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LINEAR VERSUS HEREDITARY DISCREPANCY*
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Lovász, Spencer and Vesztergombi proved that the linear discrepancy of a hypergraph H
is bounded above by the hereditary discrepancy of H, and conjectured a sharper bound
that involves the number of vertices in H. In this paper we give a short proof of this con-
jecture for hypergraphs of hereditary discrepancy 1. For hypergraphs of higher hereditary
discrepancy we give some partial results and propose a sharpening of the conjecture.

1. Introduction

The concept of hypergraph discrepancy was introduced and studied by Beck,
Sós, Spencer and others in the last two decades [2–4,13,14]. This concept
provides a unified combinatorial framework for a number of problems arising
in geometry and number theory and has found applications in many areas
(see [4, page 1442]).

The discrepancy of a hypergraph H⊆2[n] is defined by

disc(H) = min
f

max
X∈H

∣∣∣∣∣
∑
x∈X

f(x)

∣∣∣∣∣ ,
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where f ranges over all two-colorings f : [n]→{−1,1} of the ground set of H.
In words, the goal of hypergraph discrepancy is to find a two-coloring of the
vertex set such that the colors are as balanced as possible in each edge. Note
that the discrepancy of a hypergraph can be small for somewhat arbitrary
reasons (e.g. ifH is an r-uniform hypergraph and we attach a set of r vertices
to every edge inH then the resulting hypergraph has discrepancy 0 while the
discrepancy of H itself can be arbitrarily large). The following two variants
of hypergraph discrepancy are better measures of the ‘intrinsic balance’ of
a hypergraph as they are given by the worst-cases from large collections of
‘balancing problems’ that depend on H. The hereditary discrepancy of H is
defined as

herdisc(H) = max
Y ⊆[n]

disc (H|Y ) ,

whereH|Y denotes the restriction ofH to Y , i.e. the hypergraph with ground
set Y and edge set {X ∩Y :X ∈H}. The linear discrepancy of H is defined
by

lindisc(H) = max
p1,...,pn∈[0,1]

min
ε1,...,εn∈{0,1}

max
X∈H

∣∣∣∣∣
∑
i∈X

εi − pi

∣∣∣∣∣ .

The task for linear discrepancy is to round the real numbers p1, . . . ,pn up or
down in such a way as to minimize the total error on an edge of H.

An investigation of the relationship between linear and hereditary dis-
crepancy was undertaken by Lovász, Spencer and Vesztergombi [9,15]. They
proved that

lindisc(H) < herdisc(H).

We note in passing that a key lemma in Baranyai’s proof of the existence
of a factorization of the complete uniform hypergraph [1] can be viewed as
a special case of this statement. Lovász, Spencer and Vesztergombi went on
to ask: What is the maximal cn so that if H is a hypergraph on a ground
set of size n then

lindisc(H) ≤ (1− cn)herdisc(H)?

Since the hypergraph on [n] with edges {1}, . . . ,{n},{1, . . . ,n} has hereditary
discrepancy 1 and linear discrepancy at least n

n+1 (to see the latter, consider
the assignment pi= 1

n+1 for all i∈ [n]) we have cn≤ 1
n+1 .
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Conjecture 1 (Lovász, Spencer, Vesztergombi). If H is a hypergraph
on ground set [n] then

lindisc(H) ≤
(
1− 1

n + 1

)
herdisc(H).

Conjecture 1 was proved to hold for two special types of hypergraphs,
both of hereditary discrepancy 1. For interval hypergraphs (the vertex-set
is [n] and the edge-set consists of the integer intervals [i,j] for 1≤ i≤ j≤n)
Spencer [15] gave a short argument (a ‘gem’ shown to him by Lovász). For
hypergraphs with edge-set consisting of initial segments in either of two
given orderings of [n], Knuth gave a complicated proof [8]; another proof
was given independently by J. Ossowski. Knuth dubbed this the ‘two-way
rounding’ problem.

Here we prove that Conjecture 1 holds for all hypergraphs of hereditary
discrepancy 1; in fact, we prove a stronger matrix-version of the conjecture
for this special case. The linear discrepancy of an m×n real matrix A is
defined as

lindisc(A) = max
p∈[0,1]n

min
ε∈{0,1}n

‖Ap − Aε‖∞.

So, for example, the linear discrepancy of a hypergraph H equals the linear
discrepancy of the incidence matrix of H. Now, a matrix A is totally uni-
modular if each subdeterminant of A is 0,1 or −1 (for a discussion of totally
unimodular matrices and their relevance in integer programming see [11]).

Theorem 2. If A is a totally unimodular m×n matrix then

lindisc(A) ≤ 1− 1
n + 1

.

Since the incidence matrix of a hypergraph with hereditary discrepancy
1 is totally unimodular (this is a result of Ghouila-Houri [7]), it follows from
Theorem 2 that if H is a hypergraph on [n] of hereditary discrepancy 1 then
lindisc(H)≤1− 1

n+1 .
The remainder of this paper is organized as follows. The proof of The-

orem 2 is given in Section 2. Section 3 contains a corollary of Theorem 2
for hypergraphs of hereditary discrepancy greater than 1. We conclude the
paper in Section 4 by proposing a stronger version of the conjecture.
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2. Proof of Theorem 2

Let A be a totally unimodular m×n matrix and let p∈ [0,1]n. We have to
show that there exists ε∈{0,1}n such that ‖Ap−Aε‖∞ is at most n

n+1 .
Consider the polytope

Q = {x ∈ [0, 1]n : Ap� ≤ Ax ≤ �Ap�}

where ·� and �·� are the component-wise floor and ceiling functions, respec-
tively. Since A is totally unimodular, the extreme points of Q are integral.
By Carathéodory’s Theorem, there exist extreme points x1, . . . ,xn+1 of Q
and nonnegative reals λ1, . . . ,λn+1 such that

p = λ1x1 + · · ·+ λn+1xn+1,

and
∑n+1

j=1 λj =1.
Assume without loss of generality that λ1 ≥ 1

n+1 . We claim that we can
take ε=x1. To see this, first note that we have

Ap = λ1Ax1 + · · ·+ λn+1Axn+1.(1)

For i=1, . . . ,m let yi be the ith coordinate of Ap, let zi be the ith coordinate
of Ax1, and let Wi be the set of indices j ∈ {2, . . . ,n+1} for which the ith

coordinate of Axj does not equal zi. It follows from (1) and the fact that
the ith coordinate of each Axj is either yi� or �yi� that we have

|yi − zi| =
∑

j∈Wi

λj ≤ 1− 1
n + 1

.

3. Extension to Larger Hereditary Discrepancies

Seymour proved that any totally unimodular matrix (and therefore any hy-
pergraph of hereditary discrepancy 1) can be ‘built’ out of matrices coming
from a relatively simple collection [12]. Unfortunately, we have no such de-
composition theorem for hypergraphs of hereditary discrepancy d where d
is fixed and larger than 1. Furthermore, there appears to be little discussion
of constructions for rich classes of such hypergraphs in the literature.

One natural way to construct hypergraphs of hereditary discrepancy d
is to take ‘powers’ of hypergraphs of hereditary discrepancy 1: For a hyper-
graph H, we denote by H(d) the hypergraph having the same ground set
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as H, and whose edges are the disjoint unions of at most d edges from H.
Clearly, we have

herdisc(H(d)) ≤ d · herdisc(H),

and lindisc(H(d)) ≤ d · lindisc(H).

So, it follows from Theorem 2 that

herdisc(H) = 1 ⇒ lindisc
(
H(d)

)
≤

(
1− 1

n + 1

)
d.

Thus, we have the following corollary of Theorem 2:

Corollary 3. If G is a hypergraph on [n] of hereditary discrepancy d and
there exists a hypergraph H of hereditary discrepancy 1 such that G⊆H(d)

then we have

lindisc(G) ≤
(
1− 1

n + 1

)
herdisc(G).

While Corollary 3 suffices to verify Conjecture 1 for many natural hy-
pergraphs having hereditary discrepancy greater than 1, Corollary 3 does
not imply Conjecture 1. For example, there exists a hypergraph G of hered-
itary discrepancy 2 that is not contained in H(2) for any hypergraph H of
hereditary discrepancy 1.

It seems to the authors that all natural constructions for rich collections
of hypergraphs with hereditary discrepancy d are based on hypergraphs of
hereditary discrepancy 1 in a way that makes it easy to verify Conjecture 1
for the given collection as a consequence of Theorem 2. The ‘powers’ of hy-
pergraphs of hereditary discrepancy 1 discussed above are just one example
of this phenomenon. A construction that does not have this property (i.e. a
construction that produces a rich collection of hypergraphs of hereditary dis-
crepancy d and is independent of the hypergraphs of hereditary discrepancy
1 in that Conjecture 1 cannot be easily verified for the collection using The-
orem 2) might give some insight into Conjecture 1 and would be interesting
in its own right.

4. A Stronger Conjecture

Note that the simple extremal example for Conjecture 1 (i.e. the hyper-
graph having vertex set {1, . . . ,n} and edges {1},{2}, . . . ,{n},{1,2, . . . ,n}) is
a hypergraph of hereditary discrepancy 1. Furthermore, there appears to be
no extremal example having larger hereditary discrepancy. We believe that
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Conjecture 1 can be sharpened by including a dependence on the hereditary
discrepancy.

Let Hn be the interval hypergraph on [n]; that is, the hypergraph on
vertex-set [n] whose edge-set consists of the integer intervals [i,j] for 1≤ i≤
j≤n.

Theorem 4. For d=1, . . . ,
⌊

n+2
2

⌋
we have

lindisc
(
H(d)

n

)
=

(
1− d

n + 1

)
d.

The proof of Theorem 4 is deferred to the end of this section. Now, the
hypergraph H(d)

n is known to have the maximum number of edges among
hypergraphs on n vertices having hereditary discrepancy at most d [10], and
so, in a sense, it is the hardest instance of the rounding problem within this
family of hypergraphs.

Conjecture 5. If H is a hypergraph on vertex set [n] of hereditary discrep-
ancy d then we have

lindisc (H) ≤
(
1− d

n + 1

)
d.

The best known upper bound on the linear discrepancy of a hypergraph
H on vertex set [n] with hereditary discrepancy d follows from two results.
The first is the fact, mentioned above, that the maximum number of edges in
such a hypergraph is the number of edges in H(d)

n , which we denote f(n,d).
The second is the bound lindisc(H) ≤

(
1− 1

2m

)
d, where m is the number

of edges in H, which follows from a modification of a rounding argument
given by Spencer in [15] (see [5]). Combining these observations, we see that
the linear discrepancy of a hypergraph on vertex set [n] with hereditary
discrepancy d is at most

(
1− 1

2f(n,d)

)
d. In particular, if we write this bound

in the form lindisc(H)≤ (1−cn,d)d then cn,d is 1 over a polynomial in n of
degree 2d.

In connection with Theorem 4, we make the following remark, the proof
of which is excluded for the sake of brevity.

Remark 6. Given p1,p2, . . . ,pn ∈ [0,1] there exist ε1, ε2, . . . , εn ∈ {0,1} such
that

∣∣∣∣∣
b∑

i=a

pi − εi

∣∣∣∣∣ ≤ 1− 1
n + 1

for 1 ≤ a ≤ b ≤ n
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and∣∣∣∣∣
b∑

i=a

pi − εi +
d∑

i=c

pi − εi

∣∣∣∣∣ ≤ 2
(
1− 2

n + 1

)
for 1 ≤ a ≤ b < c ≤ d ≤ n.

In words, Remark 6 says that it is possible to round real numbers as-
signed to [n] such that the error over any interval is at most 1− 1

n+1 and the
error over any union of two disjoint intervals is at most 2

(
1− 2

n+1

)
. In other

words, it is possible to achieve the linear discrepancies of Hn and H(2)
n simul-

taneously. This observation leads naturally to the question: Given weights
p1,p2, . . . ,pn∈ [0,1], does there exist a rounding such that the error over the
disjoint union of d intervals is at most d

(
1− d

n+1

)
for d=1, . . . ,

⌊n+2
2

⌋
?

We now turn to the proof of Theorem 4. We note that the d=1 case of
Theorem 4 was proved by Lovász (this is the ‘gem’ mentioned by Spencer)
and that the main idea in Lovász’s proof is central to the proof of Theorem 4
that we give here.

Proof of Theorem 4. We first show that any collection of weights
p1, . . . ,pn∈ [0,1] on the vertices can be rounded to integers so that the error
on every edge is at most (1− d

n+1)d.
We begin by associating the collection of weights with a collection of

intervals on the unit circle. We use the following notational convention for
circular intervals: if a>b then [a,b]=[a,1)∪[0, b]. We denote by |I| the length
of the circular interval I. Set a0=0 and for i=1, . . . ,n set

ai =
i∑

j=1

pj (mod 1).

The points a0, . . . ,an partition the unit circle naturally into a collection of
intervals which we enumerate in cyclic order as J0, . . . ,Jn (n.b. some of these
intervals may be trivial). For notational convenience, the subscripts of these
intervals are taken modulo n+1.

Claim. There exists k such that

d |Jk|+
d−1∑
i=1

(d − i) (|Jk−i|+ |Jk+i|) ≥
d2

n + 1
.

Proof. Assume for the sake of contradiction that no such k exists. Summing
over the resulting n+1 strict inequalities we have

d2 = (n + 1)
d2

n + 1
>

n∑
i=0

|Ji|


d +

d−1∑
j=1

2j


 = d2

n∑
i=0

|Ji| = d2.
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We are now ready to define the rounding ε1, ε2, . . . , εn ∈{0,1}. Let Jk be
the interval given by the Claim. For i = 1, . . . ,n we set Ii = [ai−1,ai] (note
that each Ii is the union of consecutive Jj’s) and set εi = 1 if and only if
Jk⊆Ii.

Note that the absolute value of the rounding error over the integer interval
[i,j], where 1≤ i≤ j ≤n, equals the length of the circular arc between ai−1

and aj that does not contain Jk. Now, every edge of H(d)
n is the union of at

most d such intervals [i1, j1], [i2, j2], . . ., with all indices i1−1, j1, i2−1, j2, . . .
distinct. Therefore, the total error over such an edge is at most

d − d|Jk| − (d − 1) (|Jk+1|+ |Jk−1|)− · · · − (|Jk+d−1|+ |Jk−d+1|)

(note that here we use d ≤
⌊n+2

2

⌋
). By the choice of k, this bound on the

error is at most
(
1− d

n+1

)
d.

We have shown that the linear discrepancy of H(d)
n is at most

(
1− d

n+1

)
d.

It remains to exhibit an assignment of weights p1, . . . ,pn∈ [0,1] that cannot
be rounded to integers ε1, . . . , εn ∈{0,1} with the rounding error over every
edge strictly less than

(
1− d

n+1

)
d. Consider the assignment pi = d

n+1 for

i=1, . . . ,n. Since any d-element subset of [n] is an edge of H(d)
n , a rounding

that assigns d or more 1’s will produce an edge whose error is
(
1− d

n+1

)
d. On

the other hand, if fewer than d 1’s are assigned then the set {i∈ [n] : εi=0}
is an edge of H(d)

n whose error is at least
(
1− d

n+1

)
d.
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