreover, an eligible agent cannot change the set of eligible
agents: this is clear for an inner hero, and for an outer hero it follows because
there is no outer hero outside her district. Together, these two facts establish
Impartiality.

To show Full Pivots, consider a triple i� j� j′. Assume first that one of j� j′ is
i∗, say j = i∗. Then i is pivotal for i∗� j′ at a profile where there are no heroes
other than j′, and the status of j′ as a hero (inner if i� j′ are in the same district,
outer otherwise) depends on the vote of i. Next, assume that j� j′ are in the
same district Nk. Then we can have both of them outer heroes, and make sure
that they get nearly the same total number of votes from agents in the other
districts (this relies on the assumption that the components of Πl�Λl are of
nearly equal size). Now, if i is in a district other than Nk, he can be pivotal by
disqualifying j or j′, and otherwise he can be pivotal in step 2. Finally, if j� j′ are
in different districts, we can make them the only two inner heroes. Now, if i is
in one of their districts, he can be pivotal by disqualifying j or j′, and otherwise
he can be pivotal in step 2.17

For Monotonicity, suppose initially i wins, then j changes his vote to i. If
i= i∗, the eligible set remains empty after the change and we are done. Assume
i �= i∗ from now on. Whether i was initially an inner or an outer hero (or both),
this remains true after the change and no other agent becomes a hero. If i was
an outer hero, he was either the only eligible agent or one of two. Whether
or not the change disqualifies the other one (if any), he remains the winner.
If i was an inner hero, there was no outer hero to start with; the change could
make i an outer hero as well, in which case i wins at once because he is the
sole outer hero. Alternatively, the change could disqualify an inner hero in j’s
district, say j′. In this case, consider the effect of the change on step 2: agent j′
turns from candidate to voter, and his vote may go to an opponent of i, but i
now gets the vote of j, which guarantees that he still wins. Finally, if the eligible
set does not change, agent i remains the winner. Q.E.D.

Note that, as in partition methods, one can replace the local unanimity re-
quirement for an inner hero by an absolute quota q that is slightly higher than
half the size of the district (enough to prevent the coexistence of an outer hero
and an inner hero in distinct districts).

The cross-partition methods are too complex to qualify as practical award
rules. By contrast, the partition methods are natural, and similar in spirit to

17To justify the last statement, we have to rule out a situation where j, say, is assured to win in
step 2 by virtue of his local votes. The near equality of district sizes certainly suffices to achieve
this. But note that we made this assumption to keep the presentation simple; a much weaker
condition forbidding a district to hold a majority of all agents would suffice.
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two-tier voting systems that are used in practice (except for the role of the
default agent), and their normative performance is almost as convincing.

REMARK: Our partition methods distribute coalitional power in much the
same way as the ordinary plurality rule. Any coalition S holding a strict majority
in each district controls the outcome entirely (i wins if everyone in S nominates
her); loosely speaking, any strict majority coalition is a strict majority in at
least one district, and can make anyone in that district the winner in the same
way. Similarly, in a cross-partition method, a coalition containing a majority of
districts can prevent outer heroes, and make anyone in its districts the winner.18

3. TWO IMPOSSIBILITY RESULTS

We identify two systematic shortcomings of impartial nomination rules, al-
ready apparent in the various examples discussed in Sections 1.2 and 2.

First, consider the following property of nomination rules, requiring that the
determination of the winner at a profile of nominations x should depend only
on the profile of scores s = δ(x):

• Anonymous Ballots: for all x� y ∈NN
− ,

δ(x)= δ(y) ⇒ ϕ(x)= ϕ(y)�
This property does not require that agents be treated equally as candidates,

only as voters. It means that nominations need not be signed and can be col-
lected anonymously into one ballot box. The standard plurality rule with ties
broken by a fixed priority ordering satisfies Anonymous Ballots. But, for in-
stance, the partition methods violate Anonymous Ballots in that the agents are
split into districts, and the method treats differently nominations from one’s
own district and those from other districts.

It turns out that there is a fundamental incompatibility between Anonymous
Ballots and Impartiality. The intuition is that Impartiality does not allow i’s
ballot to affect i’s winning; but if i’s ballot is to be treated like anyone’s ballot,
this implies that it cannot affect anyone’s winning.

THEOREM 3: The only impartial nomination rules satisfying Anonymous Bal-
lots are the constant rules: for some i, ϕ(x)= i for all x ∈NN

− .

PROOF: The set δ(NN
− ) of feasible profiles of scores is

S =
{
(s1� � � � � sn) ∈ {0�1� � � � � n− 1}n

∣∣∣∣
n∑
i=1

si = n
}
�

18Thus if agents had standard linear preferences over all winners, cooperative instability
(empty core) would arise from the usual patterns of cyclical preferences.
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Anonymity says that our rule is defined directly on S, so we write it as
ϕ(s). We show next that if s� s′ ∈ S and sk = s′k for some agent k, then
ϕ(s) = k ⇔ ϕ(s′) = k. Since s′ is obtained from s by a redistribution of the
scores of agents in N \ {k}, it suffices to prove this in the case when it is ob-
tained by the transfer of one vote from i to i′, for some i� i′ ∈ N \ {k}. As-
sume first that maxj∈N\{i�i′�k} sj ≤ n− 2. Then there exists x ∈NN

− with δ(x)= s
and xk = i (this can be shown, e.g., by using a harem version of the marriage
lemma). When k switches his vote to x′

k = i′, we have δ(x′) = s′, and Impar-
tiality gives ϕ(s) = k ⇔ ϕ(s′) = k. It remains to handle the case where, for
some j ∈ N \ {i� i′�k}, we have sj = s′j = n − 1 and si = s′i′ = 1. In this case,
consider s′′ ∈ S with s′′j = n− 2, s′′i = s′′i′ = 1. Note that s is obtained from s′′ by
transferring one vote from i′ to j, while s′ is obtained from s′′ by transferring
one vote from i to j. Since all entries in s′′ are at most n − 2, we can apply
the conclusion of the previous case twice to obtain ϕ(s′′)= k⇔ ϕ(s)= k and
ϕ(s′′) = k⇔ ϕ(s′) = k, and deduce that ϕ(s) = k⇔ ϕ(s′) = k. So for every
agent, winning only depends on his own score.

Now, consider s∗ = (1�1� � � � �1) and say ϕ(s∗) = i. We claim that ϕ(s) = i
for every s ∈ S, making ϕ a constant rule. Indeed, suppose for the sake of
contradiction that s ∈ S and ϕ(s) = j �= i. We can find s′ ∈ S with s′i = 1 and
s′j = sj (the other entries of s′ are chosen arbitrarily to make the sum of all
entries n). We apply the conclusion of the previous paragraph twice: since s′i =
s∗i and ϕ(s∗) = i, we must have ϕ(s′) = i; since s′j = sj and ϕ(s) = j, we must
have ϕ(s′)= j. This contradiction completes the proof. Q.E.D.

Our next result is a more serious limitation of impartial nomination rules. All
such rules must disregard at some profiles the unanimous views of the agents
in favor or against a certain agent.

THEOREM 4: There exists no nomination rule that satisfies Impartiality, Posi-
tive Unanimity, and Negative Unanimity.

Since Positive Unanimity is a consequence of No Exclusion, Impartiality, and
Monotonicity, Theorem 4 immediately implies the following.

COROLLARY 1: There exists no nomination rule that satisfies Impartiality, No
Exclusion, Negative Unanimity, and Monotonicity.

The theorem and its corollary explain why winning by default (in some cir-
cumstances) is an inevitable ingredient of all our constructions of impartial
nomination rules.

The difficult proof of Theorem 4 is the subject of Section 4 below. To con-
clude this section, we show that each property in the theorem and its corollary
is required for the impossibility statement. The ordinary plurality rule meets all
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properties except Impartiality. The rule Maji
∗

meets all properties except Neg-
ative Unanimity. The rule Maji0 meets all properties except Positive Unanimity
in the theorem, and No Exclusion in the corollary.

Finally, Monotonicity is needed19 in the corollary; in other words, Theorem 4
does not remain true if Positive Unanimity is weakened to No Exclusion. This
fact requires a new and nontrivial construction.

EXAMPLE 1—A Nomination Rule for n ≥ 5 That Satisfies Impartiality, No
Exclusion, No Dummy, and Negative Unanimity: To construct this rule, we
view the set of agents as a linearly ordered set, say N = {1� � � � � n} with the
natural ordering. Given a profile of nominations x= (xi)i∈N , the winner ϕ(x)
is determined according to the following cases:

(a) If there exist agents i < j < k < n such that xi = xj = k, and x	 = n for
all 	 ∈N \ {i� j�k�n}, then ϕ(x)= n.

(b) Else, if there exists at least one agent q < n such that the set{
p ∈N \ {xn}|p< q�xp = q}

is nonempty, then ϕ(x) is the first such q.
(c) Else, ϕ(x)= xn.
The verification of No Exclusion, No Dummy, and Negative Unanimity is

easy (bearing in mind that n ≥ 5). To check Impartiality, assume for the sake
of contradiction that ϕ(x) �= ϕ(x′) for some two profiles x�x′ which differ only
in the vote of one agent, and that agent is ϕ(x) or ϕ(x′). This is clearly impos-
sible if x and x′ fall under the same case (among (a), (b), and (c)), because the
determination of the winner in each case is independent of his vote. Next, as-
sume that exactly one of the profiles, say x, falls under (a); let i < j < k witness
this. Then ϕ(x)= n, and n cannot move the profile out of (a), so we only need
to check if ϕ(x′) can be the mover. If x′ falls under (b), so ϕ(x′)= q as in (b),
then we must have q ≥ k, because agents before k do not get any votes from
preceding agents; but q = k is impossible because k cannot move out of (a),
while q > k results in k being an earlier agent than q for whom the set in (b) is
nonempty (both i and j precede k and vote for him, and at least one of them
is not x′

n). If x′ falls under (c), so ϕ(x′) = x′
n, then a change in the vote of x′

n

must leave k with at least one vote from a preceding agent (either i or j) who
is not x′

n, thus placing x′ under (b) rather than (c). Finally, assume that one of
the profiles, say x, falls under (b), and the other, x′, falls under (c). Then ϕ(x)
is determined as in (b), and this determination is independent of the vote of
ϕ(x), as remarked earlier, and also of the vote of ϕ(x′), because the latter is
x′
n = xn and his vote is ignored in (b).

19This is the case for every n ≥ 5. For n= 4, it can be shown that Impartiality, No Exclusion,
and Negative Unanimity already lead to impossibility.



188 R. HOLZMAN AND H. MOULIN

Thus the rule ϕ has all the properties stated in Example 1. Of course, Mono-
tonicity and Positive Unanimity fail for agent n, because he only wins under
(a), which requires that certain agents (i and j) not vote for him.

4. PROOF OF THEOREM 4

We consider an extension of the class of nomination rules, allowing the prize
to be awarded by a lottery. We denote by Δ(N) the set of lotteries over N , that
is,

Δ(N)=
{
δ ∈ R

N
∣∣∣δi ≥ 0 ∀i ∈N�

∑
i∈N
δi = 1

}
�

DEFINITION 4: A randomized nomination rule is a function ϕ :NN
− → Δ(N).

The interpretation is clear: given a profile of nominations x, the prize is
awarded to agent i with probability ϕi(x). The class of randomized nomina-
tion rules contains that of nomination rules, as we identify the deterministic
award of the prize to agent i with the degenerate lottery concentrated on i.
Some of the properties defined earlier for nomination rules extend naturally
to randomized ones, specifically:

• Impartiality: for all i ∈N , xi�x′
i ∈N \ {i}, and all x−i ∈NN\i

− ,

ϕi(xi� x−i)= ϕi
(
x′
i� x−i

)
�

• Negative Unanimity: for all x ∈NN
− and all i ∈N ,

si = 0 ⇒ ϕi(x)= 0�

For the next property, we consider the set SN of permutations of N . This set
acts on the set NN

− of nomination profiles in a natural way: σ ∈ SN transforms
profile x to a new profile xσ , so that whenever i nominates j in x, σ(i) nom-
inates σ(j) in xσ (in compact notation, (xσ)k = σ(xσ−1(k))). In other words,
xσ arises from x by renaming the agents according to σ . The following axiom
requires that the rule be invariant with respect to such renaming:

• Symmetry: for all σ ∈ SN , x ∈NN
− , and all i ∈N ,

ϕσ(i)
(
xσ

) = ϕi(x)�
A deterministic nomination rule cannot be symmetric.20 The advantage of

working with randomized nomination rules is that, essentially, we may assume

20To see this, take a cyclic σ ∈ SN , and consider the profile x, where xi = σ(i) for all i ∈ N .
Then xσ = x, hence Symmetry requires ϕσ(i)(x) = ϕi(x) for all i ∈ N , and therefore ϕ(x) =
(1/n� � � � �1/n).



IMPARTIAL NOMINATIONS FOR A PRIZE 189

Symmetry without loss of generality. Indeed, the operation of symmetrization,
which consists of averaging over all possible renamings of the agents, turns any
randomized nomination rule ϕ (and, in particular, any deterministic one) into
a symmetric one ϕsym, namely:

ϕ
sym
i (x)= 1

n!
∑
σ∈SN

ϕσ(i)
(
xσ

)
for all i ∈N�

We state now our main result for randomized nomination rules, and deduce
Theorem 4 from it.

PROPOSITION 1: Let ϕ be a randomized nomination rule that satisfies Impar-
tiality, Negative Unanimity, and Symmetry. Let i ∈N , and let x ∈NN

− be such that
si = n− 1. Then ϕi(x)= n−1

n
.

PROOF OF THEOREM 4: Assume, for the sake of contradiction, that ϕ is a
nomination rule satisfying Impartiality, Positive Unanimity and Negative Una-
nimity. Symmetrizing ϕ, we obtain a randomized nomination rule ϕsym. It is
easy to check that, in addition to being symmetric, ϕsym inherits from ϕ the
properties of Impartiality and Negative Unanimity. Moreover, Positive Una-
nimity of ϕ implies that if si = n−1, then ϕsym

i (x)must be 1, whereas by Propo-
sition 1 it has to be n−1

n
, a contradiction. Q.E.D.

The symmetrization argument above also implies that the statement of The-
orem 4 holds for randomized rules as well.

It remains to prove Proposition 1. As the proof is quite involved, we begin
by describing it for the case of four agents. The case n= 4 is much more trans-
parent than the general case, yet it illustrates some of the ideas that appear
in the general proof. We represent nomination profiles by nomination graphs:
directed graphs with n nodes and exactly one arc incident from each node (and
pointing to that node’s nominee). A symmetric randomized nomination rule
ϕ assigns to the nodes of any such graph their winning probabilities, and this
assignment does not depend on the labeling of the nodes by agents. Hence we
move freely between graphs in which all, part, or none of the nodes are labeled
by agents. Consider, for n= 4, the graphs in Figure 1.

Our goal is to show that if ϕ satisfies the three properties in Proposition 1,
then ϕi(d), the probability assigned to node i in Figure 1(d), must equal 3

4 .
We start with Figure 1(a): by Symmetry, all probabilities must be equal, and in
particular, ϕj(a)= 1

4 . Since agent j can change his vote to obtain Figure 1(c),
Impartiality implies that ϕj(c) = ϕj(a) = 1

4 . Next, we consider Figure 1(b):
by Negative Unanimity, only the two nodes forming a cycle may win, and
by Symmetry, their winning probabilities are equal, hence ϕi(b) = 1

2 . Since
agent i can move to Figure 1(c), Impartiality implies that ϕi(c) = ϕi(b) = 1

2 .
Considering now Figure 1(c), by Negative Unanimity only i� j�k may win,
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(a) (b)

(c) (d)

FIGURE 1.—Some nomination graphs for four agents.

so having deduced the probabilities ϕj(c) = 1
4 �ϕi(c) = 1

2 , we conclude that
ϕk(c)= 1 − ( 1

4 + 1
2)= 1

4 . But agent k can move from Figure 1(c) to 1(d), hence
by Impartiality, ϕk(d) = ϕk(c) = 1

4 . Finally, in Figure 1(d), by Negative Una-
nimity, only i�k may win, so ϕi(d)= 1 − 1

4 = 3
4 , as required.

Before starting the actual proof of Proposition 1, we introduce the nomina-
tion profiles (graphs) that appear in it, and establish some notation and simple
facts about them. We work only with a subclass of all nomination graphs; a
graph is in this subclass if it contains a directed cycle of some length r (neces-
sarily 2 ≤ r ≤ n), and from each of the nodes outside this cycle there is an arc
to a node in the cycle. We refer to the nodes in and out of the cycle as insiders
and outsiders, respectively.

For a graph in this subclass and a given insider i, we can describe the graph
from the point of view of i by an r-tuple (a1� � � � � ar), where ad is the number
of outsiders sending arcs to the insider in dth position after i along the cycle.
For example, Figure 1(a) is described from the point of view of each insider by
(0�0�0�0); Figure 1(b) by (1�1); Figure 1(c) from i’s point of view by (0�0�1),
from k’s by (0�1�0), and from j’s by (1�0�0); Figure 1(d) from i’s point of
view by (0�2), and from k’s by (2�0). Note that, in every such representation,
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we have
∑r

d=1 ad = n− r, and of course, each ad is a nonnegative integer. We
denote by Ar(n) the set of all r-tuples (a1� � � � � ar) satisfying these constraints.

Using the randomized nomination rule ϕ, for (a1� � � � � ar) ∈Ar(n) we denote
by ψ(a1� � � � � ar) the winning probability of an insider, given that (a1� � � � � ar)
describes the graph from his point of view. By Symmetry of ϕ, this is well de-
fined. To illustrate, the proof for n= 4 established, using Figures 1(a)–(d), that

a. ψ(0�0�0�0)= 1
4 ,

b. ψ(1�1)= 1
2 ,

c. ψ(1�0�0)= 1
4 �ψ(0�0�1)= 1

2 �ψ(0�1�0)= 1
4 ,

d. ψ(2�0)= 1
4 �ψ(0�2)= 3

4 .
If (a1� � � � � ar) describes the graph from a certain insider’s point of view, then

(a2� � � � � ar� a1) describes the same graph from the next insider’s point of view,
(a3� � � � � ar� a1� a2) from the following one’s, and so on. Since, by Negative Una-
nimity, only insiders may win, we obtain the identity

ψ(a1� � � � � ar)+ψ(a2� � � � � ar� a1)+ · · · +ψ(ar� a1� � � � � ar−1)= 1�(1)

PROOF OF PROPOSITION 1: Let ϕ be as in the proposition, and let ψ be the
function derived from it as explained above. We have to show thatψ(0� n−2)=
n−1
n

.
We begin by computing the sum

∑
(a1�����ar )∈Ar(n) ψ(a1� � � � � ar) for any fixed 2 ≤

r ≤ n. Consider the following equivalence relation over Ar(n): (a1� � � � � ar) ∼
(b1� � � � � br) if (b1� � � � � br) is obtained from (a1� � � � � ar) by a cyclic shift of coor-
dinates (e.g., (0�1�1�3�0�1�1�3)∼ (1�3�0�1�1�3�0�1) in A8(18)). Let Er(n)
be the set of equivalence classes of Ar(n) under ∼. Note that if (a1� � � � � ar) ∈
C ∈ Er(n), then |C| divides r, and each r-tuple in C appears in (1) exactly r/|C|
times. Thus (1) may be rewritten as r

|C|
∑

(a1�����ar )∈C ψ(a1� � � � � ar)= 1. Using this,
we compute

∑
(a1�����ar )∈Ar(n)

ψ(a1� � � � � ar)=
∑

C∈Er (n)

∑
(a1�����ar )∈C

ψ(a1� � � � � ar)=
∑

C∈Er (n)

|C|
r

(2)

= 1
r

∣∣Ar(n)
∣∣ = 1

r

(
n− 1
r − 1

)
= 1
n

(
n
r

)
�

where the last two equalities follow from a well-known counting argument for
the size of Ar(n), and a simple calculation of binomial coefficients.

Next, we observe that every r-tuple in Ar(n) with a positive first coordinate
corresponds in a one-to-one way to an (r + 1)-tuple in Ar+1(n) with first coor-
dinate zero; the pairing is given by

(a1� a2� � � � � ar) ↔ (0� a1 − 1� a2� � � � � ar)�

The crucial fact about this pairing is that an insider can move from the graph
described by one member of the pair to that described by the other member,
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both from his point of view, by changing his vote (indeed, to move from left
to right, an insider has to replace his vote for the next insider by a vote for
an outsider who supports the latter). Impartiality implies that we have, for the
pairing above,

ψ(a1� a2� � � � � ar)=ψ(0� a1 − 1� a2� � � � � ar)�(3)

The collection of all these pairs, for all 2 ≤ r ≤ n − 1, exactly covers
(
⋃n

r=2Ar(n)) \ {(0� n− 2)}. Moreover, in each pair, one member has an even
number of coordinates and the other an odd number. Summing up all the sides
of (3) with an even number of coordinates on the one hand, and all those with
an odd number on the other, gives the equality∑

(a1�����ar )∈(
⋃
r evenAr(n))\{(0�n−2)}

ψ(a1� � � � � ar)

=
∑

(a1�����ar )∈
⋃
r oddAr(n)

ψ(a1� � � � � ar)�

From here, we can compute the value of ψ(0� n− 2) with the help of (2):

ψ(0� n− 2)=
∑

(a1�����ar )∈
⋃
r evenAr(n)

ψ(a1� � � � � ar)

−
∑

(a1�����ar )∈
⋃
r oddAr(n)

ψ(a1� � � � � ar)

=
n∑
r=2

(−1)r
∑

(a1�����ar )∈Ar(n)
ψ(a1� � � � � ar)=

n∑
r=2

(−1)r
1
n

(
n
r

)

= 1
n

(
n∑
r=0

(−1)r
(
n
r

)
−

(
n
0

)
+

(
n
1

))
= n− 1

n
�

Q.E.D.

The proof of our main impossibility result—Theorem 4, and its corollary—is
now complete.

Our final remark concerns Proposition 1. In the class of randomized nom-
ination rules, the rule that assigns winning probabilities that are proportional
to the number of nominations is the most natural one. We call this rule ran-
dom dictatorship: an agent is chosen uniformly at random, and his nominee
gets the prize. If a rule satisfies Impartiality, Negative Unanimity, and Symme-
try, Proposition 1 says that it must coincide with random dictatorship at those
profiles where an agent is nominated by all others. One might ask if this is true
at all profiles, namely, if random dictatorship is characterized by these three
axioms. This is the case for n ≤ 4 (we omit the uninformative proof), but not
beyond that, as indicated by the following example.
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EXAMPLE 2—A Randomized Nomination Rule for Five Agents That Sat-
isfies Impartiality, Negative Unanimity, and Symmetry, but Is not Random
Dictatorship: We take the nomination rule ϕ defined in Example 1, and sym-
metrize it to obtain ϕsym. Since ϕ satisfies Impartiality and Negative Unanimity,
ϕsym satisfies these properties and of course Symmetry. To see that ϕsym is not
random dictatorship, consider a nomination graph that consists of two disjoint
directed cycles of lengths 2 and 3, respectively. For any labeling of the nodes by
agents numbered 1� � � � �5, the profile does not fall under case (a) of the defini-
tion of ϕ, because no agent gets two nominations. Moreover, the profile always
falls under case (b), because each cycle must contain an arc with increasing la-
bels, and one of the cycles does not contain the label 5; an increasing arc in such
a cycle provides the condition of (b). In fact, an agent q as in (b) exists only in
the cycle that does not contain 5, so the winner always belongs to that cycle. It
follows that in ϕsym, the winning probability is 3

10 for each node on the 2-cycle,
and 2

15 for each node on the 3-cycle; by contrast, in random dictatorship, the
winning probability is 1

5 for everyone.

5. AWARD RULES WITH ABSTRACT MESSAGES

We briefly discuss what can be achieved if, instead of nominations, the agents
have arbitrary message spaces. In this model, a message is abstract, and has no
natural interpretation as to who should win the prize.

The set of agents is N , as before. Each agent i ∈N is endowed with a mes-
sage space Mi, and we write MN =×i∈N M

i for the set of message profiles.

DEFINITION 5: An award rule is a function f :MN →N .

The formulations of Impartiality, No Dummy, and No Exclusion extend in
a straightforward way to award rules—replacing nominations and nomination
profiles by messages and message profiles; we do not restate them here.21

For four or more agents, there exist award rules satisfying the above three
properties, whereas for two or three agents, Impartiality is incompatible with
each one of No Exclusion and No Dummy. The following proposition is es-
sentially due to Kato and Ohseto (2004), who stated it in the context of pure
exchange economies (see item 3 in Section 1.4).

PROPOSITION 2: (i) If n ≤ 3, an impartial award rule is either constant (the
same agent wins no matter what), or has one agent choosing the winner among
the other two.

(ii) If n ≥ 4, there are impartial award rules meeting No Exclusion and No
Dummy.

21But none of Monotonicity, Negative Unanimity and Positive Unanimity, can be defined in
the abstract setting of award rules.
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PROOF: (i) The case n = 2 is very easy, and left to the reader. Now set
N = {1�2�3}. If the rule f is not constant, then some agent, say 1, can change
the outcome at some message profile, say (m2�m3), of the other agents, by
changing his message. Keeping this (m2�m3) fixed and varying m1, the winner
f (m1�m2�m3) is never 1 (by Impartiality), so we get a partition of M1 in two
nonempty parts M1(2) and M1(3), such that

f (m1�m2�m3)= j if m1 ∈M1(j)� j = 2�3�

Note that, for all m1 ∈M1(2) and m′
3 ∈M3, we cannot have f (m1�m2�m

′
3) =

1; otherwise, by Impartiality, f (m′
1�m2�m

′
3) = 1 as well for any m′

1 ∈ M1(3),
a contradiction because f (m′

1�m2�m3) = 3. Impartiality rules out f (m1�m2�
m′

3)= 3 as well, so we have f (M1(2)× {m2} ×M3)= 2; one more application
of the property gives f (M1(2)×M2 ×M3) = 2, and a symmetrical argument
gives f (M1(3)×M2 ×M3)= 3.

(ii) We describe an award rule for n ≥ 4, adapted from Kato and Ohseto
(2004). SetN =N0 ∪{i∗}, and arrangeN0 = {1�2� � � � � n−1} in this order along
a circle (so their numbers are taken modulo n−1). LetMi = {0�1} for all i ∈N ,
and, for a given m ∈MN , denote supp0(m) = {i ∈ N0|mi = 1}. The winner is
determined as follows. If supp0(m)= {i}, then i− 1 wins if mi∗ = 0, and i+ 1
wins if mi∗ = 1. If supp0(m)= {i� i+ 1}, then i wins if mi∗ = 0, and i+ 1 wins if
mi∗ = 1. In all other cases, i∗ wins. It is easy to check that this rule is impartial
and satisfies No Exclusion and No Dummy. Q.E.D.

It is interesting to note that the possibility part of Proposition 2 was estab-
lished using the smallest conceivable message spaces: |Mi| = 2 for all i. There-
fore, the impossibility/possibility frontier uncovered by Proposition 2 is inde-
pendent of the specification of message spaces.

6. CONCLUDING COMMENTS

1. Beyond a single nomination for the prize, we can think of allowing more
informative messages in at least two ways. If an agent is allowed to nominate
(approve of) one or more other agents, without ranking them, we do not see
how to process this information in a way similar to our partition methods, a
question worthy of further study. On the other hand, any method that aggre-
gates nominations of one or more agents must, in particular, aggregate nomi-
nations of single agents, and as such is subject to our negative results.

A second natural message is a complete preference over one’s peers, de-
scribing the top choice for winner, the second best choice, and so on. We can
then speak of a voting rule, completely similar to a standard voting method.
Our partition methods can be adapted to aggregate these more refined opin-
ions. Given, for each agent i, a ranking of N \ {i}, we tally the votes in two
steps. In step 1, the top choice of i in her district is her local vote, and local
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winners are chosen from these votes; in step 2, we collect from each agent who
is not a local winner her top choice among the local winners, and use those
votes to choose a global winner among local winners. Another open question
is to determine the possibility frontier of this new class of award rules, in terms
of normative properties relevant to efficiency and fairness.

2. The randomized nomination rules used in the proof of Theorem 4 are ef-
fectively dividing one unit of homogeneous commodity (the probability of win-
ning) between our agents. Thus they are related to the dollar division methods
in de Clippel, Moulin, and Tideman (2008), but with much coarser individ-
ual messages. We can adapt some of the methods discussed there to the ran-
domized voting context, when individual messages are a nomination, or a full
ordering of the peers. These rules are worthy of further study.

3. There is an escape route from the impossibility of Theorem 3, which con-
sists in restricting the domains of permissible nominations. According to this
approach, each agent i is restricted to nominate only agents in some (prede-
termined) nonempty subset Mi ⊆ N \ {i}. We were able to show that, with a
judicious choice of these subsets Mi based on a tree structure on the set of
agents, one may define impartial restricted nomination rules, called median
methods, that do satisfy the analog of Anonymous Ballots as well as other de-
sirable properties. Unfortunately, the restrictions imposed by these methods
and their asymmetric nature limit their applicability. Hence we do not pursue
this approach here; the interested reader can find the details in Holzman and
Moulin (2010).

4. It would be interesting to try to extend our work to the problem of award-
ing k identical prizes, where k is fixed and may be greater than 1. This prob-
lem was studied in Alon, Fischer, Procaccia, and Tennenholtz (2011), but with
a different approach and different message spaces than ours (as explained in
Section 1.4). Perhaps the most natural analog of our nomination rules would
have each agent nominate k other agents for the prize. It is quite straightfor-
ward to extend our main axioms to such a model. But the problem becomes
more complex, and it is not at all clear how to generalize our results.

Alternatively, we may consider profiles of single nominations as in this pa-
per, and rules that select k winners. Our partition methods may be adapted to
this setting by using an ordered list of k default agents, so that if there are only
	 < k local winners, the first k− 	 default agents join the winners. As to our
negative results, it is not difficult to generalize Theorem 3 to this setting, but
we do not know about Theorem 4.
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