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Abstract In the problem of judgment aggregation, a panel of judges has to evaluate
each proposition in a given agenda as true or false, based on their individual evalua-
tions and subject to the constraint of logical consistency. We elaborate on the relation
between this and the problem of aggregating abstract binary evaluations. For the spe-
cial case of truth-functional agendas we have the following main contributions: (1) a
syntactical characterization of agendas for which the analogs of Arrow’s aggregation
conditions force dictatorship; (2) a complete classification of all aggregators that sat-
isfy those conditions; (3) an analysis of the effect of weakening the Pareto condition
to surjectivity.

1 Introduction

The problem of judgment aggregation has received a significant amount of attention
recently; see, e.g., the survey by List and Puppe (2007). It can be described as follows.
There is a panel of n judges that faces an agenda P of m logical propositions, whose
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222 E. Dokow, R. Holzman

truth or falsehood has to be determined.1 The propositions are interrelated, and so only
a certain subset of all 2m such determinations are logically consistent. The problem
is to aggregate the n individual evaluations, each of which is assumed to be logically
consistent, into a joint evaluation that needs to be logically consistent. Starting from the
first axiomatic treatment by List and Pettit (2002), the literature has identified various
combinations of conditions on the agenda and requirements from the aggregator that
force the aggregator to be dictatorial. Certain ways out of this predicament have also
been explored.

There exists in the literature also a related, but different model of abstract
aggregation. In that model, there are n individuals facing m issues, each admitting
two possible positions denoted by 0 and 1. The issues are abstract, not represented
by logical propositions. Rather, there is an exogenously given subset X of {0, 1}m ,
with the interpretation that only the evaluations in X are feasible. The problem is to
aggregate each n-tuple of individual feasible evaluations into a joint feasible evalua-
tion. This framework for abstract aggregation theory was introduced by Wilson (1975)
and further developed by Rubinstein and Fishburn (1986a) and Fishburn and Rubin-
stein (1986b). These authors showed that the problem of (strict) preference aggregation
may also be cast in this framework, and Arrow’s (1951) impossibility theorem for that
problem may be obtained as a special case of certain results for the abstract frame-
work. In an earlier paper (Dokow and Holzman 2005), we identified two conditions
on the set X of feasible evaluations, called total blockedness and nonaffineness, which
together characterize those sets X for which the natural analog of Arrow’s theorem
holds true. Namely, they characterize the sets X such that every IIA and Paretian2

aggregator f : Xn → X must be dictatorial.3

We proceed to describe the contributions of the current paper. In Sect. 2, after giving
the formal definitions of the logic-based and the abstract frameworks, we show that
they are equivalent in the following sense. Clearly, from an instance of the logic-based
framework with agenda P , we can construct a corresponding instance of the abstract
framework by taking X = X (P) to be the set of logically consistent evaluations
of the propositions in P . Conversely, given a nonempty subset X of {0, 1}m , we
show how to construct an agenda P of m propositions so that X (P) = X . The
construction is canonical but is not unique: there may be different agendas P and P ′
so that X (P) = X (P ′). In this sense, passing from the logic-based framework to
the abstract one entails a loss of information. This loss may be significant for certain
aspects of the aggregation problem, as pointed out by List and Puppe (2007), but
for the questions of possibility versus impossibility that we consider here, the set X
contains all the relevant information.

1 The literature has considered also some more general models, allowing for infinite agendas, or for many-
valued logic, or for incomplete determinations of truth. We will not be concerned with these relaxations
here.
2 We say that an aggregator is IIA (independent of irrelevant alternatives) if the joint position on any given
issue depends only on the individual positions on that same issue. We say that an aggregator is Paretian if
any unanimously held position is adopted as the joint position.
3 The condition of total blockedness was introduced by Nehring and Puppe (2002) in a different, but
equivalent framework of property spaces. In our terminology, they proved that this condition characterizes
the sets X such that every monotone IIA and Paretian aggregator f : Xn → X must be dictatorial.
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Aggregation of binary evaluations for truth-functional agendas 223

Nevertheless, it is desirable to have a procedure to determine whether or not a given
agenda P is an impossibility agenda, in the sense that every IIA and Paretian aggrega-
tor for it must be dictatorial. In principle, this could be done by passing to X = X (P)
and then checking the conditions on X , but being able to check this directly on P , in
terms of the syntactical structure of the propositions, would be more satisfactory. After
recalling in Sect. 3, for the reader’s convenience, the characterization of impossibility
in terms of X from Dokow and Holzman (2005), we give a corresponding characteriza-
tion in terms of P in Sect. 4. This version of the characterization, however, is restricted
to a class of agendas called truth-functional. An agenda is truth-functional if it can be
split into two parts, so that the evaluation of the propositions in the first part (the
premises) is constraint-free, and it entirely determines the evaluation of the propo-
sitions in the second part (the conclusions).4 A pleasing aspect of our syntactical
characterization of impossibility for truth-functional agendas is that the conditions
are easy to verify: it yields a computationally efficient procedure to classify P as a
possibility or an impossibility agenda.5

In Sect. 5, we characterize all IIA and Paretian aggregators for any given truth-
functional agenda P . Essentially (and excluding some trivial exceptions), all such
aggregators are combinations of oligarchic rules and parity rules.6 Thus, even if P
is a possibility agenda, only some very specific (and arguably unattractive) IIA and
Paretian aggregators are available for it.7 The conclusion is that, at least for nontrivial
truth-functional agendas, the IIA and Pareto requirements from the aggregator are
indeed extremely demanding and need to be relaxed.

In Sect. 6, we explore the relaxation of the Pareto condition.8 We replace it with
the requirement that the aggregator be surjective, so that every logically consistent
evaluation is attained as the joint evaluation for some profile of individual evaluations.
It turns out that if a truth-functional agenda P satisfies the conditions of Sect. 4
(under which IIA and Pareto allow only dictatorship), this weakening ushers in only
aggregators, which are dictatorial up to the reversal of the position on some prescribed
subagenda.9 Such aggregators may or may not be available, depending on the agenda,
and in any case, they are not attractive.

4 This is essentially equivalent to assuming that every atomic proposition that appears in some proposition
in P is itself a member of P . When this is the case, we can take the atomic propositions to be the premises,
and the composite propositions to be the conclusions.
5 Nehring and Puppe (2008) independently obtained a characterization of truth-functional agendas that
are impossibility agendas in their sense (which requires that every monotone IIA and Paretian aggregator
be dictatorial). They also extended their characterization to handle situations where the evaluation of the
premises is not free, but subject to certain constraints.
6 The part of this result that singles out oligarchic rules has its monotone counterpart in Nehring and Puppe
(2008).
7 We also characterize when one can find, among the available aggregators, some that satisfy additional
desirable properties such as no veto power, neutrality, and anonymity. These extra requirements further
restrict the realm of possibility.
8 Some relaxations of IIA were recently studied by Mongin (2005) and Dietrich (2006).
9 In a related result, Dietrich and List (2007) gave conditions that single out two kinds of aggregators:
dictatorship and inverse dictatorship. The more intricate possibility of reversing the dictator’s positions
only on some propositions did not come up in their analysis, because they assumed systematicity, which
requires equal treatment of all propositions. Their result was not limited to truth-functional agendas.
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2 Two frameworks and the equivalence between them

In the logic-based framework for judgment aggregation, we consider the language
of propositional logic that contains the atomic propositions p1, . . . , pk and the con-
nectives ¬,∧,∨,→,↔.10 Let L(p1, . . . , pk) be the set of all propositions in this
language, that is, the smallest set L of expressions that includes p1, . . . , pk and sat-
isfies: ϕ ∈ L implies (¬ϕ) ∈ L, and ϕ,ψ ∈ L implies (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ →
ψ), (ϕ ↔ ψ) ∈ L. We use the binary digits 0 and 1 as truth values (meaning “false”
and “true” respectively). For u ∈ {0, 1}, we let u be the other element of {0, 1},
and for u, v ∈ {0, 1}, we denote by u + v their sum modulo 2. Given an assign-
ment t = (t1, . . . , tk) ∈ {0, 1}k of truth values to the atomic propositions, we define
inductively the truth value Tt (ϕ) ∈ {0, 1} of ϕ ∈ L(p1, . . . , pk) by the following
rules: (1) Tt (pi ) = ti , (2) Tt (¬ϕ) = Tt (ϕ), (3) Tt (ϕ ∧ ψ) = min{Tt (ϕ), Tt (ψ)},
(4) Tt (ϕ ∨ ψ) = max{Tt (ϕ), Tt (ψ)}, (5) Tt (ϕ → ψ) = max{Tt (ϕ), Tt (ψ)}, and
(6) Tt (ϕ ↔ ψ) = Tt (ϕ)+ Tt (ψ).

The agenda in a judgment aggregation problem is the set of propositions whose
truth values need to be determined; in our set-up, it is a nonempty finite subset P
of L(p1, . . . , pk). For convenience, we assume that the propositions in P are listed
as P = {ϕ1, . . . , ϕm}, but the order is arbitrary and does not carry any substantial
meaning (such as priority).11 The set {0, 1}m is the set of evaluations of P , with the
j th coordinate representing the truth value assigned to ϕ j . Its subset

X (P) = {(Tt (ϕ1), . . . , Tt (ϕm))| t ∈ {0, 1}k}

is the set of all logically consistent evaluations of P .
In the abstract aggregation framework, we consider a nonempty finite set of issues J .

For convenience, we identify J with the set {1, . . . ,m} of coordinates of vectors of
length m = |J |. We think of issues as abstract entities on which two positions are
possible, and denote those positions by 0 and 1. Thus, {0, 1}m is the set of evaluations
of J , with the j th coordinate representing the position taken on issue j . We assume
that some nonempty subset X of {0, 1}m is given. The evaluations in X are called
feasible; the others are infeasible. Feasibility is viewed as the primitive notion in this
framework, and it may have different interpretations in different applications.

One concrete application of the abstract framework is to the logic-based framework
described above. Given an agenda P = {ϕ1, . . . , ϕm}, we can view ϕ1, . . . , ϕm as
the issues, and take X = X (P), so that feasibility means logical consistency. Thus,

10 We follow the standard construction of the propositional calculus, except that we assume that there are
only finitely many atomic propositions. Since we are going to consider only finite agendas, this will suffice
for our purposes.
11 We could allow the list ϕ1, . . . , ϕm to include repetitions, but there is no gain in that; so, we assume
that |P| = m. (We do allow, however, two propositions in P to be logically equivalent.) We note that most
authors represent such an agenda as consisting of ϕ1,¬ϕ1, . . . , ϕm ,¬ϕm , and consider complete judgment
sets that contain one member of every pair ϕ j ,¬ϕ j ; this is equivalent to assigning the value 1 or 0 to each
ϕ j in our set-up. Incomplete judgment sets, containing at most one member of every pair ϕ j ,¬ϕ j , are not
captured by the framework described here, but this can be done by extending the set {0, 1} to {0, 1, ∗}; see
Dokow and Holzman (2006).
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any instance of the logic-based framework may be viewed, by abstracting from the
propositions, as an instance of the abstract framework. We show next that all instances
of the abstract framework are obtained in this way, which implies that the logic-
based framework is as general as the abstract one. Indeed, the following proposition
asserts that any abstract instance with m issues may be represented by an agenda in
a language with m atomic propositions, i.e., k = m. Of course, in some cases, fewer
atomic propositions could suffice.

Proposition 2.1 For every nonempty subset X of {0, 1}m, there exists an agenda P =
{ϕ1, . . . , ϕm} ⊆ L(p1, . . . , pm) so that X (P) = X.

Proof Let ∅ 
= X ⊆ {0, 1}m be given. We denote by X� the projection of X on the first
� coordinates. We are going to construct the propositions ϕ1, . . . , ϕm inductively, so
that by denoting P� = {ϕ1, . . . , ϕ�}, we will have after the �th stage of the construction
P� ⊆ L(p1, . . . , p�) and X (P�) = X�.

At the first stage, we let

ϕ1 =
⎧
⎨

⎩

p1 if X1 = {0, 1}
p1 ∧ ¬p1 if X1 = {0}
p1 ∨ ¬p1 if X1 = {1}

Suppose that 1 ≤ � ≤ m − 1 and we have already constructed P� satisfying the
requirements. For each u ∈ {0, 1}, let

X�,u = {(x1, . . . , x�) ∈ X�| (x1, . . . , x�, u) /∈ X�+1}

Note that X�,0 and X�,1 are two (possibly empty) disjoint subsets of X�. For every
x = (x1, . . . , x�) ∈ X�,0 ∪ X�,1, let

φx = ϕ
x1
1 ∧ · · · ∧ ϕx�

�

where ϕ
x j
j denotes ϕ j if x j = 1 and ¬ϕ j if x j = 0. Note that, for any assignment

t = (t1, . . . , t�) ∈ {0, 1}� of truth values to p1, . . . , p�, we have

Tt (φx ) = 1 ⇔ Tt (ϕ j ) = x j for j = 1, . . . , �

Now we define

ϕ�+1 =
⎛

⎝p�+1 ∧ ¬
⎛

⎝
∨

x∈X�,0

φx

⎞

⎠

⎞

⎠ ∨
⎛

⎝
∨

x∈X�,1

φx

⎞

⎠

with the provision that if any of the sets X�,u is empty then the corresponding part
of ϕ�+1 is dropped. It is easily checked that X (P�+1) = X�+1, as required for the
inductive construction. ��
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In view of Proposition 2.1, it is clear that any aggregation problem that can be
modeled by the logic-based framework may also be modeled by the abstract frame-
work, and vice versa, but the model in the logic-based framework has an extra in-
gredient, the agenda, that is not present in the abstract framework, and cannot be
uniquely reconstructed from the abstract model. Since the problem focuses on ag-
gregating evaluations in X [or X (P)], it seems that for most purposes the abstract
framework is adequate and the extra ingredient of P is redundant. Nevertheless, when
the aggregation problem is naturally formulated in logical terms by an agenda P , one
may want to answer natural questions in logical terms, thus keeping P in the picture;
this is what we do for most of this paper.

Another comment concerns the choice of logical language. In choosing the propo-
sitional calculus, we follow the practice of the first papers on judgment aggregation.
More recently, other logics were considered, and results were obtained for any logic
satisfying certain criteria (Dietrich 2007). The trivial direction of the equivalence ex-
plained above, i.e., the fact that any logical agenda gives rise to an instance of the
abstract framework, does extend to general logics, provided they are two-valued and
the concept of logical consistency is well defined. The other direction, supplied by
Proposition 2.1, will depend on the properties of the logic under consideration. With-
out going into a detailed analysis, we note intuitively that the equivalence will hold
for any sufficiently expressive logic.

In the rest of this section, we introduce some types of agendas and some conventions
on how we write propositions. First, in the interest of readability, we denote atomic
propositions by p, q, . . . (rather than p1, p2, . . .). Secondly, since different syntactical
forms such as p → q and ¬p ∨q may represent logically equivalent propositions, we
choose a particular form of writing propositions. Every proposition may be expressed
in disjunctive normal form (abbreviated DNF), that is, as a disjunction of one or more
clauses, each of which is a conjunction of one or more literals (a literal is an atomic
proposition or its negation). For example, the expression

(¬p ∧ ¬q ∧ ¬r) ∨ (¬q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)

is in DNF, with the expressions in parentheses as its clauses. A DNF may not be
minimal in one or both of the following senses. It may happen that a literal may be
dropped from a clause without altering the set of satisfying assignments. For instance,
the literal ¬r may be dropped from the first clause in the example above, because when
p and q are false and r is true, the proposition is also true due to its second clause.
Also, it may be the case that an entire clause may be dropped without altering the set
of satisfying assignments. For instance, the third clause in the example above may be
dropped, because any satisfying assignment for it also satisfies either the second or
the fourth clause. Thus, an expression in minimal DNF for our example would be

(¬p ∧ ¬q) ∨ (¬q ∧ r) ∨ (p ∧ q).

Note also that after dropping ¬r from the first clause, we could have dropped the
second clause instead of the third, thus obtaining the logically equivalent minimal
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DNF

(¬p ∧ ¬q) ∨ (p ∧ r) ∨ (p ∧ q).

The nonuniqueness of minimal DNF expression will not cause any trouble.
We will consider agendas P , which do not contain any proposition that is a tautology

or a contradiction, and in which each proposition is in minimal DNF. Such an agenda P
will be called standard. Note that restricting our attention to standard agendas entails
no loss of generality.12

We will adopt the following notation and terminology. The literals p and ¬p will
also be referred to as p1 and p0, respectively. When we say, for some specific u ∈
{0, 1}, that pu appears in a proposition ϕ, we mean that it has an appearance in ϕ in
this particular form. When we just say that p appears in ϕ, we mean that it has an
appearance in ϕ, which may be either as p or as ¬p. (e.g., p1 appears in p ∧ q but
not in ¬p ∧ q, while p appears in both.)

A proposition ϕ in DNF is of exactly one of the following four types. It may be
a literal, or it may be a conjunction of two or more literals (we call this an and
proposition), or it may be a disjunction of two or more literals (we call this an or
proposition), or it may be a disjunction of two or more clauses, at least one of which
is a conjunction of two or more literals (we call this an or- and proposition).

An agenda P = {ϕ1, . . . , ϕm} is called truth-functional, if it can be split into
two parts, say P1 = {ϕ1, . . . , ϕ�} (the premises) and P2 = {ϕ�+1, . . . , ϕm} (the
conclusions), so that X (P1) = {0, 1}� and for each � + 1 ≤ j ≤ m there exists
a function g j : {0, 1}� → {0, 1} so that Tt (ϕ j ) = g j (Tt (ϕ1), . . . , Tt (ϕ�)) for every
assignment t of truth values to the atomic propositions. Clearly, not all agendas are
truth-functional,13 but some of the judgment aggregation literature has focused on
truth-functional agendas, and so do we in this paper. The pragmatic reason for that is
the ability to use the aggregation of evaluations of the premises as a stepping stone for
dealing with the full aggregation problem.

For an agenda P , we denote by Pa the set of atomic propositions that appear in
some proposition in P . A sufficient condition for P to be truth-functional is that
Pa ⊆ P , because then we can take P1 = Pa. This condition is not necessary for
truth-functionality: for example,

P = {p, q ∧ r, p ∨ (q ∧ r)}
is truth-functional (with premises p and q ∧ r ) even though q, r ∈ Pa\P , but it is
easy to see that any truth-functional agenda P may be transformed into an agenda P ′
satisfying P ′

a ⊆ P ′ without affecting X (P). For instance, P of the above example

12 Indeed, suppose we are given an arbitrary agenda P . Then, we can pass from P to a standard agenda
P ′ by deleting any tautologies or contradictions, and replacing each remaining proposition that is not in
minimal DNF by a logically equivalent one in minimal DNF. This change does not affect the aggregation
problem as it is treated here. (Although, on a conceptual level, one may assign importance to the syntax of
the propositions in the agenda, in which case the assumption of a standard agenda would not be innocuous.)
13 One way to see this is to note that the definition of truth-functionality implies that |X (P)| is of the form
2�, whereas for general agendas there is no such restriction.
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may be transformed into

P ′ = {p, s, p ∨ s}.
Thus, when dealing with truth-functional agendas, there is no loss of generality in
assuming that Pa ⊆ P . An agenda P will be called standard truth-functional if it is
standard (in the sense defined above) and satisfies Pa ⊆ P .14

3 A general characterization of impossibility domains

In this section, we recall the definitions and the main result of Dokow and Holzman
(2005). They are stated in the abstract framework of aggregation, for a given subset X
of {0, 1}m , but they apply also to the logic-based framework upon setting X = X (P).

A society is a finite, nonempty set N . For convenience, if there are n individuals
in N , we identify N with the set {1, . . . , n}. If we specify a feasible evaluation xi =
(xi

1, . . . , xi
m) ∈ X for each individual i ∈ N , we obtain a profile of feasible evaluations

x = (xi
j ) ∈ Xn . We may view a profile as an n × m matrix all of whose rows lie in X .

We use superscripts to indicate individuals (rows) and subscripts to indicate issues
(columns).

An aggregator for N over X is a mapping f : Xn → X . It assigns to every possible
profile of individual feasible evaluations, a social evaluation, which is also feasible.
Any aggregator f may be written in the form f = ( f1, . . . , fm), where f j is the j th
component of f . That is, f j: Xn → {0, 1} assigns to every profile the social position
on the j th issue.

An aggregator f : Xn → X is independent of irrelevant alternatives (abbreviated
IIA) if for every j ∈ J = {1, . . . ,m} and any two profiles x and y satisfying xi

j = yi
j

for all i ∈ N , we have f j (x) = f j (y). This means that the social position on a given
issue is determined entirely by the individual positions on that same issue. Viewing
profiles as matrices, this means that the aggregation is done column-by-column.

An aggregator f : Xn → X is Paretian if we have f (x) = x whenever the profile
x is such that xi = x for all i ∈ N . Note that in the presence of IIA, this is equivalent
to demanding that whenever all individuals agree on any one issue, the society adopts
this position on that issue.

An aggregator f : Xn → X is dictatorial if there exists an individual d ∈ N
such that f (x) = xd for every x ∈ Xn . That is to say, the society always adopts the
dictator’s evaluation. A dictatorial aggregator is trivially IIA and Paretian.

We say that X is an impossibility domain if for every society N , every IIA and
Paretian aggregator for N over X is dictatorial. Otherwise, we say that X is a possibility
domain. When dealing with the logic-based framework, we shall refer to an agenda P
as an impossibility or a possibility agenda, meaning that X (P) is an impossibility or
a possibility domain, respectively.

14 By a process similar to that explained in footnote 12, we can pass from an arbitrary truth-functional
agenda P to a standard truth-functional agenda P ′. Then, we can check the relevant syntactical conditions
(as they appear in our results) on P ′, and deduce the corresponding results for P . In fact, this two-step
method extends also to truth-functional agendas that are originally expressed in other (two-valued) logics.
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For the purpose of characterizing impossibility domains, there is no loss of generality
in assuming nondegeneracy in the following sense. We say that X is nondegenerate,
if for every issue j ∈ J and every u ∈ {0, 1}, there exists x ∈ X with x j = u. In terms
of P , this means that we do not allow it to contain a tautology or a contradiction (this
condition is included in the definition of a standard agenda).

We turn now to the presentation of the first condition that appears in our characteri-
zation. The condition, named total blockedness, was introduced by Nehring and Puppe
(2002). Let X be a nondegenerate subset of {0, 1}m . If K is a subset of J , a vector
x = (x j ) j∈K ∈ {0, 1}K with entries for issues in K only is called a K -evaluation.
Such a partial evaluation is said to be feasible if it lies in the projection of X on the
coordinates in K , and infeasible otherwise. A minimally infeasible partial evaluation
(abbreviated MIPE) is a K -evaluation x = (x j ) j∈K for some K ⊆ J , which is in-
feasible, but such that every restriction of x to a proper subset of K is feasible. By
nondegeneracy, the length of any MIPE (i.e., the size of K ) is at least two. We use
the MIPEs to construct a directed graph associated with X , denoted by G X . It has
2m vertices, labelled 01, 11, 02, 12, . . . , 0m, 1m . The vertex u j is to be interpreted as
holding the position u on issue j . There is an arc in G X from vertex uk to vertex v�
(written uk → v�) if and only if k 
= � and there exists a MIPE x = (x j ) j∈K such that
{k, �} ⊆ K and xk = u, x� = v. The interpretation of uk → v� is that uk conditionally
entails v� in the following sense: conditional on holding the positions prescribed in the
MIPE x on all issues in K\{k, �}, holding position u on issue k entails holding position
v on issue � (since x is infeasible). If uk → v� by virtue of a MIPE of length two, then
uk entails v� in the usual sense, without conditions. Note that the arcs obey the logical
law of contrapositives: uk → v� if and only if v� → uk . We write uk →→ v� if there
exists a directed path in G X from uk to v�. Finally, we say that X is totally blocked if
G X is strongly connected, that is, for any two vertices uk and v� we have uk →→ v�.

The second condition that appears in our characterization comes from linear algebra.
The set {0, 1}m may be viewed as a vector space over the field {0, 1}. In this space,
addition is preformed modulo 2, and subtraction is the same as addition. A linear
subspace is a nonempty subset closed under addition. An affine subspace is a subset
obtained from a linear subspace by adding a fixed vector to each of its elements.

Theorem 3.1 (Dokow and Holzman 2005) Let X be a nondegenerate subset of {0, 1}m.
Then X is an impossibility domain if and only if X is totally blocked and is not an
affine subspace.

4 A syntactical characterization of impossibility for truth-functional agendas

In this section, we give a necessary and sufficient list of conditions for a standard
truth-functional agenda P to be an impossibility agenda. The conditions are expressed
directly in terms of P (not X , as in Theorem 3.1), and refer to the actual form in which
the propositions are written (their syntax).

Before stating the characterization, we introduce each condition separately. First,
we associate with P an undirected graph GP . Its vertex set is Pa, and two atomic
propositions p and q are joined by an edge in GP if and only if there exists a proposition
ϕ in P so that both p and q appear in ϕ. We say that P is connected if the graph GP
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is connected. For instance, P = {p, q, r, s, (p ∧ ¬r) ∨ s,¬q ∧ r} is connected, but
P = {p, q, r, s, p ∨ ¬q, r ∧ s, r ∨ s} is not.

We say that P is heterogeneous if it either contains at least one or- and proposition
or, failing that, there is at least one reversal in P , in the following sense: for some
p ∈ Pa, some u ∈ {0, 1}, and some ϕ,ψ ∈ P , either ϕ is an and proposition, ψ is
an or proposition, and pu appears in both; or ϕ and ψ are both and propositions or
both or propositions, and pu appears in ϕ while pu appears in ψ . For instance, P =
{p, q, r, p ∧q, q ∨ (p ∧r)} is heterogeneous and so is P = {p, q, r, p ∧¬q,¬q ∨r},
but P = {p, q, r, p ∨ ¬q,¬p ∧ r} is not.

We say that a propositionϕ in P is parity-dependent if for some subset {p1, . . . , ph}
of Pa and some u ∈ {0, 1}, ϕ is the disjunction of all clauses of the form pu1

1 ∧· · ·∧ puh
h

with
∑h

j=1 u j ≡ u(mod 2). We say that P is parity-dependent if every proposition ϕ
in P is parity-dependent. For instance, P = {p, q, r, (¬p ∧¬q)∨ (p ∧q), (q ∧¬r)∨
(¬q ∧ r)} is parity-dependent, but P = {p, q, r, (¬p ∧ ¬r) ∨ (p ∧ r), q ∧ r} is not.

We are now ready to state our characterization.

Theorem 4.1 Let P be a standard truth-functional agenda. Then P is an impossibility
agenda if and only if P is connected, heterogeneous, and not parity-dependent.

Before proving the theorem, we discuss its relation to some other impossibility
results for truth-functional agendas. Pauly and van Hees (2006) and Mongin (2005)
placed weaker requirements than ours on the aggregator, from which they derived
that it must be dictatorial. Pauly and van Hees weakened the Pareto property to weak
responsiveness (meaning that the aggregator is nonconstant), while Mongin weakened
the IIA property by requiring it only for atomic propositions. In both cases, the authors
required agenda conditions that are stronger than ours, and proved only their sufficiency
for impossibility in the respective sense to hold, not their necessity.15 Nehring and
Puppe (2008) placed a stronger requirement than ours on the aggregator, replacing the
IIA property by monotone independence (requiring that if a proposition is deemed true
by the society for a given profile, and in another profile that proposition is supported
by the same or more individuals, then it is still deemed true by the society). For
the corresponding notion of impossibility, they gave necessary and sufficient agenda
conditions: irreducibility and nonconjunctiveness. These two correspond, respectively,
to our conditions of connectedness and heterogeneity.16

We will show in the proof that these two conditions onP amount to total blockedness
of the corresponding set X = X (P) of logically consistent evaluations, and parity
dependence of P is equivalent to X being an affine subspace. Theorem 4.1 will then
follow from Theorem 3.1.

We break the proof into several claims. In all claims, we assume, without explicitly
repeating this, that P is a standard truth-functional agenda and X = X (P). The

15 It is interesting to note that for |Pa | = � ≥ 3 the agenda condition of Pauly and van Hees required that
all 2�(�−1) propositions of the form pu ∧qv belong to P , whereas our theorem shows that as few as �−1
of them can suffice for impossibility in our sense. Moreover, our agenda conditions may be satisfied also
by propositions that are not of this form, and in fact one or- and proposition can suffice.
16 Nehring and Puppe used different conventions than ours for writing propositions, and phrased their
agenda conditions in different terms, which are not purely syntactical like ours. Nevertheless, their conditions
are essentially equivalent to our first two conditions.
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subscripts used for the coordinates of evaluations and for the vertices of the directed
graph G X (defined in Sect. 3), rather than being the numbers 1, . . . ,m, will be the
corresponding propositions in P .

Claim 4.2 Suppose that ϕ is a proposition in P , which is not atomic, and pu is a literal
that appears in ϕ. Then,

1. u p → 1ϕ in G X .
2. If qv is another literal that appears in the same clause of ϕ as pu , then u p → vq

in G X .
3. 1ϕ → u p in G X .
4. If pu does not appear in every clause of ϕ, then there exists a literal rw that appears

in ϕ so that u p → wr in G X .

Proof Let ϕ1 be a clause of ϕ in which pu appears. Consider the partial evaluation x
in which x p = u, for every other qv that appears in ϕ1 we have xq = v, and xϕ = 0.
Clearly x is infeasible, and the minimality of the expression ϕ implies that x is a MIPE.
Parts 1 and 2 of the claim follow from this.

By the minimality of the expression ϕ, there exists an assignment of truth values
to the atomic propositions, so that the value of p is u, the value of every q 
= p
such that qv appears in ϕ1 is v, and ϕ is false for this assignment. This implies
that the Pa ∪ {ϕ}-evaluation y, which coincides with this assignment on Pa and has
yϕ = 1 is infeasible. Let y′ be a restriction of y to some K ⊆ Pa ∪ {ϕ}, which is a
MIPE. Clearly {p, ϕ} ⊆ K , and so part 3 of the claim follows. Now, let ϕ2 be a clause
of ϕ in which pu does not appear. As y′ is infeasible, it follows that every assignment
of truth values to the atomic propositions that agrees with y′ on K ∩ Pa makes ϕ2
false. This requires the existence of some r ∈ K ∩ Pa, r 
= p, and some w ∈ {0, 1}
so that rw appears in ϕ2 and y′

r = w. Part 4 of the claim follows. ��
Claim 4.3 If P is heterogeneous, then there exists an atomic proposition p ∈ Pa such
that 0p →→ 1p and 1p →→ 0p in G X .

Proof Suppose first that P contains an or- and proposition ϕ. Let ϕ1 be a clause of
ϕ that consists of at least two literals. Let ϕ2 be another clause of ϕ. There must exist
a literal pu that appears in ϕ1 but not in ϕ2, for otherwise ϕ2 would be redundant in
ϕ. We show that such a p satisfies the requirements of the claim. Indeed, let qv be
another literal that appears in ϕ1. Then, we have u p → vq → 0ϕ → u p by parts 2, 3,
and 1 of Claim 4.2, respectively (using also the law of contrapositives). In the other
direction, for a suitable rw, we have u p → wr → 1ϕ → u p by parts 4, 1, and 3 of
Claim 4.2, respectively.

Next, suppose that P qualifies as heterogeneous by virtue of a reversal that occurs
for the atomic proposition p. The same arguments as above show that if pu appears
in an and proposition then u p →→ u p, and if pu appears in an or proposition then
u p →→ u p. Applying this to each of the possible kinds of reversal shows that p
satisfies the requirements of the claim. ��
Claim 4.4 If P is connected and heterogeneous, then X is totally blocked.
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Proof We have to show the existence of directed paths in G X between any two vertices.
By parts 1 and 3 of Claim 4.2 (and the law of contrapositives), vertices that correspond
to propositions that are not atomic have arcs joining them in both directions to vertices
that correspond to atomic propositions. Therefore, it suffices to show the existence of
directed paths between any two vertices that correspond to atomic propositions.

Now, if both qv and rw appear in some proposition ϕ in P , then again by parts 1
and 3 of Claim 4.2 we have vq →→ wr and wr →→ vq , and also by taking con-
trapositives vq →→ wr and wr →→ vq . Let p be an atomic proposition satisfying
the requirements of Claim 4.3. Then it follows by the connectedness of GP that in
G X any vertex of the form 0q or 1q , for q ∈ Pa, has directed paths joining it in both
directions to either 0p or 1p. As 0p and 1p are themselves joined to each other by
directed paths, we are done. ��
Claim 4.5 If P is not connected, then X is not totally blocked.

Proof Suppose P is not connected. Then there exists a partition of Pa into two
nonempty sets V1 and V2 so that no p ∈ V1 and q ∈ V2 are joined by an edge in
GP . Hence, there exists a partition of P into two nonempty sets P1 and P2 so that
propositions in Pi use only atomic propositions in Vi , i = 1, 2. Since propositions in
P1 are logically independent from propositions in P2, there are no arcs in G X from
any uϕ , ϕ ∈ P1, to any vψ , ψ ∈ P2, or vice versa. Therefore, X is not totally blocked.

��
Claim 4.6 If P is not heterogeneous, then X is not totally blocked.

Proof We produce a partition of the vertex set of G X into two parts of equal size, V0
and V1, by deciding for each pair of vertices 0ϕ, 1ϕ to put one of them in V0 and the
other in V1, according to the following rules. If ϕ is an and proposition in P , then
we put 0ϕ in V0 and 1ϕ in V1. If ϕ is an or proposition in P , then we put 0ϕ in V1
and 1ϕ in V0. As P is not heterogeneous, any remaining ϕ in P is a literal, say pu ,
and satisfies at most one of the following two conditions: (1) pu appears in some and
proposition in P or pu appears in some or proposition in P; (2) pu appears in some
or proposition in P or pu appears in some and proposition in P . In case (1), we put
0ϕ in V0 and 1ϕ in V1, while in case (2) we put 0ϕ in V1 and 1ϕ in V0. If neither pu

nor pu appears in any and or or proposition in P , then we decide arbitrarily, subject
to the restriction that if both pu and pu are in P , then we make opposite decisions for
them.

Now, suppose that x = (xϕ)ϕ∈K is a partial evaluation. For i = 0, 1, let Ki be the
set of those ϕ ∈ K for which the corresponding vertex (xϕ)ϕ is in Vi . It can be verified
that x is infeasible if and only if there exists ϕ ∈ K0 so that for every p that appears
in ϕ there exists ψ ∈ K1 in which p appears. Therefore, if x is a MIPE, we must have
|K0| = 1. This implies that there are no arcs in G X from a vertex in V0 to one in V1.
Hence, X is not totally blocked. ��
Claim 4.7 P is parity-dependent if and only if X is an affine subspace.

Proof Let Pa = {p1, . . . , p�}. By truth-functionality, there exist functions
gϕ: {0, 1}� → {0, 1} for ϕ ∈ P , so that x ∈ X if and only if xϕ = gϕ(x p1 , . . . , x p� )
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for every ϕ ∈ P . Now, X is an affine subspace if and only if each of the functions gϕ
is affine, that is, of the form gϕ(x p1 , . . . , x p� ) = ∑�

j=1 a j x p j + b (with coefficients
a1, . . . , a�, b ∈ {0, 1} which may depend on ϕ). This is equivalent to saying that for
every ϕ ∈ P there exist a subset of Pa (those p j for which a j = 1) and a parity (deter-
mined by b), so that ϕ is true if and only if the number of true atomic propositions in
that subset has that parity. In other words, this amounts to P being parity-dependent.

��

5 All IIA and Paretian aggregators for truth-functional agendas

In this section, we look at the possibility side. If P is a possibility agenda, then there
do exist nondictatorial IIA and Paretian aggregators. Here, we give a full description
of those aggregators for any given standard truth-functional agenda P .

First, we introduce some terminology and notation that will be used to describe
aggregators. Let P be an agenda and let X = X (P) be nondegenerate. Suppose that
an IIA aggregator f : Xn → X is given. For each proposition ϕ ∈ P and each position
u ∈ {0, 1}, we say that a subset S of N is a uϕ-winning coalition if

xi
ϕ =

⎧
⎨

⎩

u if i ∈ S
⇒ fϕ(x) = u.

u if i ∈ N\S

Thus, S is uϕ-winning if it prevails on proposition ϕ when its members, and only they,
hold the position u. We denote by Wu

ϕ the collection of all uϕ-winning coalitions. It
follows from the definition and the IIA property that for each ϕ the two collections W0

ϕ

and W1
ϕ are dual to each other, in the sense that S ∈ W0

ϕ ⇔ N\S /∈ W1
ϕ . Conversely,

if we arbitrarily specify collections of coalitions Wu
ϕ for every ϕ and u that satisfy

the duality condition, then we have implicitly defined the components ( fϕ)ϕ∈P . The
resulting function f may not map Xn into X , but if it does then it is an IIA aggregator.
Note that f is Paretian if and only if N ∈ Wu

ϕ for every ϕ and u.
If a standard truth-functional agenda P is a possibility agenda, then it violates one

or more of the three conditions of Theorem 4.1. For the moment, we will assume
that P is connected (otherwise, we can break the aggregation problem into two or
more independent problems and treat each of them separately). If |Pa| ≥ 2 and P is
connected, then it cannot violate both the other conditions of Theorem 4.1, because
parity dependence allows only literals and or- and propositions, and nonheterogeneity
rules out the latter. We therefore essentially have only two cases to look at: when only
heterogeneity is violated, and when only nonparity dependence is violated.

Let P be a standard truth-functional agenda that is connected and
nonheterogeneous, with |Pa| ≥ 2. In the proof of Claim 4.6, we described a partition
of the vertex set of G X into two parts V0 and V1. Under the current assumptions of
connectedness and |Pa| ≥ 2, this partition is uniquely determined (the case when the
decision was arbitrary cannot occur). We will use this partition to define the oligarchic
rules for such P . Let N be a society and let R be a nonempty subset of N . We define
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the R-oligarchic rule by specifying the collections of coalitions Wu
ϕ as follows:

Wu
ϕ =

{ {S ⊆ N | S ∩ R 
= ∅} if uϕ ∈ V0

{S ⊆ N | R ⊆ S} if uϕ ∈ V1

Thus, for every proposition ϕ, there is a position (that u for which uϕ ∈ V1) whose
adoption by the society requires the support of all members of R, and in the absence of
such support, the opposite position is adopted.17 The individuals in N\R are ignored.
The two extreme cases, R = N and R = {d}, correspond to unanimity rule and
dictatorial rule, respectively.

Theorem 5.1 Let P be a standard truth-functional agenda that is connected and
nonheterogeneous, with |Pa| ≥ 2. Let X = X (P) and let N be a society of n indi-
viduals. Then for every nonempty R ⊆ N, the R-oligarchic rule defines an IIA and
Paretian aggregator f : Xn → X. Conversely, every IIA and Paretian aggregator
f : Xn → X is of this form, for some nonempty R ⊆ N.

Proof To show that the R-oligarchic rule defines an IIA and Paretian aggregator, it
suffices to verify that it maps Xn into X . Let f be the function whose components
fϕ are implicitly defined by the collections Wu

ϕ above. Suppose, for the sake of con-
tradiction, that f (x) /∈ X for some x ∈ Xn . Then some restriction of f (x), say
y = (yϕ)ϕ∈K , is a MIPE. As shown in the proof of Claim 4.6, there is a unique
ϕ0 ∈ K so that (yϕ0)ϕ0 ∈ V0. There is an individual i ∈ R for whom xi

ϕ0
= yϕ0 , and

for this individual we have xi
ϕ = yϕ for all ϕ ∈ K , contradicting the feasibility of xi .

Conversely, suppose that f : Xn → X is any IIA and Paretian aggregator, with
associated collectionsWu

ϕ of winning coalitions. We have to show that these collections
coincide with those defined above for a suitable nonempty R ⊆ N . It follows from
the definition of V0, V1, from parts 1 and 3 of Claim 4.2, and from the connectedness
of P that any two vertices of G X that lie in the same Vi are joined in G X by a
directed path. Therefore, by Claim 3.1 in Dokow and Holzman (2005), any two such
vertices have the same collection Wu

ϕ . Let W0 be the common collection for V0,
that is, Wu

ϕ = W0 for every uϕ ∈ V0. We have to show that W0 = {S ⊆ N | S∩ R 
= ∅}
for some nonempty R ⊆ N . This will suffice, because the collection for V1 must be
dual to this collection.

As P is nonheterogeneous and connected, and |Pa| ≥ 2, there is at least one
proposition ϕ in P that is an and or an or proposition. We present the argument for
the case when we have ϕ in P of the form p1 ∧ · · · ∧ ph . By suitably interchanging
0s and 1s the argument can be adapted to the case when some literals are negated, and
also to the case of an or proposition.

For any two disjoint coalitions S and T with union U = S ∪ T , consider the con-
struction in Table 1. Note that the individual rows are logically consistent, and the
social positions on p3, . . . , ph follow from the Pareto property. Observe also that
since 0p1 , 0p2 , and 0p1∧···∧ph are all in V0, the social positions on p1, p2, and

17 This is the default position according to the terminology of Nehring and Puppe (2008). They proved
essentially a monotone version of our Theorem 5.1.
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Table 1 Construction for Theorem 5.1

p1 p2 p3 · · · ph p1 ∧ · · · ∧ ph

S 0 1 1 · · · 1 0

T 1 0 1 · · · 1 0

N\U 1 1 1 · · · 1 1

1 · · · 1

p1 ∧ · · · ∧ ph are 0 if and only if S, T , and U , respectively, belong to W0. Now
the logical consistency of the social evaluation implies that U ∈ W0 if and only if
either S ∈ W0 or T ∈ W0 (or both).

Starting from N ∈ W0 and using this property repeatedly, we conclude that there
exists at least one i ∈ N so that {i} ∈ W0. Let R be the set of all such i ∈ N . Then it
follows from the above property that W0 = {S ⊆ N | S ∩ R 
= ∅}, as required. ��

We turn our attention now to the case when the violated condition of Theorem 4.1
is that of not being parity-dependent. For such P , we define the parity rules. Let N be
a society and let R be a subset of N of odd cardinality. The R-parity rule maps each
profile x to

∑
i∈R xi (with addition mod 2). Thus, the social position on any proposition

ϕ is the position supported by an odd number of members of R. The individuals in
N\R are ignored. When R is a singleton, we get the dictatorial rule.

Theorem 5.2 Let P be a standard truth-functional agenda that is connected and
parity-dependent, with |Pa| ≥ 2. Let X = X (P) and let N be a society of n individuals.
Then for every R ⊆ N of odd cardinality, the R-parity rule defines an IIA and Paretian
aggregator f : Xn → X. Conversely, every IIA and Paretian aggregator f : Xn → X
is of this form, for some R ⊆ N of odd cardinality.

Proof As noted above, since P is connected and parity-dependent and |Pa| ≥ 2, it is
also heterogeneous. Hence, by Claims 4.4 and 4.7, X is totally blocked and is an affine
subspace. For such X , the assertions of the theorem were proved in Proposition 4.3 of
Dokow and Holzman (2005). ��

By applying the last two theorems to each connected component, we obtain the
following complete description of the available IIA and Paretian aggregators for any
given standard truth-functional agenda P .

Corollary 5.3 Let P be a standard truth-functional agenda. Let P1
a , . . . ,P�

a be the
partition of Pa into connected components of the graph GP . Let P1, . . . ,P� be the
corresponding partition of P . Let N be a society. The class of all IIA and Paretian
aggregators for N over P is the Cartesian product of the corresponding classes for
P1, . . . ,P�, which are described in the following mutually exclusive and exhaustive
list of cases (where f k denotes the aggregator over Pk , k = 1, . . . , �):

1. If Pk is heterogeneous and not parity-dependent, then f k is the dictatorial rule
for some dictator dk ∈ N.
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2. If |Pk
a | ≥ 2 and Pk is not heterogeneous, then f k is the Rk-oligarchic rule for

some nonempty Rk ⊆ N.
3. If |Pk

a | ≥ 2 and Pk is parity-dependent, then f k is the Rk-parity rule for some
Rk ⊆ N of odd cardinality.

4. If |Pk
a | = 1, then f k is an arbitrary Paretian rule.

From this description, we can easily derive the conditions under which there exist
nondictatorial, IIA and Paretian aggregators that satisfy some additional desirable
properties. We do so below for several such properties. When stating the conditions
we refer to the components of P as being of types 1, 2, 3, or 4, according to the four
cases listed in Corollary 5.3.

We say that an aggregator f gives no veto power, if we have f (x) = x whenever
the profile x is such that xi = x for at least |N | − 1 individuals i ∈ N . This is a
common strengthening of the Pareto property and of nondictatorship.

Corollary 5.4 Under the conditions of Corollary 5.3, there exists an IIA aggregator
for N over P that gives no veto power if and only if |N | ≥ 3 and every component of
P is of type 4, or equivalently every proposition in P is a literal.

In particular, aggregation by majority rule on each proposition works only in the
trivial case when every proposition is a literal. We recall that the starting point of
research on judgment aggregation was the observation, called the doctrinal paradox,
that aggregation by propositionwise majority may fail to preserve logical consistency.
Our conclusion is that the doctrinal paradox occurs for every nontrivial truth-functional
agenda.

We say that an IIA aggregator f is monotone if all of the associated collections of
winning coalitions Wu

ϕ are closed under taking supersets.18

Corollary 5.5 Under the conditions of Corollary 5.3, there exists an IIA and Paretian
aggregator for N over P that is monotone and nondictatorial if and only if |N | ≥ 2
and either (1) P is connected and the unique component is of types 2 or 4, or (2) P is
not connected.

Finally, we turn to symmetry properties of the aggregator. We say that an IIA
aggregator f is neutral if it treats the various propositions and their negations equally,
that is, all of the associated collections of winning coalitions Wu

ϕ coincide.19 We
say that an aggregator f is anonymous if it treats the individuals equally, that is,
f (x) is invariant under permutations of the individuals in N . This is a far-reaching
strengthening of nondictatorship.

Corollary 5.6 Under the conditions of Corollary 5.3, and assuming |N | ≥ 2, there
exists an IIA and Paretian aggregator for N over P that is…

1. …neutral and nondictatorial if and only if |N | ≥ 3 and every component of P is
of types 3 or 4.

18 This is the extra property that Nehring and Puppe (2008) assumed. Our corollary agrees with their result.
19 This property was assumed, under the name systematicity, in a number of papers on judgment aggrega-
tion.
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2. …anonymous if and only if either (1) every component of P is of types 2 or 4, or
(2) |N | is odd and every component of P is of types 2, 3, or 4.

3. …neutral and anonymous if and only if |N | is odd and every component of P is
of types 3 or 4.

6 Relaxing the Pareto condition for truth-functional agendas

In this section, we show that if the Pareto condition is replaced by a weaker requirement
of sovereignty, our main results remain valid with only minor modifications. In doing
so, we are motivated by some of the literature on aggregation of preferences and
on judgment aggregation, which either dropped the Pareto condition or relaxed it.
In particular, Wilson (1972) showed that dropping the Pareto condition in Arrow’s
impossibility theorem results in adding to the dictatorial rules only the antidictatorial
rules (where there is an individual whose preferences are reversed by the society) and
the imposed rules (yielding a fixed social preference).

Sovereignty means that the aggregator should not rule out any outcome. Given
an agenda P and X = X (P), there are two natural requirements of this kind for
an aggregator f : Xn → X . We say that f is globally surjective if its image is the
entire set X . We say that f is locally surjective if the image of each of its components
fϕ is the entire set {0, 1}. Clearly, under our nondegeneracy assumption on X , global
surjectivity implies local surjectivity. Conversely, for truth-functional agendas and IIA
aggregators, local surjectivity implies global surjectivity (to see this, start by suitably
choosing the individual positions on the premises). Thus, under the assumptions that
we maintain here, the two versions of surjectivity are equivalent. We will henceforth
use the term surjective without danger of ambiguity.

We start with an example showing that our impossibility results are not preserved
in their current form if the Pareto condition is replaced by the weaker condition of
surjectivity.

Example Let P = {p, q, r, (¬p∧¬q)∨(p∧r), (q∧r)∨(¬q∧¬r)}. By Theorem 4.1,
this is an impossibility agenda. Now consider the following rule of aggregation for
a society N . Fix an individual in N , say 1, and let the social position on each of the
propositions p and (q ∧ r)∨ (¬q ∧¬r) be that of individual 1, and the social position
on each of the propositions q, r , and (¬p ∧¬q)∨ (p ∧r) be the opposite of individual
1’s position. Note that under the operation of switching the truth values of q and r
(while keeping that of p), the propositions in the former list always preserve their truth
values, while those in the latter list always reverse their truth values. This implies that
the above rule always yields a logically consistent evaluation. Thus, we have an IIA
and surjective aggregator for this P , which is not dictatorial.

We proceed to define in general aggregators of the form described in the above
example. Let P be an agenda, and let R be a subset of P . Let X = X (P) and let N
be a society. An aggregator f : Xn → X is R-reverse dictatorial if there exists an
individual d ∈ N such that for every ϕ ∈ P and every x ∈ Xn

fϕ(x) =
{

xd
ϕ if ϕ ∈ P\R

xd
ϕ if ϕ ∈ R
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In the case R = ∅ we get the dictatorial rule, and the case R = P is the analog of the
antidictatorial rule in our framework. Clearly, an R-reverse dictatorial aggregator is
well defined (that is, maps Xn into X ) if and only if X is closed under the operation of
complementing the entries in the R coordinates. For some agendas P , the only well-
defined R-reverse dictatorial aggregators are those with R = ∅, but for other agendas,
such as the one in the above example, nontrivial R-reverse dictatorial aggregators do
exist. For an agenda P satisfying Pa ⊆ P , an R-reverse dictatorial aggregator with
R 
= ∅ will exist if and only if there exists a nonempty subset Ra of Pa with the
following property: with respect to the operation of switching the truth values of the
atomic propositions in Ra (while keeping those of the remaining atomic propositions),
every proposition in P has a constant reaction—either it always preserves its truth
value, or it always reverses its truth value. Finally, we observe that whenever an R-
reverse dictatorial aggregator is well defined, it is IIA and surjective.

Theorem 6.1 Let P be a standard truth-functional agenda that is connected and
nonparity-dependent. Let X = X (P) and let N be a society of n individuals. Let
f : Xn → X be an IIA and surjective aggregator. Then,

1. If P is heterogeneous, then f is an R-reverse dictatorial aggregator for some
R ⊆ P .

2. If P is not heterogeneous, then f is an R-oligarchic rule for some nonempty
R ⊆ N.

Part 1 of this theorem is the counterpart of Theorem 4.1 when the Pareto condition
is replaced by surjectivity. It shows that, under the same conditions on P , this relax-
ation enlarges the class of available IIA aggregators from the dictatorial rules to the
R-reverse dictatorial rules.20 As explained above, whether or not this is a proper en-
largement depends on the agenda P . For many agendas P , there will be no R-reverse
dictatorial aggregators with R 
= ∅, and in these cases, the original impossibility car-
ries over with the Pareto condition replaced by surjectivity. Part 2 of the theorem is the
counterpart of Theorem 5.1. It shows that, under the same conditions on P , weakening
the Pareto condition to surjectivity makes no difference for the class of available IIA
aggregators.21

We introduce now some notation and terminology that will be used in the proof
of Theorem 6.1. Let f : Xn → X be as in the theorem. We associate with f the

20 It is interesting to note that the result does not remain true if instead of surjectivity we assume the
even weaker property of nonconstancy [this is Pauly and van Hees’ (2006) weak responsiveness, which
sufficed for their result under a much stronger agenda condition]. Consider for example the agenda P =
{p, q, p∧q, p∧¬q}, which satisfies all the conditions of Theorem 6.1, part 1. We may define an aggregator
f : Xn → X by letting fq be any nonconstant function that depends only on the individual evaluations
of q, and letting fϕ be the constant function 0 for every other ϕ in P . Then f is well defined, IIA, and
nonconstant, but it is not R-reverse dictatorial for any R ⊆ P .
21 We observe that the initial impossibility theorem for judgment aggregation, due to List and Pettit (2002),
can be deduced from this result. Indeed, suppose that P ⊇ {p, q, p ∧ q} and f : Xn → X , n ≥ 2, is an
IIA aggregator that is anonymous and neutral. We may assume that P = {p, q, p ∧ q}, for otherwise we
can consider the restriction of f to evaluations of only those three propositions. Clearly, neutrality implies
surjectivity of f (this is obvious if one considers local surjectivity). Hence, by Theorem 6.1, part 2, f is
an R-oligarchic rule. However, if |R| < n then such a rule is not anonymous, and if |R| > 1 then it is not
neutral.
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collections Wu
ϕ of winning coalitions, just as we did in Sect. 5. The only difference is

that now we do not know that N ∈ Wu
ϕ for every ϕ and u. We only know that Wu

ϕ 
= ∅
for every ϕ and u (this is the surjectivity condition).

We partition the agendaP into four (possibly empty) parts, according to the behavior
of fϕ on unanimous n-tuples of positions on ϕ. The four parts are denoted P00, P01,
P10, and P11, and are defined by the following convention: we put a proposition ϕ in
Puv if u is the output of fϕ on the all 0 n-tuple and v is its output on the all 1 n-tuple.
Clearly, f is Paretian if and only if P01 = P .

Our arguments will make use of a new aggregator, denoted by f 2, obtained from
f by applying it twice in the following sense: f 2(x) = f ( f (x), . . . , f (x)). Clearly,
f 2 : Xn → X is a well-defined IIA aggregator. We may consider a partition of P
into four parts, denoted P2

00, P2
01, P2

10, and P2
11, which are defined in the same way

as above but with respect to f 2. Note that if ϕ is in one of the parts P00, P01, or P11,
then it is in the same corresponding part with respect to f 2. However, if ϕ is in P10
then it is in P2

01. It follows that if P00 ∪ P11 = ∅ then f 2 is Paretian. The plan of the
proof of Theorem 6.1 is to show that indeed, under its assumptions, P00 ∪ P11 = ∅,
and then apply our earlier results to f 2.

In preparation for the proof of the theorem, we prove a number of claims. In all
these claims, the agenda P is assumed to be standard truth-functional, the aggregator
f is assumed to be IIA and surjective, and ϕ is a proposition in P . We also use the
following terminology. If the literal pu appears in a clause ϕ1 of ϕ, we say that p
agrees to ϕ1 if p ∈ Puu , and we say that p is opposed to ϕ1 if p ∈ Puu .

Claim 6.2 If ϕ ∈ P00, then for every atomic proposition p that appears in ϕ, there
exists a clauseϕ1 ofϕ to which p is opposed, and so that every other atomic proposition
q that appears in ϕ1 agrees to it.

Proof Let ϕ ∈ P00. We first show that in every clause ϕ1 of ϕ there exists an atomic
proposition r that is opposed to ϕ1. Suppose, for the sake of contradiction, that ϕ1 is
a clause of ϕ to which no r is opposed. So, if ru appears in ϕ1, then r /∈ Puu , and
therefore r ∈ P2

uu ∪ P2
01. On the other hand, ϕ ∈ P2

00. Let x be a logically consistent
evaluation under which ϕ1 is true. Let x be the profile in which every individual holds
the evaluation x . Then in f 2(x), for every ru that appears in ϕ1, the truth value of r is
u, whereas ϕ is false. This contradicts the consistency of f 2(x).

Now we prove the assertion of the claim. Let p be an atomic proposition that
appears inϕ. By the minimality of the expression ϕ, there exist two logically consistent
evaluations x and y that coincide on every atomic proposition other than p, so that
xϕ = 1 but yϕ = 0. By surjectivity of f , we can choose some coalition S ∈ W1

ϕ . Let
z = (x S, yN\S), that is, the profile in which each member of S holds the evaluation
x , and each member of N\S holds the evaluation y. Then, fϕ(z) = 1 by our choice
of S. Hence, there exists a clause ϕ1 of ϕ, which is true under f (z). We show that ϕ1
satisfies the requirements of the claim.

Note first that for every q 
= p that appears in ϕ1, all individuals hold the same
position on q in z, and therefore, as ϕ1 is true under f (z), such q cannot be opposed
to ϕ1. By the first part of the proof, some r is opposed to ϕ1, and hence, p must be
opposed to ϕ1. Now, let q be any other atomic proposition that appears in ϕ1. By what
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we have shown so far (applied to q instead of p), there exists a clause ϕ2 of ϕ to which
q is opposed. Hence, q either agrees to ϕ1 or is opposed to it, but, as we have pointed
out, q cannot be opposed to ϕ1; so, it must agree to it. ��
Claim 6.3 Suppose ϕ ∈ P00 ∪ P11. Then

1. Every atomic proposition that appears in ϕ is in P00 ∪ P11.
2. ϕ is parity-dependent.

Proof We will show that the assertions in the claim hold true in the case ϕ ∈ P00.
The case ϕ ∈ P11 can be reduced to the other case as follows. Let ϕ′ be a proposition
in minimal DNF that is logically equivalent to ¬ϕ. Consider the agenda P ′ = P ∪
{ϕ′}. This agenda satisfies all our assumptions, and the aggregator f can be naturally
extended to an IIA and surjective aggregator f ′ for P ′. If ϕ ∈ P11 then ϕ′ ∈ P ′

00, and
once we know that the assertions of the claim hold true for ϕ′, we can deduce that they
hold true for ϕ as well.

So, let ϕ ∈ P00. Part 1 of the claim is implied directly by Claim 6.2. To verify the
second part, it suffices to show that switching the truth value of any atomic proposition
p that appears in ϕ (while keeping the values of all others) always changes the truth
value of ϕ. Suppose, for the sake of contradiction, that this fails for some p that appears
in ϕ. Let ϕ1 be a clause of ϕ that satisfies the requirements of Claim 6.2 for p. Let
u be such that pu appears in ϕ1, and let S be a coalition in Wu

p . By our assumption,
there exist two logically consistent evaluations x and y that coincide on every atomic
proposition other than p and on ϕ, and satisfy x p = u and yp = u. Let z = (x S, yN\S).
Then, f p(z) = u by our choice of S. This, together with the fact from Claim 6.2 that
every atomic proposition q 
= p that appears in ϕ1 agrees to it, implies that ϕ1 is true
under f (z). However, as ϕ ∈ P00, we get fϕ(z) = 0, which contradicts the logical
consistency of f (z). ��
Claim 6.4 If ϕ /∈ P00 ∪ P11, then no atomic proposition that appears in ϕ is in
P00 ∪ P11.

Proof Suppose that ϕ /∈ P00 ∪ P11. We first show that for no clause ϕ1 of ϕ it is the
case that one of its atomic propositions, say r , agrees to ϕ1, and none of its atomic
propositions is opposed to it. Suppose, for the sake of contradiction, that this is the case
for ϕ1 of the form ru ∧ qu1

1 ∧ · · · ∧ quh
h . By the minimality of the expression ϕ, there

exists a logically consistent evaluation x so that xr = u, xq j = u j for j = 1, . . . , h,
and xϕ = 0. Let x be the profile in which every individual holds the evaluation x . It
follows from our assumptions that under f 2(x) the clause ϕ1 is true, but ϕ is false,
which contradicts the logical consistency of f 2(x).

Now we proceed to prove the assertion of the claim. Let p be an atomic proposition
that appears in some clause ϕ1 of ϕ. We have to show that p neither agrees to ϕ1
nor is opposed to it. Suppose first that p is opposed to ϕ1. By the minimality of the
expression ϕ, there exists a logically consistent evaluation x under which ϕ1 is the
unique clause of ϕ that is true. Let x be the profile in which every individual holds the
evaluation x . It follows from our assumptions that under f 2(x) the clause ϕ1 is false,
yet ϕ is true. Hence, there must exist another clause ϕ2 of ϕ that is true under f 2(x).
Given that ϕ2 is false under x , for it to become true under f 2(x), it must be the case
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that one of its atomic propositions agrees to ϕ2 and none of its atomic propositions is
opposed to it. This, however, contradicts what we showed earlier.

Next, suppose that p agrees to ϕ1. We already know, by the previous paragraph,
that none of the atomic propositions in ϕ1 is opposed to it. Again, this contradicts what
we showed earlier. ��

We are now ready to prove Theorem 6.1. We show first that its assumptions imply
that P00 ∪P11 = ∅. Indeed, suppose that P00 ∪P11 
= ∅. Note that if P00 ∪P11 = P ,
then, by part 2 of Claim 6.3, P is parity-dependent, contradicting our assumption.
Hence, there exist propositions in P , which are in P00 ∪ P11, and there exist propo-
sitions in P , which are not in P00 ∪ P11. By Claim 6.3, part 1, and Claim 6.4, there
exist atomic propositions, which are in P00 ∪ P11, and there exist atomic proposi-
tions, which are not in P00 ∪ P11. Moreover, no proposition in P can contain atomic
propositions of both kinds. This contradicts our assumption that P is connected.

Now, suppose that P is heterogeneous. As remarked earlier, it follows from P00 ∪
P11 = ∅ that f 2 is Paretian. Hence, by Theorem 4.1, f 2 is dictatorial, but then f is
P10-reverse dictatorial.

Next, suppose that P is not heterogeneous. By considering the action of f on
profiles in which all individuals hold the same evaluation, we know that X is closed
under the operation of complementing the entries in the P10 coordinates. However,
since every atomic proposition appears in some and or or proposition in P , there is
no way for X to be closed under that operation unless P10 = ∅. We conclude that
P01 = P and f is Paretian. Hence, by Theorem 5.1, f is R-oligarchic for some
nonempty R ⊆ N .
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